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Abstract – In this paper we introduce the concept of Dirac structures on (Hermitian) modules and vector 
bundles and deduce some of their properties. Among other things we prove that there is a one to one 
correspondence between the set of all Dirac structures on a (Hermitian) module and the group of all 
automorphisms of the module. This correspondence enables us to represent Dirac structures on (Hermitian) 
modules and on vector bundles in a very suitable form and define induced Dirac structures in a natural way. 
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1. INTRODUCTION 
 

The theory of Dirac structures, as a generalization of Poisson and presymplectic structures was introduced 
by Courant and Weinstein in [1] and [2]. Its algebraic counterpart was given by Dorfman in [3]. In [4] we 
considered Dirac structures on real Hilbert spaces, which can be extended to complex Hilbert spaces by a 
simple modification as follows: 

Let (H, < | >) be a complex Hilbert space. A subspace of the vector space H×H is called a Dirac 
structure on H if it is maximally isotropic under the pairing 

 

( ) ( )( )
2

||,,, ><+>< uyvxvuyx  

 
on H×H. Notice that using this definition, the results of [4] on Dirac structures on real Hilbert spaces are 
also true for Dirac structures on complex Hilbert spaces. 

In [4] we showed that, to each Dirac structure on a vector bundle there corresponds a unique Dirac 
structure on some Hilbert space. More precisely, let L be a Dirac structure on the vector bundle η=(E, π, 
M, F) in the sense of [1]. Let M be compact. Endow M and η with Riemannian metrics. Let H be the 
Hilbert space of L²-sections of η, and let Λ be the set of L²-sections of L. Then, Λ is a Dirac structure on 
H. Unfortunately, the converse is not true. Moreover, there is no convenient way to formulate the notion 
of integrability of Dirac structures on tangent bundles in terms of Dirac structures on the associated 
Hilbert spaces. The search for overcoming these inconveniencies and also our interest in the deformation 
quantization of Dirac structures on vector bundles have been our motivations for this work. In this paper 
we give a simple definition of Dirac structures on general and Hermitian modules and study their 
properties. We also give a definition of the Dirac structure on general and Hermitian vector bundles. Our 
definition includes the existing ones and the complex structures on vector bundles as special cases. The 
problem of integrability of Dirac structures will be considered in future work. 
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There are many interesting papers on Dirac structures and their applications The algebraic version of 
these structures as introduced in this paper gives a very simple representation of Dirac structures and can 
be used to solve interesting problems in differential geometry. 

This paper, which gives the foundations, consists of three parts. In the first part, we give the 
definition of Dirac structures on arbitrary and Hermitian modules and prove some results. The second part 
of the paper contains the definition of Dirac structures on arbitrary and Hermitian vector bundles and some 
facts about them. The relation between Dirac structures on (Hermitian) modules and Dirac structures on 
(Hermitian) vector bundles is presented in the final section. 

In forthcoming papers we will use these facts to investigate and solve some interesting problems in 
differential geometry. Since the problems require integrability, we have to consider them after introducing 
this notion and giving some of its properties. 

Note that in the following all modules over a C*-algebra, including real and complex vector spaces 
with a positive definite conjugate-bilinear functional, will be called a Hermitian module. In the same way, 
the Riemannian and Hermitian vector bundles will be called Hermitian vector bundles. 

 
2. DIRAC STRUCTURES ON MODULES 

 
In the following  denotes the field of real or complex numbers. If E is a real vector space, its 
complexification will be denoted by Ec. R is an arbitrary ring with ½ R∈  and M is a right R-module 
which satisfy the following condition: 

For each non-zero element x M ,  x∈ ≠2 0 . 
The results of the paper are also true for left R-modules. We also consider Hermitian R-modules, 

where R is a C*-algebra. Here, by a Hermitian R-module we mean a module M over the ∗-ring R with a 
map < | >:M×M→R, which satisfies the following conditions: 
For all r∈R, and all u,v∈M, we have  
1) <u | vr>=<u | v>r,  
2) <u | v>*=<v | u>,  
3) <u | u> ≥  0 
4) <u | u>=0 implies u=0. 

In this case the map ||.||:M→ℝ⁺ given by ||u||=||<u|u> 2
1

||  defines a norm on the  -vector space M. The 
Hermitian R-module M is called a Hilbert R-module if the normed space (M,||.||) is complete. For more 
details on the subject see [5], [6]. 

For any R-module M the isomorphism π: M×M→M×M is defined by (x,y):↦(y,x). The first (resp. 
second) projection of M×M onto M will be denoted by p1 (resp. p2). Two submodules of a (Hermitian) R-
module are called (ortho)complementary, (if they are orthogonal to each other and) if M is equal to their 
direct sum. A submodule M′ of a (Hermitian) module M is called projective if it has a (ortho)complement 
in M. Note that when M is a projective module, each projective submodule of M is a projective module in 
the usual sense. The group of all (isometric) automorphisms of a (Hermitian) module M will be denoted by 
Aut(M). 

Let M be an R-module, and let I: M→M be the identity map. The homomorphism T: M→M is called 
a complex structure on M if T²=-I. Note that since (T-I)(T+I)=T²-I=-2I, T±I:M→M are invertible. 
 
Definition 2.1. Let M be a (Hermitian) module. A submodule L of M×M is called a Dirac structure on M if 
L and π(L) are (ortho)complementary. 
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Remark 2.2. Let E be a finite-dimensional real vector space. A Dirac structure on E in the sense of [1] is a 
subspace of E×E* which is maximally isotropic under the pairing 
 

( ) ( ) ( ) ( ) .
2

,|, xvyuvuyx +
=>< +  

 

After identifying E* with E by an inner product on E, it is easy to see that this definition is a special 
case of our definition of Dirac structures on Hermitian modules [4]. 
 
Proposition 2.3. Let L be a Dirac structure on a (Hermitian) module M. Then the homomorphisms p1±p2: 
L→M are (isometric) isomorphisms. 

Conversely, let L be a submodule of M×M and let L∩π(L)=0 (and π(L) be orthogonal to L). Then a 
sufficient condition for L to be a Dirac structure on M is that the homomorphisms p1±p2: L→M be 
surjective. 
 
Proof: Let (x,y) be in L and let x+y=0. Then ( ) ( )LLxx π∩∈−, . Thus, x=0. Therefore, p1+p2 is injective. 
On the other hand, for each ( ) .,, MMwwMw ×∈∈ Therefore, there exist (x,y)∈  L and (y′,x′)∈π(L) 
such that (w,w)=(x,y)+(y′,x′). Thus, w=x+y′=x′+y. Hence, x-x′=y-y′. But then, (x-x′,x-x′)=(x-x′,y-
y′)=(x,y)-(x′,y′)∈L∩π(L). Thus, x=x′ , y=y′ and w=x+y. Therefore, p1+p2 is surjective. 

Similarly, it can be shown that p1-p2 is an isomorphism. 
Assume that M is a Hermitian module. Let (x,y) ∈  L. Then, since π(L) is orthogonal to L, 

 
<x±y | x±y>=<x | x>+<y | y>±<x | y>±<y | x>=<x | x>+<y | y>. 

 
Therefore, p1±p2 are isometries. 

Now assume that the submodule L of M×M is such that (π(L) is orthogonal to L) L∩π(L)={0}, and 
p1±p2:L→M are surjective. Let (x,y)∈  M×M. Then, there exists (u,v)∈  L such that x+y=u+v. Hence, x-
u=v-y. Now, there exists (z,t)∈  L such that x-u=z-t. Thus, (x-u,y-v)=(z-t,t-z), i.e., (x,y)=(u,v)+(z,t)-(t,z)∈  
L⊕ π(L). Therefore, L is a Dirac structure on the (Hermitian) module M.  

 
Example 2.4. Let H be a Hilbert space and let T: H→H be a globally defined surjective linear operator. 
Assume that 1 is not in the spectrum of T². Let L denote the graph of T. It is easy to see that L⋂π(L)={0}. 
Since p1±p2: L→H are also surjective, by the above proposition, L is a Dirac structure on the vector space 
H. L is a Dirac structure on the Hilbert space H, if and only if, T is anti-symmetric [4]. 
 
Example 2.5. Let M be a module, and Let T: M→M be a complex structure on M. Let L={(x,Tx)∈  M×M | 
x∈M}. Since T²=-I, we have L⋂π(L)={0}. On the other hand, as we have seen earlier, T±I:M→M are 
invertible. Hence, p1±p2: L→M, are surjective. Therefore, L is a Dirac structure on M. 

As a consequence of the first part of the above proposition we have: 
 

Corollary 2.6. Any two Dirac structures on a (Hermitian) module M are (isometrically) isomorphic as 
(Hermitian) modules 
The set of all Dirac structures on M will be denoted by D(M). 
 
Proposition 2.7. Let M be a (Hermitian) module. Then, there is a one-to-one correspondence between 
D(M) and Aut(M). 
 
Proof: Let L be a Dirac structure on M. Then by the above proposition 
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( ) ( )( ) ( ).1

2121 MAutppppA LL ∈+−= −
 

 
Conversely, for A∈Aut(M), let LA={(x+Ax, x-Ax)|x∈M}. Assume that (x+Ax, x-Ax)=(y-Ay, 

y+Ay). Then x-y=-A(x+y) and x-y=A(x+y). Thus, 0=(x-y)=A(x+y). Since A∈Aut(M), x=y=0. Therefore 
LA∩π(LA)={0}. On the other hand, p1±p2:L→M are surjective. Note also that when M is a Hermitian 
module, LA and π(LA) are orthogonal to each other. Therefore, LA is a Dirac structure on M. Finally, 
assume that B is also in Aut(M) and LA=LB. Then, for each x∈M there exists y∈M such that 
 

(x+Ax,x-Ax)=(y+By,y-By). 
 

Thus, x=y and Ax=Bx. Since x is an arbitrary element of M, A=B.  
 
Proposition 2.8. Let L be a Dirac structure on a Hermitian (resp. Hilbert) module M. Then, L is a 
Hermitian (resp. Hilbert) submodule of M×M which is maximally isotropic under the pairing 

 

( ) ( )
2

||,|, ><+><
=>< +

uyvxvuyx  

 
Proof: By definition, L is the orthocomplement of π(L). Therefore, it is a projective Hermitian (resp. 
Hilbert) submodule of M×M. Clearly, L is isotropic under above pairing. Let (z,t)∈M×M be such that for 
each (u,v)∈  L, <(z,t) | (u,v)>+=0. Then, (t,z)∈  π(L). Hence, (z,t)∈  L. Therefore, L is maximally isotropic.  

The converse of the proposition is also true for Hilbert spaces [4]. The following example shows that 
this is not true for general Hilbert modules. 

 
Example 2.9. Let η be the tangent bundle of the 2-dimensional sphere S² and let g be the standard 
Riemannian metric on it. Let R denote the C*-algebra of continuous functions on the sphere and let M be 
the R-module of L2 vector fields on it. Clearly, M is a Hilbert module under the pairing <X | Y>=g(X,Y). 
The submodule of M consisting of all vector fields identically zero on the upper (lower) hemisphere is 
denoted by M0(M1). Clearly, L=M0×M1⊂M×M is maximally isotropic under the pairing < | >+.  Since L 
⊕ π(L)≠M×M, L is not a Dirac structure on M. 
 
Definition 2.10. Dirac structures L and L ′are called transversal if L∩L′={(0,0)}. 
For example, L=M×{0} and L′={0}×M are transversal Dirac structures on M. 
 
Lemma 2.11. A necessary and sufficient condition for L and L′ to be transversal is that 

MMAA LL →′
− :1 has no non-zero fixed point. 

 
Proof: Let 0≠x and .1 xxAA LL =′

− Then xAxA LL ′= . Hence 
 

( ) ( ) LLxAxxAxxAxxAx LLLL ′∩∈−+=−+ ′′ . 
 

Therefore, 0≠x and xxAA LL =′
−1  implies that L∩L′≠{0}. Now, assume that L∩L′≠{0}. Let 0≠(x, y)∈  

L∩L′, and let z=x + y. Then 
 

( ) ( ) ( ) .1
2121 zAzppppzA LL ′

− =+−=  
 

Therefore, L∩L′≠{0} implies zAA LL ′
−1 =z for some 0≠z . 

 
Corollary 2.12. Any two distinct Dirac structures on a simple module are transversal. 
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3. AUTOMORPHISM GROUP 
 

Definition 3.1. Let L (resp. L′) be a Dirac structure on a (Hermitian) module M(resp. M′). A Dirac 
homomorphism from M into M′ is a homomorphism T:M→M′ such that T×T carries L into L′. 
 
Lemma 3.2. Let L (resp. L`) be a Dirac structure on an R-module M (resp. M`), and let MMT ′→:  be a 
Dirac morphism. Then ( ) ( ) LLTT =′× −1  
 
Proof: Let ( ) ( ) ( )LTTyx ′×∈ −1, . Then we have  
1) ( ) LTyTx ′∈, . 
2) ( ) ( ) ( ) ( )LLxyyxyx π⊕∈⊕= 2211 ,,, , 
From 2 we have ( ) ( ) LTxTyTyTx ′∈+ 2211 ,, . Since ( )11 ,TyTx  is also in L` we have ( ) LTxTy ′∈22 , . But 
( ) ( ) ( ) ( )LyxTTyxTTTxTy ′∈×=×= πππ 222222 ,,, . Therefore ( ) 0, 22 =yx  and ( ) Lyx ∈, . 
 
Lemma 3.3. Let L (resp. L′) be a Dirac structure on a (Hermitian) module M(resp. M′). Then  
1) A homomorphism T: M→M′, is a Dirac homomorphism if and only if 

TAAT LL ′= . 
2) The composition of two Dirac homomorphisms is a Dirac homomorphism.  
3) If the Dirac homomorphism T: M→M′ is invertible, then T-¹:M′→M is a Dirac homomorphism.  
4) The identity mapping I: M→M is a Dirac homomorphism. 
 
Proof: 1) As we have seen earlier, ( ){ }MxxAxxAxL LL ∈−+= ,, . Assume that TAAT LL ′= . 
Then, for each x∈M, 
 

( ) ( ) =−+=−+× xATxTxATTxxAxxAxTT LLLL ,,  
( ) ( )( ) ., LTxAxTTxATx LL ′∈−+ ′′  

 
Therefore, T is a Dirac homomorphism. Conversely, assume that T is a Dirac homomorphism. Then, for 
each x∈M, there exists a y∈M′ such that 

 
( ) ( )yAyyAyxAxxAxTT LLLL ′′ −+=−+× ,, . 

 
Hence 
 

( ) ( )yAyyAyxATxTxATTx LLLL ′′ −+=−+ ,, . 
 

This equality yields Tx=y, and .TxAyAxAT LLL ′′′ == . Since, x is an arbitrary element of 
., TAATM LL ′=  

The proof of the rest is immediate. As a consequence of the above lemma we have 
 
Proposition 3.3. Let L be a Dirac structure on a (Hermitian) module M. Then, the group of Dirac 
automorphisms of M is the centralizer of LA  in Aut(M). 
The following assertions are trivial. 
1) ( ) .LL AA −=π  
2) Aut(L)=Aut(π(L)). 
3) A necessary and sufficient condition for Aut(L) to be equal to Aut(M) is that LA be in the centre of 
Aut(M). In this case L is called a central Dirac structure on M. 
 
 



A. Shafiei Deh Abad 
 

Iranian Journal of Science & Technology, Trans. A, Volume 32, Number A1                                                              Winter 2008 

38

4. CONSTRUCTIONS WITH DIRAC STRUCTURES ON MODULES 
 

Let L be a Dirac structure on M, M′ a submodule of M and let M* be the dual of M. Then:  
1) Assume that M′ is invariant under LA . Let A′ denote the restriction of LA to M′. The Dirac structure 

AL ′  is called the Dirac structure on M′ induced by L. Clearly, AL ′ is a submodule of L. Equivalently: 
 
Lemma 4.1. Let (M, L) and (M′, L′) be Dirac (Hermitian) R-modules and let M′ be a submodule of M. A 
necessary and sufficient condition for (M′, L′) to be a Dirac submodule of (M, L) is that the canonical 
injection i:M′→M be a Dirac morphism. 
2) Let L* be the set of all elements of (M×M)* =M*×M*, which are identically zero on π(L). Observe that 
π(L*) is the set of those elements of M*×M* which are identically zero on L. This follows from 
M×M=L⊕ π(L), and L∩π(L)={0}. Let ( ) LLLMMq →⊕=× π:1  and q2: M×M→L π⊕ ( )→L L be the 
first and the second canonical projections, and let (α,β)∈M*×M*. Clearly, ( ) ( ) ( ) 21 ,,, qq βαβαβα ⊕= . 
But ( ) *, 1 Lq ∈βα , and ( ) ( ).*, 2 Lq πβα ∈  Therefore, L* is a Dirac structure on M*×M*, which is 
called the Dirac structure on M* associated with L. Let B be the automorphism associated with L. Then, it 
is easy to see that L* is the Dirac structure on M* associated with 1*−B . 
3) Let X be a set, S be the set of all functions from X into the R-module M, and L be a Dirac structure on 
M. Clearly, S is an R-module. Let Q be the submodule of S×S defined by 
 

( ) ( ){ },,Im|, LgfSSgfQ ⊂×∈=  
 

where Im ( ) ( ) ( )( ){ }Mxxgxfgf ∈= |,, .Then, Q∩π(Q)={0}, and ( )QQSS π⊕=× . 
Therefore, Q is a Dirac structure on S. Its associated automorphism is defined by 

( ) fAfA LQ = . 
4) Let I be a set and let { }IiM i ∈|  be a family of R-modules. For each i∈I, let L be a Dirac structure on 

iM . Let ( ) ( ){ }iiiiIiiIii LyxyxLMM ∈⊕⊕=⊕= ∈∈ ,|,, . It is easy to see that L is a Dirac structure on 
M, and its associated automorphism is 

iLIi A∈⊕ . 
The proof of the following assertions are immediate. 

5) Let L be a Dirac structure on an (Hermitian) R-module M. Let φ: R′→R be an injective (∗-) 
homomorphism. Then L is a Dirac structure on M considered as an (Hermitian) R′-module. 
6) Let L be a Dirac structure on a Hilbert R-module M. Assume that R+ is the 
unitization of R. Then, L is a Dirac structure on the Hilbert R+-module M. 
7) Let L be a Dirac structure on a real vector space E. Then, cL  is a Dirac structure on the complex vector 
space cE . Also, when L is a Dirac structure on a real Hilbert space H, cL is a Dirac structure on the 
complex Hilbert space cH . 
 
Lemma 4.2. Let (M, L) and (M′, L′) be Dirac R-modules. Assume that ϕ : M→M′ is a Dirac morphism. 
Then, (Kerϕ , Ker(ϕ ×ϕ )∩L) is a Dirac submodule of (M, L). 
 
Proof: Let (x,y)∈Ker(ϕ ×ϕ )∩L. Then, ϕ (x)=ϕ (y)=0. So, x,y∈Ker(ϕ ). Therefore, 21 pp ± : Ker 
(ϕ ×ϕ )∩L→Kerϕ  is injective. Now assume that z∈Kerϕ ⊂M. There exists (x,y)∈L such that 

( )( ) zyxppyx =+=+ ,21 . Since, ( )( )( ) ( )( ) ( ) 0,, 2121 ==+=×+ zyxppyxpp ϕϕϕϕ , and 
MLpp →+ :21  is an isomorphism, (ϕ ×ϕ )(x,y)=0. Therefore, (x,y)∈  Ker(ϕ ×ϕ )∩L. In the same way we see 

that 21 pp − :Ker(ϕ ×ϕ )∩L→Kerϕ , is an isomophism. Clearly, (Ker(ϕ ×ϕ )∩L)∩π(Ker(ϕ ×ϕ )∩L)={0}. By 
Proposition 2.3 (Ker(ϕ ), Ker(ϕ ×ϕ )∩L) is a Dirac submodule of (M,L).  
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Lemma 4.3. Let (M,L) and (M′,L′) be Dirac R-modules and let ϕ :M→M′ be a Dirac morphism. Then, 
(Im(ϕ ), Im(ϕ ×ϕ )∩L′) is a Dirac submodule of (M′,L′). 
 
Proof: Let z∈M. Then, there exists (x,y) ∈  L such that ( )21 pp + (x,y)=x+y=z. Since ϕ  is a Dirac 
morphism 
 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )2121 , ppyxppyxz ′+′=′+′=+= ϕϕϕϕϕ (ϕ × ϕ )(x, y). 
 

Therefore, ( )( ) ( )MLpp ϕϕϕ →×′+′ :21  is surjective. In the same way we see that ( )( ) ( )MLpp ϕϕϕ →+′−′ :21  
is also surjective. Since ϕ  is a Dirac morphism, by Lemma 3.2 ϕ ×ϕ (L)=Im(ϕ ×ϕ )∩L′ and 
ϕ ×ϕ (π(L))=Im(ϕ ×ϕ )∩π(L′). So, (Imϕ , Im(ϕ ×ϕ )∩L′) is a Dirac submodule of (M′,L′). 
 
Corollary 4.4. With the above notations and conventions ϕ : (M,L)→(M′,L′) is a Dirac morphism if and 
only if (ϕ (M), ϕ ×ϕ (L)) is a Dirac submodule of (M′, L′). 
 

Lemma 4.5. Let (M′, L′) be a Dirac submodule of the Dirac module (M, L).Then, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

′
⎟
⎠
⎞

⎜
⎝
⎛

′ L
L

M
M , is a 

Dirac module. 
 
Proof: Since (M, L) and (M′, L′) are Dirac modules, M×M =L⊕ π (L) and M′×M′=L′⊕ π(L′). 
On the other hand, 
 

( )
( ) .⎟

⎠
⎞

⎜
⎝
⎛

′
⊕
′

=
′

⊕
′′

=
′×′

×
=

′
×
′ L

L
L
L

L
L

L
L

MM
MM

M
M

M
M π

π
π

 

 
The proof is complete. 
 
Definition 4.6. Let R be a commutative ring and for 1≤i≤n, let iL be a Dirac structure on iM , and let 

iLi AA = . Clearly, i
n
i AA 1=⊗=  is an automorphism of i

n
i MM 1=⊗= . The Dirac structure AL on M is 

called the tensor product of .iL  
 
Definition 4.7. Let R be as above and let L be a Dirac Structure on an R-module M. Then, L

n AA ∧=  is 
an automorphism of Mn∧ . So, AL  is a Dirac structure on Mn∧ called the n-th exterior product of L. 
 

5. PROJECTIVE DIRAC STRUCTURES 
 
Definition 5.1. Let L be a Dirac structure on a (Hermitian) module M. Let ( ) LpKerL ∩= 11 and let 

( )121 LpM = . L is called a projective Dirac structure if there exists a submodule M0 (ortho)complement 
to M 1 in M which contains ( )Lp1 . The submodule ( ) ( )0

1
21 | Mpp L

−+  of L will be denoted by 0L . 
Clearly, 10 LLL ⊕= , and ( ) 002 MLp ⊂ . 
 
Remark 5.2. When L is a Dirac structure on the Hermitian module M, it is clear that the submodule 0M , 
the orthocomplement of 1M , if it exists, is unique, and 1M  is orthogonal to ( )Lp1 . Thus, ( )Lp1  is 
automatically contained in M0. Moreover, since MLpp →+ :21 is an isometry, L0 and L 1 are 
orthocomplementary. 
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Proposition 5.3. Let L be a projective Dirac structure on M. Then, 0L is a Dirac structure on M0. 
Conversely, let 0M and 1M  be (ortho)complementary in M. Let 0L  be a Dirac structure on 0M , and let 

( ){ }.|,0 11 MyyL ∈=  Then, 10 LLL ⊕=  is a Dirac structure on M. 
 
Proof: Clearly, L0∩ π (L0) = {0}, and when M is a Hermitian module, 0L  and ( )0Lπ are orthogonal to 
each other. As explained above, 0021 : MLpp →±  are bijective. Therefore, 0L  is a Dirac structure on 

0M . 
To prove the last part of the proposition, assume that (x,y) and (z,t) are in L. Then, there exist 

1y and 2y  in 1L  such that ( )1, yyx −  and ( )z ,  t y− 2  are in 0L . Assume that (x,y)=(t,z). Then, x=t and 
y=z. Moreover, from x+y-y1 and y+x-y2 in M0 we have 21 yy = , and from ( ) ( ) 011 ,, Lyxyyyx ∈−−−  
we have x=y. Since (x, y-y1)∈L0,  

0101 =∩∈ MMy . Finally, from ( ) 0, Lxx ∈ we have x=0. Thus, L∩π(L)={0}. Let m∈M. Then, there 
exist 10 , MyMx ∈∈ such that m=x+y. Now, there exists ( ) 0, Lvu ∈ such that x=u+v. Thus, (u,v+y)∈  L 
and u+v+y=m. Therefore, MLpp →+ :21 is surjective. In the same way one can see that 

MLpp →+ :21  is surjective. Note that when M is a Hermitian module, L and π(L) are orthogonal to 
each other. Therefore, L is a Dirac structure on M. 
 
Proposition 5.4. Let 0M  and 1M be submodules of the (Hermitian) module M. A necessary and sufficient 
condition for 10 MML ×= to be a Dirac structure on M is that they are (ortho) complementary. 
The proof is immediate. 
 
Remark 5.5. Let L be a projective Dirac structure on M. With the notations of proposition 5.3 it is clear 
that ( )00 , LM  and ( )11 , LM  are Dirac submodules of (M, L). 

Let L be a projective Dirac structure on M. As we have seen earlier, 0L  is a Dirac structure on 0M . 
Let ( ) MLpT →1: be defined by ( ) 0, LyxyTx ∈⇔= . Clearly, T is a well-defined linear operator 
which will be called the homomorphism of 0M  induced by L. Note that, in general, T is not defined on all 
of 0M . 

 
Proposition 5.6. Let M be a Hermitian R-module. Then:  
1) If L is a projective Dirac structure on M, the associated homomorphism 00: MMT → is anti-self-
adjoint.  
2) Conversely, assume that M is a Hilbert module. Let T:M→M be an anti-self-adjoint linear operator. 
Then L, the graph of T, is a Dirac structure on M. 
 
Proof: 1) Let x and y be in ( ) =Lp1 Dom(T). Then, (x,Tx)∈L and (Ty,y) ∈  π(L). Therefore, they are 
orthogonal and their inner product is zero, i.e., <Ty|x>+<y|Tx>=0. Thus, T is anti-symmetric. Now, 
assume that there exist u,v∈ 0M  such that for each x∈Dom(T), <x|v>=<Tx|u>. Then, for each 
x∈Dom(T)  
 

<(x,Tx)|(-v,u)>=<x|-v> + <Tx|u>=-<x|v> + <Tx|u>=0. 
 

Thus, (-v,u) is orthogonal to L0. But (-v,u) is also orthogonal to Ker ( ) Lp ∩1 . Hence,  
(u,-v) ∈  L. Thus, u∈Dom(T) and v=-Tu. Therefore, T is anti-self-adjoint. 
2) Since T is anti-self-adjoint, it is an anti-self-adjoint element of the C*-algebra LM  [7]. Therefore, 1 and 
-1 are not in the spectrum of T. Hence, MLpp →± :21 are surjective. On the other hand, π(L) is 
orthogonal to L. Therefore, by Proposition 1.2, L is a Dirac structure on M [4, Lemma 2.18].  
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Remark 5.7. Let L be a projective Dirac structure on the (Hermitian) module M and let A and 
00: MMT → be its associated isomorphism and its induced homomorphism. Clearly, 0M and 1M  are 

invariant under A and the restriction of A to 1M  is the identity. Let 0A denote the restriction of A to 0M . 
Then, since ( ) 01: MLpTI →± are isomorphisms, B=(I-T)(I+T)-¹: 00 MM →  is an isomorphism. Let 

0Mx∈ . Then, there exists ( )Lpz 1∈  such that x=z+Tz. Hence, Bx=z-Tz. Thus, (x+Bx,x-
Bx)=2(z,Tz) 0L∈ . Since B∈Aut( 0M ), L′={(x+Bx,x-Bx)|x 0M∈ } is a Dirac structure on 0M . But 
L’⊂ L0. Hence, 0LL =′ .Therefore, by Proposition 1.4, 0A =B=(I-T)(I+T)-¹. This equality implies 
that ( )( ) 1

00
−+−= AIAIT . Therefore, 0A  and T are related to each other by the so-called Cayley 

transform. 
 

6. THE RELATION BETWEEN DIRAC STRUCTURES ON  
HILBERT MODULES AND ON HILBERT SPACES 

 
Let M be a Hilbert R-module and let α be a state of R. Let H be the associated Hilbert space. The 
canonical mapping M→H will be denoted by q. Let L be a Dirac structure on M. The closure of the image 
of L under q×q in H×H will be denoted by Λ. Let (x,y) and (u,v) be in L. Then 
α(<x,v>)+α(<y,u>)=α(<x,v>+<y,u>)=0, since, (x,y) and (v,u) are orthogonal to each other. Therefore, 
(q×q)(L) and π((q×q)(L)) are orthogonal to each other. Since (q×q)(L) is dense in Λ, Λ and π(Λ) are 
orthocomplementary. Therefore, Λ is a Dirac structure on H. 
 

7. DIRAC STRUCTURES ON VECTOR BUNDLES 
 

Let M be a smooth manifold and let η=(E,π,M,F) be a (Hermitian) vector bundle over M. The group of its 
strong bundle (isometric) automorphisms will be denoted by Aut(η). The first(resp. second) projection of 
η×η onto η will be denoted by P1(resp. P2). Let P:η×η→η×η be the the strong bundle isomorphism given 
as follows: 
For each u,v∈E, P(u,v)=(v,u). 
 
Definition 7.1. Let M be a smooth manifold and let η be a (Hermitian) smooth real or complex vector 
bundle over M. A subbundle λ of η×η is called a Dirac structure on η if λ and P(λ) are (ortho)complement. 

We mention that a Dirac structure on η in the sense of [1] is a subbundle of the Whitney sum of η and 
its dual, such that for each x∈M, the fiber over x of λ is a Dirac structure on the fiber over x of η, in the 
sense of [1]. Since we can identify η with its dual by a Riemannian metric, this definition is a special case 
of our definition of Dirac structures on Hermitian vector bundles. 
 
Proposition 7.2. Let λ be a Dirac structure on a (Hermitian) vector bundle (E, π, M, F). Then, 

ηλ →± :21 PP are strong bundle (isometric) isomorphisms.  
Conversely, let λ be a subbundle of the vector bundle η×η, λ∩P(λ)=0 (and P(λ) be orthogonal to λ) 

λ∩P(λ)={0}. Then a sufficient condition for λ to be a Dirac structure on η is that the strong bundle maps 
21 PP ± be surjective. 

The proof is the same as the proof of Proposition 2.3. 
 

Example 7.3. Let J be a complex structure on a vector bundle η. It can be easily proved that the graph of J 
is a Dirac structure on η. Compare Example 1.4. 
As a consequence of the first part of the above proposition we have: 
 
Corollary 7.4. Any two Dirac structures on a (Hermitian) vector bundle are (isometrically) isomorphic. 
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The set of all Dirac structures on a (Hermitian) vector bundle η will be denoted by D(η). 
 
Proposition 7.5. Let η be a (Hermitian) vector bundle. Then, there is a one-to-one correspondence 
between D(η) and Aut(η). 
The proof is the same as the proof of Proposition 1.6. 
 
Proposition 7.6. Let η=(E,π,M,F,< | >) be a Hermitian vector bundle, and let λ be a subbundle of η×η. A 
necessary and sufficient condition for λ to be a Dirac structure on η is that λ be maximally isotropic with 
respect to the pairing 
 

( ) ( ) .
2

||,|, ><+><
=>< +

uyvxvuyx  

 
Proof: Since, by definition, λ is a Dirac structure on the Hermitian vector bundle η, if and only if λ and 
P(λ) are orthocomplement, the proof is clear.  
 

8. COMPLEMENTS OF DIRAC STRUCTURES ON VECTOR BUNDLES 
 
Definition 8.1. Let for ii λ,2,1=  be Dirac structures on (Hermitian) vector bundles ( ).,,, iiiii FME πη =  
A bundle map ( ) 1 2T ,f : η → η  is said to be Dirac if the restriction of the bundle 
map ( ) 2211:, ηηηη ×→×× fTT , to ,1λ  carries 1λ into 2λ . 
 
Lemma 8.2. Let ,2,1, =iiλ be Dirac structures on (Hermitian) vector bundles ( ).,,, iiiii FME πη =  
Then  
1) A bundle map ( ) ,:, 21 ηη →fT , is Dirac, if and only if TAAT

21 λλ = .  
2) The composition of two Dirac bundle maps is a Dirac bundle map.  
3) If the Dirac bundle map (T,f) is invertible, then (T-¹,f-¹) is also a Dirac bundle map.  
4) The identity bundle map is Dirac. 
The proof is the same as that of Lemma 3.2. 
From the above lemma we have the following. 
 
Proposition 8.3. Let λ be a Dirac structure on a (Hermitian) vector bundle η. Then the Dirac gauge group 
of λ is the centralizer of λA  in Aut(η). 

The proof of the following assertions is straightforward. 
1) Let λ be a Dirac structure on a (Hermitian) vector bundle η. Assume that the subbundle η′ is invariant 
under λA . Then, λ′=λ∩(η′×η′) is a Dirac structure on the (Hermitian) vector bundle η′. Moreover, 

ηλλ ′′ = |AA . 
2) Let M and M′ be finite-dimensional manifolds and let f: M′→M be a smooth map. Assume that λ is a 
Dirac structure on a (Hermitian) vector bundle η over M. Then, f* (λ) is a Dirac structure on the 
(hermitian) vector bundle f* (η) over M′. 
3) Let λ be a Dirac structure on a (Riemannian) real vector bundle η. Then, cλ is a Dirac structure on the 
(Hermitian) vector bundle cη }. 
4) Let λ be a Dirac structure on a vector bundle η, with dual η*. Let λ* be the subbundle of η*×η* which 
annihilates P(λ). Then, λ* is a Dirac structure on η*, and ( ) 1*

*
−

= λλ AA . 
5) Let ( ) Iii ∈η  be a family of (Hermitian) vector bundles over a manifold M, and let η be their (orthogonal) 
Whitney sum. For each i∈I, let iλ be a Dirac structure on iη , and let kp iiiik ,: ηηη →× =1, 2 be the 
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first and the second projections. Let λ be the Whitney sum of si
,λ . Then, the image of λ under the bundle 

map 
 

( ) ηηλ ×→⊕⊕ ∈∈ :, 2iIiiIIi PP  
 

 is a Dirac structure on η. 
 

9. THE RELATION BETWEEN DIRAC STRUCTURES ON MODULES  
AND DIRAC STRUCTURES ON VECTOR BUNDLES 

 
Let M be a smooth manifold, and let η=(E, π, M, F) be a vector bundle over M. For simplicity assume that 
M is compact. Let R denote the C*-algebra of continuous functions on M, and let H denote the R-module 
of sections of η. With the aid of a Hermitian inner product we identify η with its dual. Then, H becomes a 
Hermitian R-module. 

Let L be the total space of a Dirac structure λ on the vector bundle η, and let Λ denote the set of all 
sections of λ. Clearly, Λ is a submodule of H×H. It is clear that Λ∩π(Λ)={0}. On the other hand, since 

ELPP →± :21  are surjective, HPP →∧± :21  are surjective. Therefore, Λ is a Dirac structure on H. 
Now, let H be a finitely generated projective R-module, and let Λ be a Dirac structure on H. Clearly, 

Λ is a projective R-module. Therefore, there exists a vector bundle η over M, the module of sections of 
which is H, and there exists a subbundle λ of η×η with total space L admitting Λ as its module of sections. 
Since Λ∩π(Λ)={0}, we have L∩P(L)={0}. Assume that for ( ) .,, mm EEvuMm ×∈∈  Let (x,y) be a 
section of η×η such that x(m)=u, and y(m)=v. Since (x,y)∈H×H, there exist ( ) ∧∈11, yx  and 
( ) ( )∧∈π22 , xy  such that ( ) ( ) ( )2211 ,,, xyyxyx += . Hence, ( ) ( ) ( )( ) ( ) ( )( ) mm EEmxmymymxvu ×∈+= 2211 ,,, . 
Therefore, λ is a Dirac structure on η. 

Let M be a compact manifold. As is well-known, there is a one-to-one correspondence between 
Hermitian ( )MC -module H and Hermitian vector bundles η over M [8]. If two finitely generated 
submodules of H are orthogonal to each other, their corresponding subbundles of η are also orthogonal, 
and vice versa. 
From the above considerations we have the following. 
 
Proposition 9.1. Let M be a compact smooth manifold. Assume that η is a (Hermitian) vector bundle over 
M, and λ is a subbundle of η. Let H (resp. Λ) be the C(M)-module of sections of η (resp. λ). Then a 
necessary and sufficient condition for λ to be a Dirac structure on the (Hermitian) vector bundle η is that Λ 
be a Dirac structure on the (Hermitian) ( )MC -module H. 
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