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Abstract – On a Finsler manifold, we define conformal vector fields and their complete lifts and prove that in 
certain conditions they are homothetic. 

 
Keywords – Conformal vector field, complete lift, finsler manifold, lift metric 
 

1. PRELIMINARIES 
 
Let ( , )M g  be a Riemannian manifold, a vector field V  on M  is called a conformal vector field if its 
local 1-parameter group of transformations is a local conformal transformation. It is well known that V  is 
a conformal vector field on M  if and only if there is a scalar function λ  on M  such that 2VL g gλ= . 
Whenλ  is a constant, V  is called homothetic, especially when 0λ = , V  is a killing vector field or an 
infinitesimal isometry [1]. 

On a Finsler manifold ( , )M F , let V be a vector field with the complete lift cV , then V is called 
conformal vector field if there is a scalar function ρ  on TM  such that 2cV

L g gρ= , where ( )ijg g=  
is the corresponding fundamental Finsler tensor defined by 21( , ) ( ) ( , ).

2 i jij y y
g x y F x y=  

Let TM be the tangent space with a canonical coordinate system ( , )i ix y , then the vertical tangent 

bundle of 0 \{0}TM TM=  is defined by  
 

1{ , , }.nVTM span
y y
∂ ∂

=
∂ ∂

…  

 
A non-linear connection on 0TM  is a complementary distribution HTM defined by  

 

1{ , , },nHTM span
x x
δ δ
δ δ

= …  

 
where j

ii i jN
x x y
δ
δ

∂ ∂
= −
∂ ∂

, and j
iN  are the connection coefficients. HTM is a vector bundle 

completely determined by the smooth functions ( , )j
iN x y  on TM  [2, 3]. Moreover, we have  

 
                                                                  0TTM VTM HTM= ⊕                                                           (1) 
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Let ∇  be a linear connection on VTM , then ( , )HTM ∇  is called a Finsler connection on M . Indeed, a 
Finsler connection is a triad ( , , )N F C where ( )i

jN N  is a nonlinear, ( )i
j kF F  is the horizontal part and 

( )i
j kC C  is the vertical part of this connection. Now let ( , )M F  be Finsler manifold then a Finsler 

connection is called a metric Finsler connection if g  is parallel with respect to ∇ . According to the 
Miron framework this means g  is both horizontally and vertically a metric [4, 5, 6]. The Cartan 
connection is a metric Finsler connection for which the deflection, horizontal, and vertical torsion tensor 
fields vanish.  

The curvature tensor of a metric Finsler connection is defined by  
 

[ , ]( , ) [ , ]X Y X YR X Y = ∇ ∇ −∇  
 

where , ( )X Y TMχ∈ .  
They are called horizontal or vertical according to the choice of X  and Y in HTM or VTM . Then 

we have [5] 
 

,h h h m h m h h m
k ji i k j j k i k j m i k i m j k m j iR F F F F F F C Rδ δ= − + − +  

 
h h h
ij j i i jR N Nδ δ= − , where we have put , , m

i i i ii m
i i

N
x y

δ∂ ∂
∂ = ∂ = = ∂ − ∂

∂ ∂
. When ∇  is a Cartan 

connection then h m h
i m iN y F= . 

 
Proposition 1. [4] Let M be an n -dimensional Finsler manifold with a Cartan connection, then we have 
the following equations: 

(1) 
1 ( )
2

h hm
i j i mj j im m ijF g g g gδ δ δ= + − ; 

(2) 
1
2ijk k ijC g= ∂�  where m

ijk i k jmC C g= ; 

(3) 0m
mijy C = ; 

(4) h m h
ji m ijR y R= . 

The Cartan horizontal and vertical covariant derivative of a tensor field of type )2,1(  are locally as 
follows:  

 
                                         |: ;h h h h m m h m h

j k i k i j j k i m j k i k j m i i j k mT T T F T F T F Tδ∇ = = + − −                                 (2) 
 

|: .h h h h m m h m h
k i k i m j k i k j m i i j k mj k i j jT T T C T C T C T∇ = = ∂ + − −  

 
2. LIFT METRICS AND CONFORMAL VECTOR FIELDS 

 
a) Complete Lift Vector Fields and Lie Derivative 
 
Let i

iV v= ∂  be a vector field on M . Then V  induces an infinitesimal point transformation on M . This 
is naturally extended to a point transformation of the tangent bundle TM  which is called extended point 
transformation. Let V  be a vector field on M  and { }tϕ  the local 1-parameter group of M  generated by 
V . Let tϕ�  be the extended point transformation of tϕ , then { }tϕ�  induces a vector field cV  on 
TM which is called the complete lift of V [7, 8].  

It can be shown that the extended point transformation is a transformation induced by the complete 
lift vector field of V , c i j i

i j iV v y vδ= + ∇ ∂  with respect to the decomposition (1), where ∇  is a linear 
connection.  



Conformal vector fields on… 
 

Winter 2008                                                              Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A1 

55

The Lie derivation of an arbitrary tensor, k
iT , is given locally by [9]: 

 
k a k a b k a k k a

V i a i a i i a a ibL T v T v v T T v T v= ∇ + ∇ ∇ − ∇ + ∇  
 

or equivalently,  
 

.k a k a b k a k k a
V i a i a i i a a ibL T v T y v T T v T v= ∂ + ∂ ∂ − ∂ + ∂  

 
So we have  

 
                              0,i a i a b i a i a i a i

V a a a a abL y v y y v y y v y v y v= ∂ + ∂ ∂ − ∂ = ∂ − ∂ =                          (3) 
 
                                         .a a b a a

V ij a ij a ij aj i ia jbL g v g y v g g v g v= ∂ + ∂ ∂ + ∂ + ∂                                     (4) 
 
where ∇  is a linear connection. 

In Finsler geometry, VL  is replaced by VL � , where V�  is the lift of V . We also have this 
interchanging formula between Cartan covariant derivatives and Lie derivatives. 

 
                                                   .a a

k V ij V k ij aj V i k ai V j kL g L g g L F g L F∇ − ∇ = +                                               (5) 
 
b) A Lift Metric on Tangent Bundle 
 
V. Oproiu introduced a family of Riemannian metrics on the tangent space of Riemannian manifolds and 
considered locally symmetric, Kählerian and anti-Hermitian conditions with these metrics [10-12]. Then 
Abbassi-Sarih proved in [13] that the Oproiu metrics form a particular subclass of the so-called g-natural 
metrics on the tangent space [14, 15]. Also in [16], Boeckx-Vanhecke obtained an almost contact metric 
on the unit tangent space.  

In this section we consider a new Riemannian metric on the tangent space, and in the next section 
obtain some conditions which reduce the conformal vector fields to be homothetic. 

Let ( )M F,  be a Finsler manifold, define a tensor field G  on TM  by  
 

( ) ( ) 2 ( ) ( )i j i j i j
ij ij ijG x y h x y dx dx h x y dx y h x y y yα β δ γ δ δ, = , + , + ,  

 
where α β,  and γ  are real numbers and ( , )ijh x y  are components of a generalized Lagrange metric [6, 
17]. It is clear that G  is nonsingular if 2 0αγ β− ≠  and positive definite if 2 0αγ β− > , defining, 
respectively, a pseudo-Riemannian or Riemannian lift metrics on ( )T M .  

We are going to consider the metric G  with ( )ijh x y,  of the following special deformation of ( )ijg x  
 

2( ) ( ) ( , )ij ijh x y a F g x y, = ,  
 
where ( , ) j

i ijy g x y y=  and 2( )a Im F R R+ +: ⊆ →  with 0a > . For shortness we set 1
i j

ijg h dx dx= , 

2 2 i j
ijg h dx yδ=  and 3

i j
ijg h y yδ δ= , therefore 1 2 3G g g gα β γ= + + . 

 
3. MAIN RESULTS 

 
Analogous to the Riemannian geometry, by straightforward calculation we have the following results in 
Finsler geometry [18, 19].  

 
Lemma 1. Let ( , )M F  be a Finsler manifold with Cartan connection, then we have 
(1) [ , ] ;h

i j ij hRδ δ = ∂  
(2) [ , ] ;h

i ij j hNδ ∂ = ∂ ∂   
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(3) [ , ] 0.i j∂ ∂ =  
 
Lemma 2. Let ( , )M F  be a Finsler manifold with Cartan connection, then we have 
(1) ;c

h h
i i h V i hV

L v L Nδ δ= −∂ − ∂  
(2) ;c

h
ii hV

L v∂ = −∂ ∂   
(3) ;c

h h m
mV

L dx v dx= ∂  
(4) .c

h h m h m
V m mV

L y L N dx v yδ δ= + ∂  
 
Proof: First we give the proof of part (2). By a simple calculation, we have: 
 
                                   [ , ]c

c
i iV

L v∂ = ∂  

                                               =[ | , ]h m h
h m h iv y vδ + ∂ ∂  

                                            [ , ] ( ) | [ , ] ( | )h h m h m h
h h m mi i h i i hv v y v y vδ δ= ∂ − ∂ + ∂ ∂ − ∂ ∂  

                                               = ( | )h r m r
h mi rv N y v∂ − ∂  

                                               = ;r
i rv−∂ ∂  

 
The proof of part (1) is similar to (2). 
Since ( , )h hdx yδ  is the dual basis of ( , )h hδ ∂ , if we put 
 

,c
h h m h m

m mV
L y dx yδ α β δ= +  

 
then we have 
 

0 ( ( )) ( ) ( ) ,c c c c
h h h h h

i i i i iV V V V
L y L y y L L Nδ δ δ δ δ δ α= = + = −  

 
and 
 

0 ( ( )) ( ) ( ) .c c c
h h h h h

i ii i iV V V
L y L y y L vδ δ δ β= ∂ = ∂ + ∂ = − ∂  

 
Thus we get (4). In the same way as the proof of part (4), we can prove (3).  
 
Lemma 3. Let ( , )M g  be a Finsler manifold with Cartan connection, then we have 
(1) 2

1 ( )(2 ) ;c
i j

ij V ijV
L g a F g L g dx dxϕ= +  

(2) 2 2
2 2 ( ) ( ) 2 ( )(2 ) ;c

m i j i j
mi V j ij V ijV

L g a F g L N dx dx a F g L g y yϕ δ δ= + +   

(3) 2 2
3 2 ( ) ( )(2 ) .c

m i j i j
mi V j ij V ijV

L g a F g L N dx y a F g L g y yδ ϕ δ δ= + +  

where 
2

| 2

( )
( )

m h
m h

a Fy v y
a F

ϕ
′

= . 

 
Proof: From the above lemma, we get 
 

2 2
1 ( ) ( ( ) ) 2 ( ) ( )c c c

i j c i j i j
ij ij ijV V V

L g L h dx dx V a F g dx dx a F g L dx dx= = +  
2 2

2

(( | ) ( )) (( | ) ) ( )

2 ( ) ( )

h m h h m h
h m ij h m ijh h

i r j
ij r

v y v a F g v y v g a F

a F g v dx dx

δ δ= + ∂ + + ∂

+ ∂
 

= 2 22 ( ) ( ) .i j i j
ij V ija F g dx dx a F L g dx dxϕ +  
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Thus we have (1). (2) and (3) are easily proof in the same way as the proof of (1). 
 
Definition 1. Let X  be a conformal vector field on TM  with the associated function ρ . X  is called 
quasi-inessential vector field if ρ ϕ−  is a function of ( )hx , namely there exists a function Ω  of ( )hx  
such that ρ ϕ= Ω+ . If Ω  is constant, then X  is called quasi-homothetic vector field. Moreover, if 

0Ω =  then X  is called quasi-isometry vector field on .TM  
 
Remark: These classes of vector fields contain the classes of inessential, homothetic and isometry vector 
fields as special cases, respectively (for 0ϕ = ). Hence, the forthcoming results hold for inessential, 
homothetic and isometry vector fields. 
 
Theorem 1. Let ( , )M F  be a C∞ connected Finsler manifold, TM  its tangent bundle and G  the 
Riemannian (or pseudo-Riemannian) metric on TM  derived from g . Then every complete lift conformal 
vector field on TM  is quasi-homothetic. 
 
Proof: Let V  be a vector field on M , cV  the complete lift vector field of V  which is conformal, and let 
G  be a pseudo-Riemannian metric on TM  derived from g . We have by definition 2cV

L G Gρ= . The 
Lie derivative of G gives  
 

2 2( )(2 ) 2 ( )(2 )c
i j i j

ij V ij ij V ijV
L G a F g L g dx dx a F g L g dx yα ϕ β ϕ δ= + + +  

 

                               
2 2

2

2 ( ) ( )(2 )

2 ( ) .

a i j i j
ai V j ij V ij

a i j
aj V i

a F g L N dx dx a F g L g y y

a F g L N dx y

β γ ϕ δ δ

γ δ

+ + +

+
                          (6) 

 
So we have  
 

2

2

( )[ (2 ) 2 ( )]

( )[2 (2 ) 2 ( )]

c
a i j

ij V ij ai V jV
a i j

ij V ij aj V i

L G a F g L g g L N dx dx

a F g L g g L N dx y

α ϕ β

β ϕ γ δ

= + +

+ + +
 

2( )(2 ) 2 .i j
ij V ija F g L g y y G+ + =γ ϕ δ δ ρ  

 
Comparing with the definition of G , we find 

 
                                               ( ) 2 ;a a

V ij ai V j aj V i ijL g g L N g L N gα β α+ + = Ω                                        (7) 
 
                                                           2 ;a

V ij aj V i ijL g g L N gβ γ β+ = Ω                                                    (8) 
 
                                                                      2 .V ij ijL g gγ γ= Ω                                                                 (9) 
 
Where ρ ϕΩ = − . 
I) If 0γ ≠ , then from (9) we have 
 

2V ij ijL g g= Ω  
 

and from (8) we have 
 

0.a
V iL N =  

 
Using this and h m h

i m iN y F=  we get  
 



E. Peyghan / et al. 
 

Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A1                                                              Winter 2008 

58

                                                     0 ( ) ,h m h m h
V i V m i V m iL N L y F y L F= = =                                            (10) 

 
where the last equality follows from equation (3).  
II) If 0γ = , since 2 0αγ β− ≠  we have 0β ≠ . From (8) we get  
 

2V ij ijL g g= Ω  
 

and from (7) we have  
 

0.a a
ai V j aj V ig L N g L N+ =  

 
Using this, equation (3) and h m h

i m iN y F= , we have  
 

                                                             ( ) 0.m a a
ai V m j aj V m iy g L F g L F+ =                                                    (11) 

 
In each case I and II we have  

 
                                                                          2V ij ijL g g= Ω                                                                 (12) 
 
or from equation (4)  
 

2 .a a a a b
a ij aj i ia j a ij ijbv g g v g v y v g g∂ + ∂ + ∂ + ∂ ∂ = Ω  

 
Applying k∂  to both sides of the above equation, we find that  
 

2 2 2 2 2 2 4 .a a a a a b
a ijk ajk i iak j k ija a ijb ij ijkk kv C C v C v v C y v C g C∂ + ∂ + ∂ + ∂ + ∂ ∂ = ∂ Ω+ Ω  

 
By using 0i

ijky C = , we obtain 0k∂ Ω = . Therefore Ω  is a function of x  alone. From (5) we have  
 

( ) ( ).k k a a
k V ij V k ij aj V i k ai V j ky L g L g y g L F g L F∇ − ∇ = +  

 
By using (10), (11) and (12) in each case I and II we find that  
 

0.k
ky ∇ Ω =  

 
Since Ω  is a function of x  alone, we obtain 0i∂ Ω = . This, together with the connectedness of M , 
shows that Ω  is constant. 

 
Note: In a special case when 2( ) 0a F′ =  e.g. 2 2( ) ( ) 1a t t F= − +  follows from lemma 3, that 0ϕ =  and 
hence 2cV

L G Gρ= , where ρ  depends on x only. Therefore we have: 
 
Corollary 1. Let ( , )M F  be a C∞ connected Finsler manifold, TM  its tangent bundle and G  the 
Riemannian (or pseudo-Riemannian) metric on TM  derived from g  with 2( ) 0a F′ = . Then every 
complete lift conformal vector field on TM  is homothetic. 
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