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Abstract

The first extended zeroth-order connectivity index of a graph G is defined as ° 7,(G)= Z DV‘” ? where

veV (G)

V(G) is the vertex set of G, and Dv is the sum of degrees of neighbors of vertex V in G. we give a sharp

lower bound for the first extended zeroth-order connectivity index of trees with given numbers of vertices and
pendant vertices, and characterize the extremal trees. We also determine the n-vertex trees with the first three

smallest first extended zeroth-order connectivity indices.
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1. Introduction

Topological indices are graph invariants used for
quantitative structure-property relationship and
quantitative structure-activity relationship
(Trinajsti¢, 1992). The extended zeroth-order
connectivity index belongs to the class of
topological indices (Bonchev and Kier, 1992).

Let G be a simple graph with vertex set V (G)
and edge set E(G). For veV(G), I'5(V)
denotes the set of its (first) neighbors in G and the
degree of V is d, =d,(G)=/T5(V)|. Denote
by UV or VU the edge of G connecting vertices
U and V. We follow (Trinajsti¢, 1992; Wilson,

1972) for graph-theoretical terminology.
The zeroth-order connectivity index of a graph

G is defined as (Randi¢, 1975; Randi¢, 2001)

‘2="2(G)= > d".

veV (G)

It is used in (Siddhaye et al., 2004) to develop
structure-based correlations for physical properties
of interest in pharmaceutical chemistry: octanol-
water partition coefficient, melting point and water
solubility.
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For a nonnegative integer K, Bonchev and Kier
(1992) proposed the kth extended zeroth-order

connectivity index, which for a graph G is defined
as

‘2= "2.(G) = 2 (kdv)il/za

veV (G)

where Odv=dv and de: Z k7ldu for

uel’(v)
k>1. Obviously, ’y,="y. Toropov et al.

(1997) showed that the extended =zeroth-order
connectivity indices may be used for structure-
property studies. We gave in (Zhou and Trinajstié,
2009) various lower and upper bounds for the first

extended zeroth-order connectivity index ° %, and

the first extended first-order connectivity index ' X

in terms of graph parameters such as the number of
vertices, the number of edges, and the first Zagreb
index.

In this paper, we establish further properties for
the first extended zeroth-order connectivity index of
trees. We give a sharp lower bound for the first
extended zeroth-order connectivity index of trees
with given numbers of vertices and pendant vertices
(vertices of degree one), and characterize the
extremal trees. Then we determine the n-vertex
trees with the first three smallest first extended

zeroth-order connectivity indices for N> 6.
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2. Preliminaries

Let S, , be the tree obtained by attaching p—1
pendant vertices to an end vertex of the path
P where 2< p<n-1.

n+l-p?

Lemmal. Let T be atree with N vertices and p
pendant vertices, where 3< pP<N-3. If U is a
pendant neighbor of vertex V in T, then

(M= "7 (T -u)
5 P- 2 p- 2 1

RN
with equality if and only if T=S§ , and

d,(M)=p.

Proof: Let I' be the number of vertices of T in
I'; (V) of degree at least two. Obviously, I >1.

Let Z be such a vertex. Let d,=d, (T) and
I'(w)=I"; (W) for weV(T).

Case 1. r=1. Then V has exactly d, —1

v

neighbors of degree one in T and thus

Z d >d, with equality if and only if V
wel'(V)\{u
has one nelghbor of degree two. Moreover, since
p<n-2, there is a vertex in [(Z)\{V} of
degree at least two, implying that Z dt >2

tel (2)\{v}

with equality if and only if dt =dz =2 for the
neighbor t of Z different from V. It is easily seen

\/7 f is increasing for X>1. Thus
X_

that —

Oll(T)_ Oll(T —U)

I+
WEF(V)\ wal“(v)\{u}

d+Zdt

\4

tel(W)\{v}
>
wel (v)\{u}
\/d —1+ Z d,

tel'(w)\{v}

1+
wel"(v)\ wel"(v)\'u‘

@ 2’[r F]

tel'(2)\{v}
1

d-1+ > d,

tel(2)\{v}

1 1 1
@ ”[r F]

1
+
Jd,+2 Jd,-1+2
_d, -2 d, 2 1
\/_V A1 \/d +2
with equality if and only if Z dW = dv and
wel (V)\{u}
Z dt =2, i.e., V has one neighbor of degree
tel'(2)\{v}
two, and all other neighbors have degree one, and
the degree two neighbor of V has a neighbor
(different from V) of degree two.

Case 2. I >2. Then d,>d, +r-1
wel (V)\{u}

and Z dt > 1. Similarly as above, we have
tel (2)\{v}
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0;{1(—]—)70;{1(-]- —-u)

1+
wel(v )\‘u WEF(V)\
d, + Z d,
telw)\v}
+

welv)\u}| _ 1

d, -1+ > d,
tel(W)\fv}

1

W
" D[f FJ

Let M(r') be the right-most expression of the
above inequality. Note that

f

d2d21J

e {\/7 Jd, -1 fd,+2

_d-4 d,-3 1

\/7\, \/d -1 \/d +2 \/d +1
d -2 d, 2 1
U i)

1
>0
\/d +1 \/d ~1 \/T
and M(T) is increasing for I > 2. Then
0/?,/1(T)_ Oll(T_u)

=m(r) =2m(2)
J4-2 d,-2 1

\/_V Jd - \/d +2°

Combining Cases 1 and 2, we have

(M= (T -u)
J4-2 d-2 1

\/—v \/d -1 \/d +2

with equality if and only if among the d

\
neighbors of V, one has degree two, and others

have degree one, and the degree two neighbor of V

has a neighbor (different from V') of degree two.
Let

X=2 1

= T e

for X > 2. Taking the derivative of f(X),

1 EEE| 3
f'(X)=—(X+2)Xx 2 ——(X+2) 2
(== (X+2)x * =2 (X+2)
X 3
——(x=1) 2.
5 x=D)

3
- 3
Note that (1+1) 2 21—5'[ for |t| <1. Then

3

2x2 £'(x)

=(X+ 2)—(1+%)_2 —x(l—lj_
X X

| w

and thus f(X) is decreasing for X > 6.By direct
calculation, f(3)> f(4)> f(5)> f(6). Since
d, < p, we have

Oll(T)_Oll(T_u)
>f(d,)=f(p)
_p-2 p-2 1

NN R RN

with equalities if and only if dv =P, and V has

p—1 pendant neighbors, ie, T = S .

3. Results

Proposition 1. Let T be a tree with N vertices and
P pendant vertices, where 3 < P < N—3. Then

p—l 1
Zl(T)— +
x/p+1 Jp  fp+2

L, 1, n-p-3

V2 32
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with equality ifand only if T = §, |

Proof: It is easy to check that the result is true for
N=6. Suppose that N>7 and the result is true

for trees with N—1 vertices. Let T be a tree with
N vertices and P pendant vertices, where

3<ps<n-3.Letd,=d,(T) and ['(2) =T;(2)
for ZeV(T). Choose U,veV(T) such that U

is a pendant neighbor of V and dv is as large as

possible.
First suppose that d, =2. Then p< n-1 <n-4.
Let T'(W\{u}={w}. Then d,>2 and
Z d, >d,. Thus

tel (W)\{v}

Oll(T)_ OZI(T —U)
.t 1
V2 ﬂ/1+d \/d7
1

Z d, 2 > d+1
tel’(w)\{v} tel'(w)\{v}

1

w/l-ird d,

1 1
\/dw+2 \/dw+1
LR S SR N N |
NN AN Y

Note that T —U possesses P pendant vertices. By

\%

51

the induction hypothesis and the choice of V, we
have

o 1 p-1 1
7, (T—u)> + +
' Jp+l Jp  Jp+2
1 I (n-1)—p-3
i
NPINE) 2

and then

a2 (T -+
o1 ,p-l
el
n-p->
f f 2

Next suppose that d,>3 and P>3. Then

T—U possesses P—1 pendant vertices. By
Lemma 1 and the induction hypothesis, we have

Oll(T_u)
1, p-2 1 1

‘f NCERNCE

(n-D-(p-D-3

+—+
3 2
and then
(M)
-2 -2
PAURI IS et
Jp o Jp-1
1
+
Jp+2
> 1 N p-2 N 1

with equalities if and only if T —U = Sn—l,p—l and
d,=p,ie, T Sip
Let 'I'n,a be the tree obtained by attaching & and

N—a—2 pendant vertices to the two vertices of

the path P2, respectively. A tree with N vertices
and N—2 pendant vertices is of the form Tn’a1 with



217

1JST (2014) 38A3: 213-219

1<ac< n-2 .
2

" n-2
Proposition 2. For 1 <a < Sk

n-2- a 2
J Jn l1-a Jn 1

Z1 (Tn Q)=

and
FAUSIES 7(1( o) << 0)(1(Tn,L(n—2)/2J)'

Proof: 1t is easily seen that
n-2-a 2

n .
Ja+1 'Jn—l—a Jn-1

Zl(Tn a) =

Let

X n-2-x 2

¥ n
Ix+1 n=1-x +/n-1

9(x) =

n-2
forl < x< {TJ Taking the derivative of

g(x)ﬂ

3

g(x) =%(x+2>(x+1)2

3

—%(n—xXn—l—x)?

Note that N—1—X> X+1 and 1_L>1_L
n-x X+2

(n—1—x)(1—Lj
n—X

1 2
> (X+1)(1—mj ,

Then

from which we have Q'(X)>0. Thus g(X) is

. . n-2
increasing for 1 < X< | Then

OZI(Tn,l) < OZI(Tn,Z) < <"n(, n(n- 2)/2J)

as desired.
By Propositions 1 and 2, we have

Theorem 1. Let T be a tree with N vertices and
P pendant vertices, where 3 < p<N—2. Then

Oll(T)
1 p—1 1
+ +
m f Jpe2
n- n-p-3 .
> if p<n-3
f f 2
n-3 ! if p=n-=-2
Jn— ,/ J_

with equality ifand only if T = §, |

Theorem 2. Among n-vertex trees, S, =S,
S

2 = T are respectively the unique trees with

the smallest and the second smallest first extended
zeroth-order connectivity indices, which are equal

n n-3 1 2

and ——+—F—+—=
n-1 Jn-2 V2 Jn-1

respectively for N> 4, while 'I'm2 is the unique

to

tree with the third smallest first extended zeroth-

order connectivity index, which is equal to
n-4 2 2

+—+—= for N26.

n-3 Jg n-1

Proof: The cases N=4,5 may be easily checked

by direct comparison. Suppose that N> 6. If T is
a tree with N vertices and P pendant vertices,

where 3 < P < N—3, then by Theorem 1, we have

1 p—l 1
‘(M= +
1 Jp+1 Jp Jp+2
L L1 . n-p-3
V2 B 2
Let
1 X—1 1
h(x) = + +
*) Jx+1 J_ Jx+2
1 n X=3

J’ BT

for 2 < X< N-3. Itis easily seen that
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h(x+1) —h(x)

1 1

1 11

+ — j—
VX+3  Ax+1 2
_ 1 +V2+1-+2

1
S_
2 2+1
L1 1
VX+3 WX+l 2
1 1
< - <0,
IXx+3  Jx+1

implying that h(X) is decreasing for
2<x<n-3. Then h(p)>"x/(S,,;) with
equality if and only if P =N—3, and thus

Oll(T)
>h(p) =" 7,(S,0s)
1 n-4 1 1 1
= + + +—=+—F
Jn-2 +n-3 +/n-1 \/f \/g
n-4 2 2

>m+ﬁ+m: Zl(Tn.z)'

By Proposition 2, the first extended zeroth-order
connectivity index of n-vertex trees with N—2
pendant vertices may be ordered as

‘1 (To) < 1 (Top) <o < " (Tn,|_(n—2)/2J)'

Obviously, an n-vertex tree with N—1 pendant

vertices is the star S, and an n-vertex tree with two

pendant vertices is the path F?] Note that

Ozl(ﬂ)=ﬁ+%+n%4

N

and

0 _ n
Z](Sn)_\/m
X=3 X=2

VX=2 _\/x—l *

It is easily seen that t(X) =

increasing for X > 6. Then

Oll(Tn,l)*Oll(Sn)

_n3 1.2 n
Jn=2 2 Jn-1 +Jn-1
n-3 n-2 1

- - +—

n-2 n-1 \/E

> 1(6) +——

NG

and
OZI(PH) - OZ] (Tn,z)

(g )
> 0.

Thus °2(R)> "7 (T,,) and *2(T,)> "2(S).
The result follows.
We note that the fact that Sn is the unique n-

vertex tree with the smallest first extended zeroth-
order connectivity index has been known in (Zhou
and Trinajsti¢, 2009), by a different reasoning.

4. Comment

As suggested by one referee, we may go further to
study some other extremal problems such as trees
with given matching number or maximal vertex
degree, and characterize trees with minimal or
maximal values of the first extended zeroth-order
connectivity indices.
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