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Abstract – V. Dannon showed that spherical curves in 4E can be given by Frenet-like equations, and he then 
gave an integral characterization for spherical curves in 4E . In this paper, Lorentzian spherical timelike and 
spacelike curves in the space time 4

1R  are shown to be given by Frenet-like equations of timelike and 
spacelike curves in the Euclidean space 3E and the Minkowski 3-space 3

1R . Thus, finding an integral 
characterization for a Lorentzian spherical 4

1R -timelike and spacelike curve is identical to finding it for 3E  
curves and 3

1R -timelike and spacelike curves. In the case of 3E  curves, the integral characterization 
coincides with Dannon’s. 

Let { }, ,T N B be the moving Frenet frame along the curve ( )sα  in the Minkowski space 3
1R . Let 

( )sα  be a unit speed 4C -timelike (or spacelike) curve in 3
1R  so that '( )s Tα = . Then, ( )sα  is a Frenet 

curve with curvature ( )sκ  and torsion ( )sτ  if and only if there are constant vectors a  and b  so that  

(i) [ ]{ }0
'( ) ( ) cos ( ) sin ( ) cos ( ) ( ) ( ) ( ) ,

s
T s s a s b s s T dκ ξ ξ ξ ξ δ δ κ δ δ= + + −∫  T  is timelike, 

(ii) ( ){ }0
'( ) ( ) cosh ( ) ( ) ( ) ( )

s
T s s ae be s T dξ ξκ ξ ξ δ δ κ δ δ−= + + −∫ , N  is timelike, 

where 
0

( ) ( ) .
s

s dξ τ δ δ= ∫  
 
Keywords – Lorentzian 3-sphere, timelike curve, spacelike curve, curvature 
 

1. INTRODUCTION 
 
The differential equation characterizing a spherical curve is given by 

 

                                                           
1 ( ) ( ) 0,
( )

d d s s
ds s ds

ρ ρ τ
τ
⎧ ⎫

+ =⎨ ⎬
⎩ ⎭

                                                       (1) 

 
where s  is the length of arc, ( ) 1 ( )s sρ κ=  is the radius of curvature and ( )sτ  is the torsion of the curve 
[1]. 

Breuer and Gottlieb [2] gave an explicit solution of this differential equation: 
 

0 0
( ) cos ( ) sin ( ) ,

s s
s a d b dρ τ δ δ τ δ δ= +∫ ∫  

 
where a  and b  are arbitrary constants [3]. 
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Let ( )sα  be a unit speed 3C  curve in 3E  so that '( )s Tα = . In [4], V. Dannon showed that α  is a 
Frenet curve with curvature ( )sκ  and torsion ( )sτ  if and only if there are constant vectors a  and b  so 
that 

 

[ ]{ }0
'( ) ( ) cos ( ) sin ( ) cos ( ) ( ) ( ) ( ) ,

s
T s s a s b s s T dκ ξ ξ ξ ξ δ δ κ δ δ= + − −∫  

 
where 

0
( ) ( ) .

s
s dξ τ δ δ= ∫  

The differential equation characterizing a Lorentzian spherical curve in Minkowski 3-space 3
1R  and 

explicit solutions of this differential equation are given in [5, 6]. 
On the other hand, it is also shown in [5, 6] that a unit speed timelike (resp. spacelike) 3

1R  curve lies 
on a Lorentzian sphere if and only if there is a function 1f C∈  so that 

 
( )1 ' , ' 0 ( resp.  ' 0).f f fτ ττ κ κ κ= + = − =  

 
Set 1ρ κ=  and consider those equations rewritten in the form 
 

' , ' ( resp.  ' ).f f fρ τ τρ τρ= = − =  
 

Thus, the characteristic of a Lorentzian spherical curve in 1
nR  is the Frenet Pattern. So the problem of 

getting an integral characterization to a Lorentzian spherical curve is nothing else but the integration of 
Frenet equations. This means that Lorentzian correspondence of the Breuer-Gottlieb characterization is 
isomorphic to the integral characterization of Frenet equations in the Lorentzian plane. Then, the methods 
used to obtain characterizations of Lorentzian spherical curves can be extended to include Frenet 
equations in 3

1R . 
 

2. PRELIMINARIES 
 

Space-time 4
1R  is a Euclidean space 4R  provided with the standard flat metric given by 

 
2 2 2 2
1 2 3 4g ,dx dx dx dx= + + −  

 
where 1 2 3 4( , , , )x x x x  is a rectangular coordinate system in 4

1R . 
Since g  is an indefinite metric, an arbitrary vector 4

1∈v R  can have one of three causal characters: it 
can be spacelike if g( , ) 0v v >  or 0v = , timelike if g( , ) 0v v < , and null (lightlike) if g( , ) 0v v =  and 

0v ≠ . Similarly, an arbitrary curve ( )sα α=  in 4
1R  can locally be spacelike, timelike or null (lightlike), 

if all of its velocity vectors '( )sα  are respectively spacelike, timelike or null. Also, recall that the norm of 
a vector v  is given by g( , )v v v= . Therefore, v  is a unit vector if g( , ) 1v v = ± . Two vectors ,v w  in 

4
1R  are said to be orthogonal if g( , ) 0v w = . The velocity of a curve ( )sα  is given by '( )sα .  

The Lorentzian sphere with center 4
1 2 3 3 1( , , , )m m m m m R= ∈  and radius r R+∈  in the space-time 

4
1R  is the hyperquadric 

 

{ }3 4 2
1 1 2 3 4 1( , , , ) g( , )S a a a a a R a m a m r= = ∈ − − = . 

 
Let us denote the moving Frenet frame along the spacelike curve ( )sα  in the space 4

1R  by 
{ }1 2 3 4, , ,T T T T . Then 1 2 3 4, ,  andT T T T  are the tangent, the principal normal, the first binormal and 
second binormal vector fields, respectively. A timelike or spacelike curve ( )sα  is said to be 
parameterized by arc length function s  if g( '( ), '( )) 1s sα α = ∓ . 
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Let ( )sα  be a curve in the space time 4
1R  parameterized by arc length function s . Then, for the 

curve ( )sα  the following Frenet equations are given in [7]: 
If 1T  is timelike and the others are spacelike, then the Frenet formulae has the form 

 
'

1 1
'

2 2
'

3 3
'

4 4

0 0 0
0 0

0 0
0 0 0

T T

T T

T T

T T

κ
κ τ

τ µ
µ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

, 

 
if 2T  is timelike and the others are spacelike, then Frenet equations are given by 
 

'
1 1
'

2 2
'

3 3
'

4 4

0 0 0
0 0

0 0
0 0 0

T T

T T

T T

T T

κ
κ τ

τ µ
µ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

, 

 
and finally, if 3T  is timelike and the others are spacelike, then  
 

'
1 1
'

2 2
'

3 3
'

4 4

0 0 0
0 0

0 0
0 0 0

T T

T T

T T

T T

κ
κ τ

τ µ
µ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. 

 
3. 3

1S  CURVES AND 3
1R  FRENET CURVES 
 

Similar to the extension (based on Wong’s condition [8]) given by Dannon [4], we give an extension of 
Petrovic-Torgasev and Sucurovic’s condition [5, 6] to 4

1R  for expressing the connection between 3
1S  

curves and 3
1R  Frenet curves. 

In 4
1R , since 4T  is the fourth orthonormal vector to 1 2 3, , ,T T T  '

3 4( ) g( , )=s T Tµ  measures the 
change of direction of the space spanned by 1 2 3, ,T T T . Then we have the following cases: 

 
Case 1: 1T  is timelike: 
Proposition 3.1. Let ( )sα  be an 4

1R  unit speed 5C  timelike Frenet curve with curvature functions 
( ), ( ), ( ).s s sκ τ µ  Then the following are equivalent: 

i) ( )sα  lies on a 4
1R  Lorentzian sphere. 

ii) ( ) 0sκ ≠  and there are two 2C  functions, ( )f s  and ( )g s , so that 
 

                                             ' , ' ( 1 ) , ' .= = − + = = −f f g g fρ τ τρ µ ρ κ µ                                    (2) 
 

Note that, the equations (2) are the Frenet formulae of an 3E  curve in 4
1R . 

 
Proof: ) )⇒i ii  Assume that ( )sα  lies on an 4

1R  Lorentzian sphere of radius a  which we may assume to 
have center 0x  at the origin 0 . By repeated differentiation of 2 g( , )a α α=  and using Frenet equations, 
we obtain 0κ ≠  and 'f Ff= , where g( , ), 2, 3, 4,= =i if T iα  

2 3 4( , and ).= = =f f f g fρ  
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) )⇒ii i  Given ='f Ff , and define the curve 
4

2
( ) ( )

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

∑ i i
i

s f T sγ α , then 4

2
0.

=

⎧ ⎫
− =⎨ ⎬

⎩ ⎭
∑ i i
i

d f T
ds

α  

Therefore, 
4

2
i i

i
f Tα

=

− =∑ const. 0x≡ . Then we have 
4

0
2=

− =∑ i i
i

x f Tα . Using the orthogonality gives 
4

2
0 0

2

g( , )
=

− − =∑ i
i

x x fα α . Differentiation of this gives 
0 0g'( , ) 0− − =x xα α , so 0 0g( , )− − =x xα α const.= 2a , 

i.e. α  lies on the Lorentzian 3-sphere of radius a  about 0x . 
 

Case 2: 2T  is timelike: 
Proposition 3.2. Let ( )sα  be an 4

1R  unit speed 5C  spacelike Frenet curve with curvature functions 
( ), ( ), ( ).s s sκ τ µ  Then the following are equivalent: 

i) ( )sα  lies on an 4
1R  Lorentzian sphere. 

ii)  ( ) 0sκ ≠  and there are two 2C  functions ( )f s  and ( )g s  so that  
 

                               2 2 2' , ' ( 1 ) , '  and  = = + = = − + >f f g g f f gρ τ τ ρ µ ρ κ µ ρ .                   (3) 
 

Note that the equations (3) are the Frenet formulae of an 3
1R  timelike curve. 

 
Proof: The proof is similar to that of Proposition 3.1. 
 
Case 3: 3T  is timelike: 
Proposition 3.3. Let ( )sα  be an 4

1R  unit speed 5C spacelike Frenet curve with curvature functions 
( ), ( ), ( ).s s sκ τ µ  Then the following are equivalent: 

i) ( )sα  lies on an 4
1R  Lorentzian sphere. 

ii) ( ) 0sκ ≠  and there are two 2C  functions, ( )f s  and ( )g s  so that  
 

                             2 2 2' , ' ( 1 ) , '  and  .= = + = = + >f f g g f g fρ τ τ ρ µ ρ κ µ ρ                       (4) 
 

Proof: The proof is similar to that of Proposition 3.1. 
 

4. THE INTEGRAL CHARACTERIZATIONS OF 3
1R  FRENET CURVES 

 
In section 3, we see that 4

1R  timelike or spacelike spherical curve equations have the structure of 3
1R  

timelike or spacelike Frenet curves. Consequently, finding an integral characterization for an 4
1R  

Lorentzian spherical curve is identical to finding it for an 3
1R  curve. Thus, to obtain characterizations of 

Lorentzian spherical curves, we extend the method given in [4]. 
 
Case 1: 1T  is timelike: 

The two bottom 3E  Frenet equations are of the form 
 

'( ) , '( ) .g s f h h s gλ µ µ= − + =−  
 

Assuming that µ  is non vanishing (the conclusions are free from this assumption), then we get  
 

' ( )g f hµ λ µ= − + . 
 

Differentiation, then substitution of 'h  and eventually application of the change of variable 

0
( ) ( ) ,

s
s dξ µ δ δ= ∫  reduce this equation to 

 
( ) ,g g fλ µ+ = − i��  
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where the variable is ξ . A particular solution for ( )g ξ  is 
 

[ ]
0

cos ( ) ( ) ( ) ( ) .
s

s f dξ ξ δ λ δ δ δ− −∫  
 

Then we have:  
 
Theorem 4.1. Let ( )sα  be a 4C  curve in 3E  parameterized by its arc length s  so that '( ) .s Tα =  Then 
the following are equivalent: 
i) ( )sα  has a Frenet system , ,T N B , curvature ( )sκ  and torsion ( )sτ  that satisfy 
the Frenet equations 

 
'( ) , '( ) , '( ) .T s N N s T B B s Nκ κ τ τ= = − + = −  

 
ii) There are constant vectors a  and b  so that 
 

[ ]{ }0
'( ) ( ) cos sin cos ( ) ( ) ( ) ( ) ,

s
T s s a b s T dκ ξ ξ ξ ξ δ δ κ δ δ= + − −∫  

 
where 

0
( ) ( ) .

s
s dξ τ δ δ= ∫  

 
Proof : The characterization coincides with Dannon’s. 
 
Case 2: 2T  is timelike: 
The two bottom 3

1R  timelike Frenet equations are of the form 
 

'( ) , '( ) .g s f h h s gλ µ µ= + =−  
 

Assuming that µ  is non vanishing (the conclusions are free from this assumption), then we get  
 

' ( ) .g f hµ λ µ= +  
 

Differentiation, then substitution of 'h  and eventually application of the change of variable 

0
( ) ( ) ,

s
s dξ µ δ δ= ∫  reduce this equation to 

 
( ) ,g g fλ µ+ = i��  
 

where the variable is ξ . A particular solution for ( )g ξ  is 
 

[ ]
0

cos ( ) ( ) ( ) ( ) .
s

s f dξ ξ δ λ δ δ δ−∫  
 

Then we have: 
 
Theorem 4.2. Let ( )sα  be a 4C  timelike curve in 3

1R  parameterized by its arc length s  so that 
'( ) .s Tα =  Then the following are equivalent: 

i) ( )sα  has a Frenet system , ,T N B , curvature ( )sκ  and torsion ( )sτ  that satisfy 
the Frenet equations 
 

'( ) , '( ) , '( ) .T s N N s T B B s Nκ κ τ τ= = + = −  
 

ii) There are constant vectors a  and b  so that 
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[ ]{ }0
'( ) ( ) cos sin cos ( ) ( ) ( ) ( ) ,

s
T s s a b s T dκ ξ ξ ξ ξ δ δ κ δ δ= + + −∫  

 
where 

0
( ) ( ) .

s
s dξ τ δ δ= ∫  

 
Proof: ) )⇒ii i  Suppose the condition holds. Put 
 

[ ]
0

( ) cos ( ) ( ) ( ) ( ) cos sin
s

N s s T d a bξ ξ δ δ κ δ δ ξ ξ= − + +∫  
 

and 
 

[ ]
0

( ) sin ( ) ( ) ( ) ( ) sin cos .
s

B s s T d a bξ δ ξ δ κ δ δ ξ ξ= − − +∫  
 

Then N  and B  satisfy the Frenet equations. 
) )⇒i ii  If the equations hold, the above N  and B  solve the coupled system 

 
' , ' .N T B B Nκ τ τ= + = −  

 
The last equation 'N Tκ =  is our condition. 
 
Case 3: 3T  is timelike: 

The two bottom 3
1R  spacelike Frenet equations are of the form 

 
'( ) , '( ) .g s f h h s gλ µ µ= + =  

 
Assuming that µ  is non vanishing (the conclusions are free from this assumption), then we get  
 

' ( )g f hµ λ µ= + . 
 

Differentiation, then substitution of 'h  and eventually application of the change of variable 

0
( ) ( ) ,

s
s dξ µ δ δ= ∫  reduce this equation to 

 
( ) ,g g fλ µ− = i��  

 
where the variable is ξ . A particular solution for ( )g ξ  is 
 

[ ]
0

cosh ( ) ( ) ( ) ( ) .
s

s f dξ ξ δ λ δ δ δ−∫  
 

Then we have: 
 
Theorem 4.3. Let ( )sα  be a 4C  spacelike curve in 3

1R  parameterized by its arc length s  so that 
'( ) .s Tα =  Then the following are equivalent: 

i) ( )sα  has a Frenet system , ,T N B , curvature ( )sκ  and torsion ( )sτ  that satisfy  
the Frenet equations 
 

'( ) , '( ) , '( ) .T s N N s T B B s Nκ κ τ τ= = + =  
 

ii) There are constant vectors a  and b  so that 
 

( ){ }0
'( ) ( ) cosh ( ) ( ) ( ) ( )

s
T s s ae be s T dξ ξκ ξ ξ δ δ κ δ δ−= + + −∫ , 
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where 

0
( ) ( ) .

s
s dξ τ δ δ= ∫  

 
Proof: ) )⇒ii i  Suppose the condition holds. Put 
 

[ ]
0

( ) cosh ( ) ( ) ( ) ( )
s

N s s T d a e beξ ξξ ξ δ δ κ δ δ −= − + +∫  
 

and 
 

[ ]
0

( ) sinh ( ) ( ) ( ) ( )
s

B s s T d a e beξ ξξ δ ξ δ κ δ δ −= − − + −∫ . 
 

Then N  and B  satisfy the Frenet equations. 
) )⇒i ii  If the equations hold, the above N  and B  solve the coupled system 

 
' , ' .N T B B Nκ τ τ= + = −  

 
The last equation 'N Tκ =  is our condition. 

The method extends to 1
nR  timelike Frenet curves through successive application of transformations 

of the form 
0

( )
s
A dδ δ∫  by using the terminology of [9]. 
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