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Abstract

Some partial action properties of a group G on a C*-algebra A are extended to an action of a unital inverse
semigroup S on Cy(X). Also, invariant and quotient ideals of C,(X) X, S are considered.
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1. Introduction

The notion of monogenic inverse semigroups and
their C*-algebras was introduced by Conway,
Duncan and Paterson in 1984 (Conway et d.,
1984). In 1985 Duncan and Paterson considered C*-
algebra of inverse semigroups (Duncan and
Paterson, 1985). During the last four decads, many
authors have discussed C*-algebras of inverse
semigroups from different aspects. Among them J.
Cuntz and W. Krieger discussed the C*-algebras
generated by families of partial isometries whose
initial and range projections satisfy a certain
condition (Cuntz and Krieger, 1980). Also,
semigroup crossed products and the Toeplitz
algebras of nonabelian groups (Laca and Raeburn,
1996), and a semigroup crossed product arising in
number theory (Laca and Raeburn, 1999) are given
by M. Laca and I. Raeburn. Non-unital semigroup
crossed products (Larsen, 2000) was considered by
N. Larsen while the crossed product of C*-algebras
by a unital inverse semigroup which is introduced
by N. Sieben is a kind of generalization of crossed
product of a C*-algebrawith agroup, (Siben, 1997).
Our approach is based on Sieben's theory of crossed
products.

The reference (Howie, 1976) is an excellent
source of information about semigroups.

Let A beaC*-algebra. By apartial automorphism
of A we mean a triple (a,1,]) where I and | are
closed two-sided idedlsin A and a: I — ] is a *-
isomorphism. If (a,1,]) and (B,K,L) are two
partial automorphisms of A, then af is nothing but
the composition of a and 8 with the largest possible

* Corresponding author
Received: 25 June 2013/ Accepted: 16 April 2014

domain. Using the fact that, ideals of ideals of a C*-
algebra are themselves, ideals of that algebra, we
see that the set PAut(A) of partia automorphisms
of A isaunital inverse semigroup.

Example 1.1. Let C? be the set of al pairs with
complex coordinates. It is not hard to see that, C? is
a C*-algebra with the norm, multiplication and
involution as follow

ICc1, eIl = max{|cql,[c2] };
(c1,c2)(c1's60") = (c164', c265");
(c1,¢3)" = (61, 63).

The group of integers, Z, is a unital inverse
semigroup. With A = C? and S = Z, define

Ey=AE,={(0,a):a€ A}LE_, ={(a,0):a€ 4},

and E, = {(0,0) } for al n, exceptn = —1,0, 1.
Let a, be the identity map on A, a; ((a,0)) =
(0,a) be the forward shift and a,, = (a;)™ for al
n# 0. Obviousy, (a, E_n E,) is a partia
automorphism of A.

Definition 1.2. Let S be an inverse semigroup with
identity e, and A be a C*-algebra. By an action of S
on A, we mean a semigroup homomorphism

s+— (ag,Eq, Eg): S — PAut(4),
with E, = A.

Proposition 1.3. Let A be a C*-algebra, S be a
unital inverse semigroup with unit element e and a
be an action of S on A. Then we have,

(i) g+ = a,"tforal sinS, a, isthe identity map
on A and if s is an idempotent element of S, then
ag istheidentity map on Eg = E-.
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(“) at(Et*Es) == EtS fOI’ a“ S,t |n S.

Proof: (i) We know that ais a homomorphism.
Therefore, a, = a(s) = a(ss*s) = a(s)a(sHa(s) =
asaga, and  a; = a,a,"t ag. Uniqueness  of
inverses in inverse semigroups (Exel, 1998),
impliesthat a« = a,~1. Moreover,

Qs = Ups = U = Age = A5 U,

that is, a, = iy. For an idempotent element s we
have sss = s> =s and ss*s = s . By uniqueness
of inverse of s we have s = s*. Consequently
as =ag and E; = Eg«. Since ag = a2 = ag a5 =
asag = ip, We observe that a; is the identity map
onE; = Eg-.

(ii) Since E; and E;- are closed ideals in the C*-
agebraA wehave E,E.~ = E; N E;~. Therefore,

ar(EsErr) = ar(EsNE) =ran (apas)
= ran (a(t) a(s))
= ran (a(ts))
= ran (a;) = Es.

A triple (4, S, @) in which A isa C*-algebra, S is
a unital inverse semigroup and « is an action of S
on A iscalled asemipartial dynamical system.

Definition 1.4. Given a semipartial dynamical
system, (4,S,a), by a covariant representation of
(4,S,a) we mean atriple (mr,v, H) wherew : A —
B(H) is a non-degenerate * —representation of A
on a Hilbert space H and v: S — B(H) is a
multiplicative map such that

(i) vsm(a) ve« = (ag(a)) fordl a € Ey;

(i) vy is a partial isometry with initial space
n(Eg-)H and final space m(E;)H.

It should be noted that v« = (v5)* and v, = 1.
Let (4, S, @) be asemipartia dynamical system and
Ly={x€l}S,A): x(s)e E;} be a closed
subspace of [1(S,A). Define a multiplication and
involution on L, by

s NE = ) e (@@)y©)]

rt=s

and

x*(s) = as[x(s7)"],

for x,y € L, and r,s,t € S. By Proposition 1.3.
we see that (x xy)(s) € E; for every s € S.
Thereforex *y € L,. Also, x(s*) € E, for every
x in Ly, Es~ is anided of A, (x(s*))" € Ey and
as((x(s*))*) € E;. That is, x* € L,. Obviously,
[l + yIl < lix[lllyll and lx*|l = |lx] where ||.]|
denotes the norm of L, inherited from [1(S, A). As
aresult, L, is a Banach =-algebra [(Sieben, 1997),
prop. 4.1], and if (w,v,H) is a covariant

representation of (4,S,«) then m x v where
mXv:L, — B(H) by (T X v)(x) =
Ysesm(x(s))vs isanon-degenerate representation
of L, [(Sieben, 1997), prop. 4.3].

We close this section with the following crucia
definition.

Definition 1.5. Let (4,S,@) be a semipartia
dynamical system. Define a seminorm ||. ||, on Ly,
by

lixlle = sup{llm x vl : (m,v,H) isa
covariant representation of (4,S,a)}.

Let I={x € Ly:||x[|, =0}, The crossed
product A x, S is the C* —algebra obtained by
completing the quotient LTA with respect to || x]| ...

2. 0On semipartial dynamical system (Co(X), S, @)

In this section we will mostly be concerned with
(Co(X),S, ) where X is a locally compact
Hausdorff space and « is that action of S on C,(X)
which arises from partial homeomorphisms of X,
that is, for every s € S there is an open subset Uy of
X and a homeomorphism 6;: Uy~ — U, such that
U, = X and 8, is the identity map on X. The
action a of S on C,(X) corresponding to the partial
homeomorphism 6 is given by

as () = f(0s(x))

fors € Sand f € Cy(Us).

Given a unital inverse semigroup S and alocally
compact Hausdorff space X, by atopological action
of S on X we mean apair 0 = ({Us}ses, {Os}ses)
where for each s in S, Us is an open subset of X,
6, : Uy — U, is a homeomorphism, U, = X and
6, is the identity map on X. Let
0 = ({Us}ses » {05 )ses), be atopologica action of S
on X asabove. Then Eg = C,(Uy) will be identified,
in the usual way, with the ideal of functions in
Co (X) vanishing off Us.

The maor new results of this section are
theorems 2.2, 2.3 and 2.6.

Definition 2.1. The topological action 8 of S on X
istopologically freeif for every s € S — {e} the set

Fs:={x € Us: O5(x) = x}

has empty interior.

Although F, need not be closed in X, we will
show that it is closed in U-. For this, let x be a
limit point of F; and x € U+ There exists a net
{x;} of elements of F; such that x, — x. Since 8, is
a homeomorphism we have 6,(x;) — 6,(x). From
0s(x;) = x; we see that x; — 6,(x). Uniqueness of
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the limit of a net shows that 6,(x) = x, that is,
x € F,. This shows that F; is closed in the domain
of 6;.

Important facts about nowhere dense sets can be
found in (Goffman and Pedrick, 1991).

Theorem 2.2. The topological action 6 of a unital
inverse semigroup S on X is topologically free if
and only if for every s € S—{e}, the set F, is
nowhere dense.

Proof: The"if " partistrivia. For the" only if " let
6 be topologically free. We know that F; is closed
relative to Us-. Asa consequence F;, = C NUg in
which C is a closed subset of X. If V is open and
V c E,then

VnUscFEnUgs =(Cn U2 nUs
cCNnUy =CnNUy = F,

Since F, has empty interior and V' N U~ is open
weseethat V N Ug- = ¢p. So the open sets Ug- and
V are separated. Now, since

VcE =CnU, € CnT, cU,

weseethat V = ¢. That is F; isnowhere dense.

In the remainder of this work we denote by
8 (s € S) thefunctionin L, which takes the value
1 at s and zero at every other element of S.

Theorem 23. Let s € S—{e}f € E; =
Co(Uy), and x, & F,. For every € > 0 there exists
h € Cy(X) such that:

(i) h(xo) = 1;

(i) lR(f 65)hll < & and

@iii)0o < h < 1.

Proof: Since x, € F; let us separate the proof into
two cases according to x, being in the domain U of
6, or not. Let x, € Us,. From f € E; we see that
the set K:= {x € Us:|f(x)] = ¢} is a closed
subset of Us and x, ¢ K. So by the Urysohn's
lemma there exists h in Cy(X) suchthat 0 < h <
1, h(K) = 0 and h(x,) = 1.

Now since the restriction of the function h to the
set U, impliesthat hf € E by the definition of &,
we conclude that (hf)d, €L, S [1(S5,A) S
Co(X) X, S.Sothat

(RIS RSN < NIRfIl = sup{lh()f(x)| + x € Us} =
sup({lhC)f ()| + x € K} U {Jh()| If ()] : x
€ U,— K} <e.

This shows that (ii) holds.

If xy € Ug then 04(xy) # x, SiNCe X is
Hausdorff, there are digoint open sets V; and V,
suchthat x, € V; c Ugand O4+(x,) € V, © Us-.

If V:=06,(V,)nV,, then x, €V; and 65+ (V) c
V,. Since VNV, =¢ we have 6-(V) NV = ¢.
Now there exists h in Cy(X) such that 0 <h <
1,h(xy) = 1and h(X — V) = 0. Obvioudly,
(i) and (iii) hold. To show (ii) holds, we know that
hfésh = ((hf)ds)(hd.) = as(as:(hf)h)dse = 0,
simply because the support of ag-(hf) is contained
in 6,+(V), the support of h isin V and 6,(V) N
V= ¢.

Here we need to introduce the important notion of
conditional expectation.

Definition 2.4. Let B be a C* —subalgebras of a
C* —algebras A. By a conditional expectation from
A to B we mean a completely positive contraction
0:A — B suchthat 8(b) = b,0(bx) = b6(x), and
0(xb) =0(x)bforadlx € A, b € B.

It should be noted that the conditional expectation
6 is a positive map on A. Therefore 6(a*) =
(B(a)) fordl a € A, and it is not hard to see that
the conditional expectation property from right
multiplication by elements of B is a consegquence of
that for left multiplication and conversely (Rieffel,
1974).

Using [(Ragarama Bhat, 2000), 6.2.1] we can
consider Cy(X) as a C* —subalgebra of the partial
crossed product Co(X) X,S. That is the
conditional expectation from Cy,(X) X, S onto
Co(X) is well defined, and is denoted by E. In
general, conditional expectations onto subalgebras
are not unique, but there are situations where
conditional expectations with additional natural
properties are unique [(Blackadar, 2006), 11.6.10.4].

Definition 2.5. A semipartia dynamical systm
(4,S, @) is said to be topologically free if the set of
fixed points for the partil homeomorphism
associated to each non-trivial semigroup element
has empty interior.

Since the conditional expection E: Cy(X) x,S —
Co(X) is contractive we can state and prove the
following theorem.

Theorem 2.6. If (Co(X),S,a) is a topologically
free semipartial dynamical system, then for every
c € Co(X) X, S and every € > 0 there exists
h € Cy(X) such that:

) IRE(ORI = IE)I — &

(i) |hE(c)h — hch|l < &,

(ii)0 < h < 1.

Proof: Let ¢ be a finite linear combination of the
form Y ier a, 8, where T denotes afinite

subset of S. Define E(c) =a, if e € T and
E(c)=0ife ¢ T.Snce

laell = sup {la.(x)]: x € X},
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for given € >0, the sat V ={x € X:
la. ()| = |la.|l] — €} isanon-empty open set.
Since the topological action « is topologically
free, then there exists x, € V such that x, ¢ F; for
every t€ T. Take f, = a6, € D,, for % by

Theorem 2.3 there exist functions h, such that

he(xo) =1, Ilhe(a; 8,) hell < %and 0< h <1

Let h = HtET—{e} ht' ObViOUgy 0< ht < 1, that
is, (iii) holds. Also (i) holds, simply because
Xy € V and

lhachll = sup { h(x)a.(x) h(x) : x € X}
2 |h(xo) ae(xo) h(xo)
=l ac(xo)| > llaell —e.

In order to prove (ii), we have

lha,h — hehll = |[hagh — Z ha,8,h

teT

ha;6:h
teT—{e}
> liha sl <17

teT—{e}

S —_—
IT|

IA

E.

For arbitrary element ¢, since c is the limit of a
net in C,(X) X, S and E is contractive, a standard
approaximation argument finishes the proof.

3. Invariant and quotient ideals

As before, X is alocally compact Hausdorff space,
S is aunita inverse semigroup, 6 is a topological
action of S on X and « is the action of S on C,(X)
which is corresponding to 6. Also, an idea I in
Co(X) is caled invariant under the corresponding
action a on Cy(X) or simply a-invariant if a;(I N
Es) cIforeverysins.

The major new results of this section are Lemma
3.2, Corollary 3.3, Theorem 3.4 and Conjecture 3.5.

Lemma 3.1. If a is an action of S on the
C* —agebra A = Cy(X) and I is an a —invariant
idedl of A then

Olt(Et* n I) :Ef n I

Proof: Obviously, a; (E;+ N 1) S E, N 1. Now let
y€ a,(E. n1). Since y € E,, there exists x in
E suchthat y = a,(x). We clam that x € I and
as a consequence y = a,(x) € a;(E N I). If
x ¢l then x ¢ (ExNn1T) and y = a,(x) ¢
a;(E~ n 1) c I.Thatis,y ¢ I andit contradicts
to the hypothesis.

Let a be an action of S on A = Cy(X). For each
invariant ideal I of A thereisarestriction of « to an
actionof Sonl. Thatis, if « = {(a;, E, Et)}ies
is an action of S on A and a;: E- — E; is a
partial automorphism of A, then © = {(6;, E~ N
LE.N D}es inwhich 8, = a;|, andE, N1 =
0. (E.~n I)isanactionof S on I, by Lemma3.1.
Also, @ = {(d;, Ei+, E)}tes inWhichE. = {a +
1 €A/l: a €E+} ad d,: E. —>E =
a.(E;+) + 1 defined by d,(a+1) = a,(a) + 1
isaquotient action modulo I of S on A/I.

Now we make an attempt to investigate the
relation between the quotient of the crossed product
A X, S modulo the ideal generated by I and the

crossed product of é by the quotient action modulo

1. That is, the relation between 2225 gnd —2— .

(1) IXyS

Lemma 3.2. Let a« be an action of S on a
C* —algebra A and I be an a —invariant ideal of S,
then the map from 11(S,I) to 11(S, A) induces an
injectionfrom/ x, StoA X, S.

Proof: Let L, = {x € I*(5,A): x(s) € E;} and
L, = {x € I3(5,I): x(s) € E;} where in L, the
ideal E, isanided of A butinL,, theideal E, isan
ideal of 1. Aswe showed in (Tabatabaie Shourijeh,
2006), L, and L; are closed subalgebra of 11(S, A).
The inclusion map from [1(S, 1) into [*(S, A) maps
L; into L, simply because if b €1%(S, 1), i.e,
b = Y5 a; 6, where each a; € E;, then
i(b) =b €11(S,I). Note that we used the fact
that, ideals of ideds of a C*—agebra are,
themselves, ideals of that algebra. Thus the
inclusion map induces inclusion map i from
I X, S t0 A X, S. In order to prove that i is
injective it is enough to show that every covariant
representation of (I, S, @) extends to a covariant
representation of (A S, a). Therefore, let (m, v, H)
be an arbitrary covariant representation of (I, S,
a). Since (m, H) is a representation of I without
loss of generality we can assume that w: I —
B(H) is non-degenerate. By using [(Dixmier,
1977), Prop. 2.10.4] there exists a unique extension
7' of  to arepresentation of A on H and we have

1757-[’((1) Vs = n’(as(a))

for dl a € E~. That is, (n',v,H) is a covariant
representation of (4, S, a).

Corollary 3.3. If I is an a —invariant closed two-
sided ideal of A then I X, S is a closed proper
two-sided ideal of A %, S.

Theorem 3.4. Suppose « isan action of S on A and
assume [ is an a —invariant ideal of A. Then the
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map ad;, € 1 X, S — ad, €A X, S extends
to an injection of I X, S onto the ided <1 >
generatedby I inA X, S,and<I>n A = I

Proof: Obvioudy, Lemma 3.2 and Corollary 3.3
show that I X, S injects as an ideal in A X, S.
Therefore, we canidentify I x, S with

span{ads: a € E; N I,s € S}.

Also, we can identity I with its canonical image
16, in A X, S. Since < I > is the smallest ideal
containing I wehave <1 >¢< [ X, S.Inorder to
prove the reverse inclusion it suffices to show that
abs €< > for every a € E,n I and s € S.
Therefore, let a € E, N1 and let by be an
approximate unit for the idea E,. Since a by 6, =
(ab.)(by 65) E<I>and ads; =limy_,abé; €<
I>we havel X, Sc<I>. That is, I X, S=<
[ > and asaconsequencel =<1 >n A.

Since the map ad; — (a+1)d; induces a *
—homomorphism from 11(S, A) onto 11(S,A/I) we
have the following conjecture.

Conjecture 3.5. Under the assumptions of Theorem
3.4 we have the following exact sequence.

0 > I X, 8S— A Xy S— (A/) x4 § — 0.

References

Blackadar, B. (2006). Operator Algebras, Theory of
C* —algebras and Von Neumann Algebras. Springer-
Verlag, Berlin.

Conway, J. B., Duncan, J.,, & Paterson, A. L. (1984).
Monogenic inverse semigroups and their C* —algebras.
Proceeding of Royal Society of Edinburgh, 98(1-2),
574-556.

Cuntz, J., & Krieger, W. (1980). A Class of C* —algebras
and topological Markov chains. Inventiones
mathematicae, 56(3), 251-268.

Dixmier, J. (1977). C* —algebras. North-Holland,
Amsterdam, New Y ork, Oxford.

Duncan, J., & Paterson, A. L. (1985). C* —algebras of
inverse semigroups. Proceedings of the Edinburgh
Mathematical Society, 28(1), 41-58.

Exel, R. (1998). Partial actions of groups and actions of
inverse semigroups. Proceeding of the American
Mathematical Society, 126(12), 3481-3494.

Goffman, C., & Pedrick, G. (1991). First course in
Functional Analysis. Prentice-Hall, New Delhi.

Howie, J. M. (1976). An introduction to Semigroup
theory. Academic Press.

Laca, M., & Raeburn, I. (1996). Semigroup crossed
products and Toeplitz algebras of nonabelian groups.
Journal of functional analysis, 139(2), 415-440.

Laca, M., & Raeburn, I. (1999). A semigroup crossed
product arising in number theory. Journal of the
London Mathematics Society, 59(1), 330-344.

Larsen, N. S. (2000). Non-unital semigroup crossed
products. Mathematical Proceedings of the Royal Irish
Academy, 100(2), 205-218.

Rajarama Bhat, B. V., Elliott, G. A., & Fillmore, P. A.
(2000). Lectures on operator theory, Fields Inst.
American Mathematics Society, Providence, Rhode
Island.

Rieffel, M. A. (1974). Induced representations of
C* —algebras. Advances in Mathematics, 13(2), 176—
257.

Sieben, N. (1997). C* —Crossed products by partial
actions and actions of inverse semigroups. Journal of
the Australian Mathematical Society, 63(1), 32—46.

Tabatabaie Shourijeh, B. (2006). Partial Inverse
Semigroup C*-algebra. Taiwanese Journal of
Mathematics, 10(6), 1539-1548.



