http://ijsts.shirazu.ac.ir

Actions of S on $C_0(X)$ and ideals of $C_0(X) \times_{\alpha} S$

B. Tabatabaie Shourijeh¹* and S. M. Zebarjad²

^{1, 2}Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, Iran E-mail: tabataba@math.susc.ac.ir

Abstract

Some partial action properties of a group G on a C^* -algebra A are extended to an action of a unital inverse semigroup S on $C_0(X)$. Also, invariant and quotient ideals of $C_0(X) \times_{\alpha} S$ are considered.

Keywords: Partial action; partial homeomorphism; partial automorphism and partial crossed product

1. Introduction

The notion of monogenic inverse semigroups and their C^* -algebras was introduced by Conway, Duncan and Paterson in 1984 (Conway et al., 1984). In 1985 Duncan and Paterson considered C^* algebra of inverse semigroups (Duncan and Paterson, 1985). During the last four decads, many authors have discussed C^* -algebras of inverse semigroups from different aspects. Among them J. Cuntz and W. Krieger discussed the C^* -algebras generated by families of partial isometries whose initial and range projections satisfy a certain condition (Cuntz and Krieger, 1980). Also, semigroup crossed products and the Toeplitz algebras of nonabelian groups (Laca and Raeburn, 1996), and a semigroup crossed product arising in number theory (Laca and Raeburn, 1999) are given by M. Laca and I. Raeburn. Non-unital semigroup crossed products (Larsen, 2000) was considered by N. Larsen while the crossed product of C^* -algebras by a unital inverse semigroup which is introduced by N. Sieben is a kind of generalization of crossed product of a C^* -algebra with a group, (Siben, 1997). Our approach is based on Sieben's theory of crossed products.

The reference (Howie, 1976) is an excellent source of information about semigroups.

Let *A* be a *C*^{*}-algebra. By a *partial automorphism* of *A* we mean a triple (α, I, J) where *I* and *J* are closed two-sided ideals in *A* and $\alpha: I \rightarrow J$ is a *-isomorphism. If (α, I, J) and (β, K, L) are two partial automorphisms of *A*, then $\alpha\beta$ is nothing but the composition of α and β with the largest possible

Corresponding author Received: 25 June 2013 / Accepted: 16 April 2014 domain. Using the fact that, ideals of ideals of a C^ -algebra are themselves, ideals of that algebra, we see that the set PAut(A) of partial automorphisms of A is a unital inverse semigroup.

Example 1.1. Let \mathbb{C}^2 be the set of all pairs with complex coordinates. It is not hard to see that, \mathbb{C}^2 is a C^* -algebra with the norm, multiplication and involution as follow

$$\|(c_1, c_2)\| = max\{ |c_1|, |c_2| \}; (c_1, c_2)(c_1', c_2') = (c_1c_1', c_2c_2'); (c_1, c_2)^* = (\overline{c_1}, \overline{c_2}).$$

The group of integers, \mathbb{Z} , is a unital inverse semigroup. With $A = \mathbb{C}^2$ and $S = \mathbb{Z}$, define

$$E_0 = A, E_1 = \{(0, a): a \in A\}, E_{-1} = \{(a, 0): a \in A\},\$$

and $E_n = \{ (0,0) \}$ for all *n*, except n = -1, 0, 1. Let α_0 be the identity map on *A*, $\alpha_1 ((a, 0)) = (0, a)$ be the forward shift and $\alpha_n = (\alpha_1)^n$ for all $n \neq 0$. Obviously, (α_n, E_{-n}, E_n) is a partial automorphism of *A*.

Definition 1.2. Let *S* be an inverse semigroup with identity *e*, and *A* be a C^* -algebra. By an *action* of *S* on *A*, we mean a *semigroup homomorphism*

$$s \mapsto (\alpha_s, E_{s^*}, E_s): S \longrightarrow PAut(A),$$

with $E_e = A$.

Proposition 1.3. Let A be a C^* -algebra, S be a unital inverse semigroup with unit element e and α be an action of S on A. Then we have,

(i) $\alpha_{s^*} = \alpha_s^{-1}$ for all *s* in *S*, α_e is the identity map on *A* and if *s* is an idempotent element of *S*, then α_s is the identity map on $E_s = E_{s^*}$. (ii) $\alpha_t(E_{t^*}E_s) = E_{ts}$ for all s, t in S.

Proof: (i) We know that α is a homomorphism. Therefore, $\alpha_s = \alpha(s) = \alpha(ss^*s) = \alpha(s)\alpha(s^*)\alpha(s) = \alpha_s \alpha_{s^*} \alpha_s$ and $\alpha_s = \alpha_s \alpha_s^{-1} \alpha_s$. Uniqueness of inverses in inverse semigroups (Exel, 1998), implies that $\alpha_{s^*} = \alpha_s^{-1}$. Moreover,

$$\alpha_e \alpha_s = \alpha_{es} = \alpha_s = \alpha_{se} = \alpha_s \alpha_e,$$

that is, $\alpha_e = i_A$. For an idempotent element *s* we have $sss = s^2 = s$ and $ss^*s = s$. By uniqueness of inverse of *s* we have $s = s^*$. Consequently $\alpha_s = \alpha_{s^*}$ and $E_s = E_{s^*}$. Since $\alpha_s = \alpha_{s^2} = \alpha_s \alpha_s = \alpha_s \alpha_{s^*} = i_{E_s}$, we observe that α_s is the identity map on $E_s = E_{s^*}$.

(ii) Since E_s and E_{t^*} are closed ideals in the C^* -algebra A we have $E_s E_{t^*} = E_s \cap E_{t^*}$. Therefore,

$$\begin{aligned} \alpha_t(E_s E_{t^*}) &= \alpha_t(E_s \cap E_{t^*}) = ran(\alpha_t \alpha_s) \\ &= ran(\alpha(t) \alpha(s)) \\ &= ran(\alpha(ts)) \\ &= ran(\alpha_{ts}) = E_{ts}. \end{aligned}$$

A triple (A, S, α) in which A is a C^{*}-algebra, S is a unital inverse semigroup and α is an action of S on A is called a *semipartial dynamical system*.

Definition 1.4. Given a semipartial dynamical system, (A, S, α) , by a covariant representation of (A, S, α) we mean a triple (π, ν, H) where $\pi : A \rightarrow B(H)$ is a non-degenerate * –representation of A on a Hilbert space H and $\nu : S \rightarrow B(H)$ is a multiplicative map such that

(i) $v_s \pi(a) v_{s^*} = \pi (\alpha_s(a))$ for all $a \in E_{s^*}$; (ii) v_s is a partial isometry with initial space $\pi(E_{s^*})H$ and final space $\pi(E_s)H$.

It should be noted that $v_{s^*} = (v_s)^*$ and $v_e = 1_H$. Let (A, S, α) be a semipartial dynamical system and $L_A = \{x \in l^1(S, A) : x(s) \in E_s\}$ be a closed subspace of $l^1(S, A)$. Define a multiplication and involution on L_A by

$$(x * y)(s) = \sum_{rt=s} \alpha_r [\alpha_{r^*} (x(r))y(t)]$$

and

$$x^*(s) = \alpha_s[x(s^*)^*],$$

for $x, y \in L_A$ and $r, s, t \in S$. By Proposition 1.3. we see that $(x * y)(s) \in E_s$ for every $s \in S$. Therefore $x * y \in L_A$. Also, $x(s^*) \in E_s$ for every x in L_A , E_{s^*} is an ideal of A, $(x(s^*))^* \in E_s$ and $\alpha_s((x(s^*))^*) \in E_s$. That is, $x^* \in L_A$. Obviously, $||x * y|| \leq ||x|| ||y||$ and $||x^*|| = ||x||$ where ||.||denotes the norm of L_A inherited from $l^1(S, A)$. As a result, L_A is a Banach *-algebra [(Sieben, 1997), prop. 4.1], and if (π, v, H) is a covariant representation of (A, S, α) then $\pi \times v$ where $\pi \times v : L_A \to B(H)$ by $(\pi \times v)(x) = \sum_{s \in S} \pi(x(s))v_s$ is a non-degenerate representation of L_A [(Sieben, 1997), prop. 4.3].

We close this section with the following crucial definition.

Definition 1.5. Let (A, S, α) be a semipartial dynamical system. Define a seminorm $\|.\|_c$ on L_A by

 $\|x\|_{c} = \sup\{\|\pi \times v(x)\| : (\pi, v, H) \text{ is a } covariant representation of } (A, S, \alpha)\}.$

Let $I = \{x \in L_A : ||x||_c = 0\}$. The *crossed* product $A \times_{\alpha} S$ is the C^* -algebra obtained by completing the quotient $\frac{L_A}{I}$ with respect to $||x||_c$.

2. On semipartial dynamical system $(C_0(X), S, \alpha)$

In this section we will mostly be concerned with $(C_0(X), S, \alpha)$ where *X* is a locally compact Hausdorff space and α is that action of *S* on $C_0(X)$ which arises from partial homeomorphisms of *X*, that is, for every $s \in S$ there is an open subset U_s of *X* and a homeomorphism $\theta_s: U_{s^*} \to U_s$ such that $U_e = X$ and θ_e is the identity map on *X*. The action α of *S* on $C_0(X)$ corresponding to the partial homeomorphism θ is given by

$$\alpha_s(f)(x) = f(\theta_{s^*}(x))$$

for $s \in S$ and $f \in C_0(U_{s^*})$.

Given a unital inverse semigroup *S* and a locally compact Hausdorff space *X*, by a *topological action* of *S* on *X* we mean a pair $\theta = (\{U_s\}_{s \in S}, \{\theta_s\}_{s \in S})$, where for each *s* in *S*, U_s is an open subset of *X*, $\theta_s : U_{S^*} \rightarrow U_s$ is a homeomorphism, $U_e = X$ and θ_e is the identity map on *X*. Let $\theta = (\{U_s\}_{s \in S}, \{\theta_s\}_{s \in S})$, be a topological action of *S* on *X* as above. Then $E_s = C_0(U_s)$ will be identified, in the usual way, with the ideal of functions in $C_0(X)$ vanishing off U_s .

The major new results of this section are theorems 2.2, 2.3 and 2.6.

Definition 2.1. The topological action θ of *S* on *X* is *topologically free* if for every $s \in S - \{e\}$ the set

$$F_s := \{x \in U_{s^*} : \theta_s(x) = x\}$$

has empty interior.

Although F_s need not be closed in X, we will show that it is closed in U_{s^*} . For this, let x be a limit point of F_s and $x \in U_{s^*}$. There exists a net $\{x_i\}$ of elements of F_s such that $x_i \to x$. Since θ_s is a homeomorphism we have $\theta_s(x_i) \to \theta_s(x)$. From $\theta_s(x_i) = x_i$ we see that $x_i \to \theta_s(x)$. Uniqueness of the limit of a net shows that $\theta_s(x) = x$, that is, $x \in F_s$. This shows that F_s is closed in the domain of θ_s .

Important facts about nowhere dense sets can be found in (Goffman and Pedrick, 1991).

Theorem 2.2. The topological action θ of a unital inverse semigroup *S* on *X* is topologically free if and only if for every $s \in S - \{e\}$, the set F_s is nowhere dense.

Proof: The "if " part is trivial. For the " only if " let θ be topologically free. We know that F_s is closed relative to U_{s^*} . As a consequence $F_s = C \cap U_{s^*}$ in which *C* is a closed subset of *X*. If *V* is open and $V \subset \overline{F_s}$, then

$$\begin{array}{l} V \ \cap \ U_{s^*} \subset \overline{F_s} \ \cap \ U_{s^*} = \overline{(C \ \cap \ U_{s^*})} \cap U_{s^*} \\ \subseteq \ \overline{C} \ \cap \ U_{s^*} = C \ \cap \ U_{s^*} = F_s. \end{array}$$

Since F_s has empty interior and $V \cap U_{s^*}$ is open we see that $V \cap U_{s^*} = \phi$. So the open sets U_{s^*} and V are separated. Now, since

$$V \subset \overline{F_s} = \overline{C \cap U_{s^*}} \subseteq C \cap \overline{U_{s^*}} \subset \overline{U_{s^*}}$$

we see that $V = \phi$. That is F_s is nowhere dense.

In the remainder of this work we denote by δ_s ($s \in S$) the function in L_A which takes the value 1 at *s* and zero at every other element of *S*.

Theorem 2.3. Let $s \in S - \{e\}, f \in E_s = C_0(U_s)$, and $x_0 \notin F_s$. For every $\varepsilon > 0$ there exists $h \in C_0(X)$ such that: (i) $h(x_0) = 1$; (ii) $||h(f \delta_s)h|| \le \varepsilon$, and (iii) $0 \le h \le 1$.

Proof: Since $x_0 \notin F_s$ let us separate the proof into two cases according to x_0 being in the domain U_s of θ_{s^*} or not. Let $x_0 \notin U_s$. From $f \in E_s$ we see that the set $K := \{x \in U_s : |f(x)| \ge \varepsilon\}$ is a closed subset of U_s and $x_0 \notin K$. So by the Urysohn's lemma there exists h in $C_0(X)$ such that $0 \le h \le 1$, h(K) = 0 and $h(x_0) = 1$.

Now since the restriction of the function *h* to the set U_s implies that $hf \in E_s$ by the definition of δ_s , we conclude that $(hf)\delta_s \in L_A \subseteq l^1(S,A) \subseteq C_0(X) \times_{\alpha} S$. So that

$$\begin{aligned} \|((hf)\delta_{s})(h\delta_{e})\| &\leq \|hf\| = \sup\{|h(x)f(x)| : x \in U_{s}\} = \\ \sup\{|h(x)f(x)| : x \in K\} \cup \{|h(x)| | f(x)| : x \\ \in U_{s} - K\} \leq \varepsilon. \end{aligned}$$

This shows that (ii) holds.

If $x_0 \in U_s$ then $\theta_{s^*}(x_0) \neq x_0$, since X is Hausdorff, there are disjoint open sets V_1 and V_2 such that $x_0 \in V_1 \subset U_s$ and $\theta_{s^*}(x_0) \in V_2 \subset U_{s^*}$. If $V := \theta_s(V_2) \cap V_1$, then $x_0 \in V_1$ and $\theta_{s^*}(V) \subset V_2$. Since $V_1 \cap V_2 = \phi$ we have $\theta_{s^*}(V) \cap V = \phi$. Now there exists *h* in $C_0(X)$ such that $0 \le h \le 1$, $h(x_0) = 1$ and h(X - V) = 0. Obviously,

(i) and (iii) hold. To show (ii) holds, we know that $hf \delta_s h = ((hf)\delta_s)(h\delta_e) = \alpha_s(\alpha_{s^*}(hf)h)\delta_{se} = 0$, simply because the support of $\alpha_{s^*}(hf)$ is contained in $\theta_{s^*}(V)$, the support of *h* is in *V* and $\theta_{s^*}(V) \cap V = \phi$.

Here we need to introduce the important notion of conditional expectation.

Definition 2.4. Let *B* be a C^* –subalgebras of a C^* –algebras *A*. By a conditional expectation from *A* to *B* we mean a completely positive contraction $\theta: A \to B$ such that $\theta(b) = b, \theta(bx) = b\theta(x)$, and $\theta(xb) = \theta(x)b$ for all $x \in A$, $b \in B$.

It should be noted that the conditional expectation θ is a positive map on A. Therefore $\theta(a^*) = (\theta(a))^*$ for all $a \in A$, and it is not hard to see that the conditional expectation property from right multiplication by elements of B is a consequence of that for left multiplication and conversely (Rieffel, 1974).

Using [(Rajarama Bhat, 2000), 6.2.1] we can consider $C_0(X)$ as a C^* -subalgebra of the partial crossed product $C_0(X) \times_{\alpha} S$. That is the conditional expectation from $C_0(X) \times_{\alpha} S$ onto $C_0(X)$ is well defined, and is denoted by *E*. In general, conditional expectations onto subalgebras are not unique, but there are situations where conditional expectations with additional natural properties are unique [(Blackadar, 2006), II.6.10.4].

Definition 2.5. A semipartial dynamical systm (A, S, α) is said to be *topologically free* if the set of fixed points for the partial homeomorphism associated to each non-trivial semigroup element has empty interior.

Since the conditional expection $E: C_0(X) \times_{\alpha} S \rightarrow C_0(X)$ is contractive we can state and prove the following theorem.

Theorem 2.6. If $(C_0(X), S, \alpha)$ is a topologically free semipartial dynamical system, then for every $c \in C_0(X) \times_{\alpha} S$ and every $\varepsilon > 0$ there exists $h \in C_0(X)$ such that: (i) $||hE(c)h|| \ge ||E(c)|| - \varepsilon$, (ii) $||hE(c)h - hch|| \le \varepsilon$, (iii) $0 \le h \le 1$.

Proof: Let *c* be a finite linear combination of the form $\sum_{t \in T} a_t \delta_t$, where *T* denotes a finite subset of *S*. Define $E(c) = a_e$ if $e \in T$ and E(c) = 0 if $e \notin T$. Since

$$||a_e|| = \sup \{|a_e(x)| : x \in X\},\$$

for given $\varepsilon > 0$, the set $V = \{x \in X :$ $|a_e(x)| \ge ||a_e|| - \varepsilon$ is a non-empty open set.

Since the topological action α is topologically free, then there exists $x_0 \in V$ such that $x_0 \notin F_t$ for every $t \in T$. Take $f_t = a_t \delta_t \in D_t$, for $\frac{\varepsilon}{|T|}$ by Theorem 2.3 there exist functions h_t such that

$$h_t(x_0) = 1$$
, $||h_t(a_t \delta_t) h_t|| \le \frac{\varepsilon}{|T|}$ and $0 \le h_t \le 1$.

Let $h = \prod_{t \in T - \{e\}} h_t$. Obviously $0 \le h_t \le 1$, that is, (iii) holds. Also (i) holds, simply because $x_0 \in V$ and

$$\|ha_e h\| = \sup \{ h(x)a_e(x) h(x) : x \in X \} \\ \ge |h(x_0) a_e(x_0) h(x_0)| \\ = |a_e(x_0)| > \|a_e\| - \varepsilon.$$

In order to prove (ii), we have

...

$$\begin{aligned} \|ha_{e}h - hch\| &= \left\| ha_{e}h - \sum_{t \in T} ha_{t}\delta_{t}h \right\| \\ &= \left\| \sum_{t \in T - \{e\}} ha_{t}\delta_{t}h \right\| \\ &\leq \sum_{t \in T - \{e\}} \|ha_{t}\delta_{t}h\| < |T|\frac{\varepsilon}{|T|} = \varepsilon \end{aligned}$$

For arbitrary element c, since c is the limit of a net in $C_0(X) \times_{\alpha} S$ and E is contractive, a standard approaximation argument finishes the proof.

3. Invariant and quotient ideals

As before, X is a locally compact Hausdorff space, S is a unital inverse semigroup, θ is a topological action of S on X and α is the action of S on $C_0(X)$ which is corresponding to θ . Also, an ideal I in $C_0(X)$ is called *invariant* under the corresponding action α on $C_0(X)$ or simply α -invariant if $\alpha_s(I \cap \alpha_s)$ E_{s^*}) $\subseteq I$ for every *s* in *S*.

The major new results of this section are Lemma 3.2, Corollary 3.3, Theorem 3.4 and Conjecture 3.5.

Lemma 3.1. If α is an action of S on the C^* -algebra $A = C_0(X)$ and I is an α -invariant ideal of A then

$$\alpha_t (E_{t^*} \cap I) = E_t \cap I.$$

Proof: Obviously, $\alpha_t (E_{t^*} \cap I) \subseteq E_t \cap I$. Now let $y \in \alpha_t (E_t \cap I)$. Since $y \in E_t$, there exists x in E_{t^*} such that $y = \alpha_t(x)$. We claim that $x \in I$ and as a consequence $y = \alpha_t(x) \in \alpha_t(E_{t^*} \cap I)$. If $x \notin I$ then $x \notin (E_{t^*} \cap I)$ and $y = \alpha_t(x) \notin$ $\alpha_t(E_{t^*} \cap I) \subset I$. That is, $y \notin I$ and it contradicts to the hypothesis.

Let α be an action of S on $A = C_0(X)$. For each invariant ideal I of A there is a restriction of α to an action of S on I. That is, if $\alpha = \{(\alpha_t, E_{t^*}, E_t)\}_{t \in S}$ is an action of S on A and $\alpha_t : E_{t^*} \longrightarrow E_t$ is a partial automorphism of A, then $\Theta = \{(\theta_t, E_{t^*} \cap$ $[I, E_t \cap I]_{t \in S}$ in which $\theta_t = \alpha_t|_I$ and $E_t \cap I =$ $\theta_t (E_{t^*} \cap I)$ is an action of S on I, by Lemma 3.1. Also, $\dot{\alpha} = \{(\dot{\alpha}_t, \vec{E}_t, \vec{E}_t)\}_{t \in S}$ in which $\vec{E}_{t^*} = \{a + d_t\}_{t \in S}$ $I \in A/I : a \in E_{t^*}$ and $\dot{a_t} : \dot{E_{t^*}} \longrightarrow \dot{E_t} =$ $\alpha_t(E_{t^*}) + I$ defined by $\dot{\alpha}_t(a+I) = \alpha_t(a) + I$ is a quotient action modulo I of S on A/I.

Now we make an attempt to investigate the relation between the quotient of the crossed product $A \times_{\alpha} S$ modulo the ideal generated by I and the crossed product of $\frac{A}{I}$ by the quotient action modulo *I*. That is, the relation between $\frac{A \times_{\alpha} S}{\langle I \rangle}$ and $\frac{A}{I \times_{\alpha} S}$.

Lemma 3.2. Let α be an action of S on a C^* –algebra A and I be an α –invariant ideal of S, then the map from $l^1(S, I)$ to $l^1(S, A)$ induces an injection from $I \times_{\alpha} S$ to $A \times_{\alpha} S$.

Proof: Let $L_A = \{x \in l^1(S, A) : x(s) \in E_s\}$ and $L_I = \{x \in l^1(S, I) : x(s) \in E_s\}$ where in L_A the ideal E_s is an ideal of A but in L_I , the ideal E_s is an ideal of I. As we showed in (Tabatabaie Shourijeh, 2006), L_A and L_I are closed subalgebra of $l^1(S, A)$. The inclusion map from $l^1(S, I)$ into $l^1(S, A)$ maps L_l into L_A simply because if $b \in l^1(S, I)$, i.e., $b = \sum_{s \in S} a_s \delta_s$ where each $a_s \in E_s$, then $i(b) = b \in l^1(S, I)$. Note that we used the fact that, ideals of ideals of a C^* -algebra are, themselves, ideals of that algebra. Thus the inclusion map induces inclusion map i from $I \times_{\alpha} S$ to $A \times_{\alpha} S$. In order to prove that *i* is injective it is enough to show that every covariant representation of (I, S, α) extends to a covariant representation of (A S, α). Therefore, let (π, ν, H) be an arbitrary covariant representation of (1, S, α). Since (π, H) is a representation of I without loss of generality we can assume that $\pi: I \rightarrow$ B(H) is non-degenerate. By using [(Dixmier, 1977), Prop. 2.10.4] there exists a unique extension π' of π to a representation of A on H and we have

$$v_s\pi'(a) v_{s^*} = \pi'(\alpha_s(a))$$

for all $a \in E_{s^*}$. That is, (π', ν, H) is a covariant representation of (A, S, α) .

Corollary 3.3. If I is an α -invariant closed twosided ideal of A then $I \times_{\alpha} S$ is a closed proper two-sided ideal of $A \times_{\alpha} S$.

Theorem 3.4. Suppose α is an action of S on A and assume I is an α –invariant ideal of A. Then the map $a\delta_s \in I \times_{\alpha} S \longrightarrow a \delta_s \in A \times_{\alpha} S$ extends to an injection of $I \times_{\alpha} S$ onto the ideal $\langle I \rangle$ generated by I in $A \times_{\alpha} S$, and $\langle I \rangle \cap A = I$.

Proof: Obviously, Lemma 3.2 and Corollary 3.3 show that $I \times_{\alpha} S$ injects as an ideal in $A \times_{\alpha} S$. Therefore, we can identify $I \times_{\alpha} S$ with

$$\overline{span}\{a\delta_s: a \in E_s \cap I, s \in S\}$$

Also, we can identity *I* with its canonical image $I\delta_e$ in $A \times_{\alpha} S$. Since $\langle I \rangle$ is the smallest ideal containing *I* we have $\langle I \rangle \subseteq I \times_{\alpha} S$. In order to prove the reverse inclusion it suffices to show that $a\delta_s \in \langle I \rangle$ for every $a \in E_s \cap I$ and $s \in S$. Therefore, let $a \in E_s \cap I$ and let b_λ be an approximate unit for the ideal E_s . Since $a b_\lambda \delta_s = (a\delta_e)(b_\lambda \delta_s) \in \langle I \rangle$ and $a \delta_s = \lim_{\lambda \to \infty} a b_\lambda \delta_s \in \langle I \rangle$ we have $I \times_{\alpha} S \subseteq \langle I \rangle$. That is, $I \times_{\alpha} S = \langle I \rangle$ and as a consequence $I = \langle I \rangle \cap A$.

Since the map $a\delta_s \rightarrow (a+I)\delta_s$ induces a * –homomorphism from $l^1(S, A)$ onto $l^1(S, A/I)$ we have the following conjecture.

Conjecture 3.5. Under the assumptions of Theorem 3.4 we have the following exact sequence.

$$0 \to I \times_{\alpha} S \to A \times_{\alpha} S \to (A/I) \times_{\dot{\alpha}} S \to 0.$$

References

- Blackadar, B. (2006). Operator Algebras, Theory of C* –algebras and Von Neumann Algebras. Springer-Verlag, Berlin.
- Conway, J. B., Duncan, J., & Paterson, A. L. (1984). Monogenic inverse semigroups and their C* –algebras. Proceeding of Royal Society of Edinburgh, 98(1-2), 574–556.
- Cuntz, J., & Krieger, W. (1980). A Class of C* –algebras and topological Markov chains. *Inventiones mathematicae*, 56(3), 251–268.
- Dixmier, J. (1977). *C** –*algebras*. North-Holland, Amsterdam, New York, Oxford.
- Duncan, J., & Paterson, A. L. (1985). C* –algebras of inverse semigroups. Proceedings of the Edinburgh Mathematical Society, 28(1), 41–58.
- Exel, R. (1998). Partial actions of groups and actions of inverse semigroups. *Proceeding of the American Mathematical Society*, 126(12), 3481–3494.
- Goffman, C., & Pedrick, G. (1991). *First course in Functional Analysis*. Prentice-Hall, New Delhi.
- Howie, J. M. (1976). An introduction to Semigroup theory. Academic Press.
- Laca, M., & Raeburn, I. (1996). Semigroup crossed products and Toeplitz algebras of nonabelian groups. *Journal of functional analysis*, 139(2), 415–440.
- Laca, M., & Raeburn, I. (1999). A semigroup crossed product arising in number theory. *Journal of the London Mathematics Society*, 59(1), 330–344.

- Larsen, N. S. (2000). Non-unital semigroup crossed products. *Mathematical Proceedings* of the Royal Irish Academy, 100(2), 205–218.
- Rajarama Bhat, B. V., Elliott, G. A., & Fillmore, P. A. (2000). *Lectures on operator theory, Fields Inst.* American Mathematics Society, Providence, Rhode Island.
- Rieffel, M. A. (1974). Induced representations of C* –algebras. Advances in Mathematics, 13(2), 176– 257.
- Sieben, N. (1997). C^{*} –Crossed products by partial actions and actions of inverse semigroups. *Journal of the Australian Mathematical Society*, 63(1), 32–46.
- Tabatabaie Shourijeh, B. (2006). Partial Inverse Semigroup C*-algebra. *Taiwanese Journal of Mathematics*, 10(6), 1539–1548.