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Abstract 

Using enrichment procedures, 45 organic solvent-tolerant lipase producer bacterial strains were screened from 
areas contaminated by oil and organic solvents. Among the strains, 15 isolates exhibited extreme stability toward 
organic solvents and high lipolytic activity. The NEB-1 isolate which was later identified as Pseudomonas sp. 
strain NEB-1 by biochemical tests and 16S rDNA gene sequence analysis was selected based on extremely high 
tolerance to organic solvents and maximum lipase production. Biochemical studies revealed that the crude lipase 
was stable at temperatures between 20 ºC and 60 ºC and pH ranges of 4 to 11 for 1 h. Optimum pH and 
temperature of the enzyme were revealed to be 9.5 and 70 ºC, respectively. The crude lipase showed remarkable 
tolerance in presence of different organic solvents with a broad range of hydrophobicity characteristics. The 
solvent stable lipase showed an attractive potency for application in biocatalysis in non-aqueous systems and 
biodiesel production. 
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1. Introduction 

Lipases (triacylglycerol hydrolases, EC 3.1.1.3), are 
lipolytic enzymes that catalyze the hydrolysis of 
ester bonds of triacylglycerols at the oil-water 
interface (Arpigny & Jaeger, 1999). Various lipases 
from different eukaryotic and prokaryotic origin 
have been identified. Lipases from bacterial origin 
are more attractive due to their versatility, 
accessibility, high yield possibility, ease of genetic 
manipulation, regular supply as a result of absence 
of seasonal fluctuations, and rapid growth of 
inexpensive culture media (Fang et al., 2006). Some 
bacterial enzymes are very stable and active in 
organic solvents. Their remarkable stability in 
water-restricted environments has made them key 
enzymes in biotechnological applications 
(Klibanov, 2001). Using organic solvents in 
enzymatic reactions has several advantages such as 
prevention of water dependent undesirable side 
reactions, reduced microbial contamination, high 
solubility of substrates, ease recovery of products, 
shift of thermodynamic equilibrium toward 
synthetic direction, and enhanced thermostability 
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(Koops, Verheij, Slotboom, & Egmond, 1999; 
Pencreac’h & Baratti, 2001). More importantly, the 
substrate, stereo-, regio- and chemoselectivities of 
the lipases differ markedly in non-aqueous 
solutions. This strategy is applicable in enantiopure 
and chiral compounds production which is 
important in pharmaceuticals and agrochemicals 
industries (Klibanov, 2001). Besides, biosurfactant 
and biodiesel production and organic synthesis are 
other attractive industrial applications of these 
enzymes. 

It has been reported that some wild-type strains 
can grow in media containing organic solvents 
(Aono, Ito, Inoue, & Horikoshi, 1992). Based on 
the hypothesis that the organic solvent-tolerant 
bacteria can secrete organic solvent-tolerant 
enzymes, an investigation has been conducted to 
screen for a lipase producer organic solvent tolerant 
bacterium, its identification and lipase production. 
An extracellular lipase produced by Pseudomonas 
sp. strain NEB-1 was shown to be a potentially 
useful biocatalyst for biodiesel production and 
organosynthetic reactions. To date, among the high 
number of lipases described in literatures, only a 
few studies have been reported on the production of 
lipases with adequate stability and enzymatic 
activity in organic solvents especially, ethanol and 
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methanol for further consideration in biodiesel 
production (Fang et al., 2006). 

2. Materials and methods 

2.1. Materials 

Bacterial strains used as control were a gift from 
Shahid Motahari clinic (Shiraz, Iran). Tributyrin 
and p-nitrophenyl palmitate (p-NPP) were 
purchased from Sigma. All other chemicals were 
obtained from Merck Chemicals (Darmstadt, 
Germany). 

2.2. Sample collection and cultivation 

Soil and water samples were collected from 
different sites contaminated with oil and organic 
solvents. After removing debris, 1 ml or 1 g of each 
sample was added to 10 ml sterilized normal saline 
and shacked. 1% of the suspension as inoculum was 
transferred to enrichment medium which contained: 
0.5% peptone, 0.1% beef extract, 0.2% yeast 
extract, and 0.5% NaCl, pH 7.0. After autoclaving 
70 mg l-1 nystatin was added to medium to prevent 
fungi growth. Cultures were carried out at 37 ºC 
and 150 rpm for 48 h and transferred to fresh 
medium three times. Then, samples of the cultures 
were diluted and spread on nutrient agar plates and 
restreaked several times to obtain pure bacterial 
colonies. 

2.3. Screening of lipase producing bacteria 

For rapid detection of lipase producing strains, a 
method using phenol red and olive oil with slight 
modification was used (R. Singh, Gupta, Goswami, 
& Gupta, 2006). The medium contained 0.01% 
phenol red, 2.0% olive oil, 10 mM CaCl2, 2.0% 
agar, pH 7.3–7.4. After incubation at 37 °C for 15 
min, the colonies with obvious color change from 
pink to yellow were selected and re-spread on 
tributyrin agar plates with the following 
composition: 1.0% tributyrin, 0.05% yeast extract, 
1.0% (NH4)2SO4, 0.35% K2HPO4, 0.25% NaCl, 
0.05% MgSO4.7H20, and 2.0% agar, pH 7.5. The 
plates were incubated at 37 °C for 3 days. Lipolytic 
strains were gathered based on the presence of clear 
zone around the colonies. Then, one loopful from 
theses isolates was transferred to basal medium and 
20 μl of the overnight cultures were spot inoculated 
on Rhodamine B agar medium containing 2.0% 
olive oil (emulsified by 1% polyvinyl alcohol or 
gum Arabic), 0.8% nutrient broth, 0.05% yeast 
extract, 0.4% NaCl, and 2.0% agar, pH 7.0. The 
filter sterilized Rhodamine B solution (0.001%) 
was added to medium after autoclaving. After 
incubation at 37 °C for 48 h, the plates were 

exposed to 350 nm UV irradiation and colonies that 
exhibited orange fluorescent halo were selected as 
potential lipase producers. 

2.4. Isolation and screening of organic solvent-
tolerant strains 

1% of preculture basal medium was transferred to 
Erlenmeyer flasks containing 20 ml of the selective 
medium (Isken & de Bont, 1998). The medium 
contained 2.0% olive oil, 0.3% yeast extract, 0.5% 
(NH4)2SO4, 0.35% K2HPO4, 0.1% KH2PO4, 0.25% 
NaCl, and 0.05% MgSO4.7H20, and 10%-90% 
organic solvent. The flasks were plugged with 
aluminum foil-covered stoppers to prevent 
evaporation of solvent. The cultures were incubated 
at 37 ºC and 150 rpm for 48 h and strains with high 
tolerance of toluene were transferred to Nutrient 
agar (NA) plates for plate overlay assays (Nielsen, 
Kadavy, Rajagopal, Drijber, & Nickerson, 2005). 
20 μl of overnight culture of pure colonies grown in 
preculture basal medium was transferred onto glass 
petri dishes containing nutrient agar. The spots 
were then allowed to dry for 30 min at 37 °C. 
Solvent was directly poured on top of the agar plate 
surface to a depth of 5 mm. After 8 h the solvent 
was pipetted off, and the plates were inverted and 
incubated at 37 °C for another 24 h. The solvents 
tested included toluene, and benzene. 

2.5. Bacterial strain identification 

The isolated strain was identified by combining 
the analysis of phenotypic and genotypic 
identification methods. Morphological and 
physiological characteristics of the isolate were 
studied either on nutrient agar or in nutrient broth. 
Gram staining was performed by Burke method and 
confirmed by KOH test (Barron & Finegold, 1990). 
Motility was tested using wet mount and staining 
the flagella (Murray, Doetsch, & Robinow, 1994) 
and biochemical parameters were checked as 
recommended by Smibert and Krieg (Smibert RM 
& NR, 1994). Genotypic identification was done 
via determining the DNA sequences of partial 16S 
rDNA gene. Total DNA of strain NEB-1 was 
extracted by using QIAamp DNA Mini kit 
(Qiagen). The partial 16S rDNA gene sequence of 
the selected isolate was amplified by PCR using the 
primers: HRK1 (5'-ACTCCTACGGGAGGCAGCAG-
3') as the forward and HRK2 (5'-
TGACGGGCGGTGTGTACAAG-3') as the reverse 
primer. The amplification was carried out in 50 μl 
of reaction mixtures as follows: 3 min at 94 oC; 35 
cycles of 1 min at 93 oC, 45 s at 58 oC, and 1:30 min 
at 72 oC, and a final extension at 72 oC for 10 min. 
The purified PCR product was sequenced in both 
directions using an automated sequencer by Bioneer 
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Company, South Korea. The phylogenic 
relationship of the isolate was determined by 
MEGA 4.0 software (Tamura, Dudley, Nei, & 
Kumar, 2007). 

2.6. Lipase production 

One loopful from fresh NA plate of pure isolate 
was transferred to Nutrient broth (NB). A bacterial 
inoculum of 4.5% from stationary phase was 
inoculated into 20 mL of the preliminary optimized 
lipase production medium in a 125 mL Erlenmeyer 
flask with the following composition: 2.0% olive 
oil, 0.03% yeast extract, 0.7% (NH4)2SO4, 0.25% 
K2HPO4, 0.05% NaCl and 10.0% of mineral stock 
solution with an initial pH of 7.5. The incubations 
were performed at 31 °C with shaking at 220 rpm. 
The culture was harvested after 52 h (based on the 
relationship between bacterial growth and lipase 
production) and supernatant was obtained by 
centrifugation at 8000×g at 4 °C for 20 min. The 
supernatants were used for lipase assays and 
biochemical characterization studies. 

2.7. Lipase assay 

Determination of lipase activity was performed 
spectrophotometrically by p-nitrophenyl palmitate 
(p-NPP). The reaction mixture contained 360 µl 
freshly prepared (2.5% Triton X-100 and 50 mM 
Tis-HCl buffer, pH 8.0) and 30 µl freshly prepared 
substrate (10 mM stock in acetonitrile). This 
mixture was prewarmed and then mixed with 20 µl 
of enzyme solution. The amount of liberated p-
nitrophenol was recorded at A410 for 2 min at 30 oC. 
One unit of lipase activity was defined as the 
amount of enzyme required to liberate 1 µmol of p-
nitrophenol released from the substrate per min 
under standard assay conditions (Moh'd A & 
Wiegel, 2007). 

2.8. Determination of reaction properties 

The optimum temperature of lipase was 
determined at temperature range of 20 °C-80 °C. 
Thermostability was performed at 20 °C, 40 °C and 
60°C during two intervals of 0.5 and 1 h. The 
optimal pH of the enzyme was determined by using 
different buffer systems (pH 7.0 to 9.5). For pH 
stability studies, residual activity in various pH 
values between 4.0 and 11.0 was measured after 1 h 
incubation at 30 °C by using 25 mM universal 
buffer mixture [sodium citrate (pH 3.0-6.2), 
potassium phosphate (pH 5.8-8.0 and 11.0-13.0), 
Tris-HCl (pH 7.1-8.9), and glycin-NaOH (pH 8.6-
10.6). The substrate emulsion was incubated at 
desired temperature for 15 min and in each case 

lipase assay was carried out for 2 min. Each 
measurement was performed three times. 

2.9. Effect of metal ions, inhibitors, and 
denaturants on lipase activity 

The effect of different metal ions at final 
concentration of 5 mM, and other test components 
at final concentration of 1 mM and 5 mM was 
added to p-NPP assay mixture. The residual activity 
was measured after incubation for 1 h at 30 °C and 
pH 8.0. All experiments were done in triplicate and 
standard error was included. 

2.10. Enzyme stability in organic solvents 

Bacteria was cultured aerobically in the absence 
of organic solvent and removed by centrifugation at 
8000×g at 4°C for 20 min. The supernatant was 
filtered and residual activity of enzyme was 
measured after incubation for 6 days at 30°C in 
various organic solvents at total concentration of 
25% using p-NPP as substrate. Remaining activity 
of lipase was also investigated in presence of 15%, 
25%, 35% and 45% of ethanol and methanol after 
24 h incubation period at 30 °C.  

3. Results and discussion 

3.1. Screening of organic solvent-tolerant lipolytic 
bacteria 

The lipolytic activities of all the isolates were 
qualitatively determined by using plate assays 
including phenol red agar, tributyrin agar and 
Rhodamine B agar. Most isolates exhibited lipolytic 
activity. Tolerance of bacteria to organic solvents 
was examined in both solid and liquid media (Table 
1). The parameter log P is defined as logarithm of 
the partition coefficient of the solvent between n-
octanol and water and is used as an index of the 
solvent polarity. Organic solvents with a log P 
between 2.0 and 3.0 are highly toxic to most 
bacterial strains even at very low concentrations of 
0.1% [8]. Toluene (log P=2.5) in total concentration 
of 10%-90% was added to the medium described 
earlier. By this procedure, 45 organic solvent-
tolerant strains were obtained. Among them, 15 
strains showed maximal tolerance (90% toluene). 
Most of these strains tolerated toluene and benzene 
(log P=2.0) overlays. Out of these, strain NEB-1 
showed maximum lipase production (Fig. 1) and 
was selected for further studies. 
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Table 4. Effect of different chemicals on lipase activity 
 

Reagent 
Relative activity (%)*  
at a concentration of 

 1 mM 5 mM 
Control 100 100 
EDTA 
DTT 

129.4 ± 1.1 
152.9 ± 9.0 

140.6 ± 1.2 
134.4 ± 1.0 

Pefabloc 125.1 ± 1.3 135.1 ± 1.3 
SDS 32.4 ± 0.7 13.4 ± 0.1 
Tween 80 183.0 ± 1.1 134.4 ± 0.6 
 
*Lipase activity is shown as values relative to that 
measured without addition of any reagents as control. All 
assays were done in triplicate. 

3.6. Enzyme stability in organic solvents 

Organic solvent-tolerant lipases are desirable 
choices in industrial processes, especially in 
organosynthesis reactions. The effect of organic 
solvents on lipase activity is related to both the 
nature of enzyme and the solvent (Hazarika, 
Goswami, Dutta, & Hazarika, 2002). The stability 
of crude extracellular lipase in organic solvents 
with various log P after incubation for 6 days is 
shown in Table 5. All tubes were sealed and 
covered to prevent solvent loss due to evaporation. 
The NEB-1 lipase showed good stability toward 
both hydrophobic and hydrophilic organic solvents 
in the long period of incubation. Among 12 tested 
solvents, only acetonitrile reduced the enzyme 
activity drastically. Lipase from Pseudomonas 
aeruginosa San-ai was also inactivated in 25% 
acetone after 48 h incubation (Dimitrijević et al., 
2011). No considerable enzyme inactivation was 
demonstrated by n-heptane, xylene, n-hexane, 
benzene, diethyl ether and acetone. Elevated 
enzymatic activity in isopropanol and DMSO was 
observed. Lipase from Pseudomonas stutzeri LC2-8 
also did not show any notable inactivation in 
presence of 25% n-heptane and n-hexane and was 
activated in isopropanol and DMSO (Cao et al., 
2012). The most important characteristic of organic 
solvents is log P which gives the best correlation 
with the enzyme activity. Organic solvents with 
lower log P values are known to be more toxic due 
to stripping essential water molecules off the 
enzyme structure. However, lipase from 
Pseudomonas sp. strain NEB-1 did not follow this 
trend. To explain this behavior and assess the 
denaturing strength of organic solvents, other 
solvent related parameters might be helpful 
(Doukyu & Ogino, 2010). Extreme tolerance of the 
lipase isolated in our study toward various organic 
solvents suggests that the lipase from Pseudomonas 
sp. strain NEB-1 can be considered as a potential 
biocatalyst for organosynthetic reactions. 
 

Table 5. Stability of lipase activity in the presence 
of various organic solvents 
 

Organic solvent Log P 
Relative activity 

(%)* 
Control - 100 
n-Heptan 4.0 97 
n-Hexane 3.5 86 
Xylene 3.1 90 
Toluene 2.5 74 
Benzene 2.0 95 
Diethyl ether 0.87 85 
Isopropanol 0.074 103 
Acetone -0.23 85 
Ethanol -0.24 71 
Acetonitrile -0.34 30 
Methanol -0.76 62 
DMSO -1.37 106 
 
*The lipase was incubated with various solvents (25%) at 
30°C and 25 rpm for 6 days.  
The activity of the lipase in the absence of organic 
solvents was taken as control. 

3.7. Application of lipase for biodiesel fuel 
production 

Organic solvent-tolerant lipases are frontier 
enzymes in green chemistry process such as biofuel 
production. Only organic solvent-tolerant lipases 
with acceptable stability toward ethanol and 
methanol can improve biodiesel production 
(Kaieda, Samukawa, Kondo, & Fukuda, 2001). In 
order to test the suitability of lipase from 
Pseudomonas sp. strain NEB-1, the enzyme was 
incubated with different concentrations of methanol 
and ethanol for 24 h (Table 6). No distinct 
inactivation happened after 24 h incubation of 
enzyme even in higher concentration of organic 
solvents. The residual activity of lipase in presence 
of ethanol and methanol at concentration of 45% 
was 70.6% and 152.9%, respectively. High 
tolerance of the NEB-1 lipase to these solvents, 
especially methanol proposes the use of this 
enzyme in biodiesel fuel production by 
methanolysis from methanol and vegetive oil in 
crud form such as olive oil. 
 
Table 6. Lipase stability in different concentration of 
ethanol and methanol 
 

Solvent  
Residual activity (%)* at 
concentration of: 

 - 15% 25% 35% 45% 
Ethanol 100 209.8 164.7 90.2 70.6 
Methanol 100 243.1 156.9 154.9 152.9 
 
*The lipase was incubated with various concentrations of 
ethanol and methanol at 30°C and 25 rpm for 24 h.  
The activity of the lipase in the absence of organic 
solvents was taken as control. 
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4. Conclusion 

In our study, an organic solvent-tolerant lipase from 
Pseudomonas sp. strain NEB-1 was obtained. The 
maximum lipase activity in a production medium 
that was designed in our laboratory was 83.44 U/ml 
by using p-NPP as substrate. The enzyme with 
temperature and pH optimum at 70 °C and pH 9.5 
exhibited significant stability in a broad range of 
temperatures and pH. After incubating the lipase 
with various metal ions and additives, it was 
revealed that the enzyme activity can be elevated in 
the presence of calcium and is inhibited by copper 
and SDS. The lipase also showed an extreme 
tolerance to both hydrophilic and hydrophobic 
organic solvents in long incubation period of 6 
days. Stability of lipase even in high concentration 
to 45% of methanol and ethanol was observed after 
24 h incubation. These results suggest the use of 
enzyme as a potential biocatalyst in 
organosynthesis and biodiesel fuel production 
processes.  
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