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Abstract — In this paper, we study a class of Finsler metrics which contains the class of P-reducible and
general relatively isotropic Landsberg metrics, as special cases. We prove that on a compact Finsler manifold,
this class of metrics is nothing other than Randers metrics. Finally, we study this class of Finsler metrics with
scalar flag curvature and find a condition under which these metrics reduce to Randers metric.

K eywor ds — Randers metric, flag curvature, Landsberg metric, P-reducible

1. INTRODUCTION

In Finsler geometry, there are several important non-Riemannian quantities. Let (M, F) be a Finsler
manifold. The second derivatives of - F. at yeT,M, is an inner product g, on T,M . The third order
derivatives of — F2 at yeT,M, is a symmetric trilinear form C on T,M. We call g, and C
fundamental form and the Cartan torsion, respectively. The rate of change of the Cartan torsion along
geodesics is the Landsberg curvature L, on T M forany ye T,M.Set J := z L,(e.€&..), where
{€} is an orthonormal basis for (T,M, g, ). J y is called the mean Landsberg curvature. F is said to be
Landsbergian if L = 0, and weakly Landsbergian if J =0 [1, 2].

Various interesting special forms of Cartan and Landsberg tensors have been obtained by some
Finslerians. The Finsler spaces having such special forms have been called C-reducible, P-reducible,
general relatively isotropic Landsberg, and etc. In [3], Matsumoto introduced the notion of C-reducible
Finsler metrics and proved that any Randers metric is C-reducible. Later on, Matsumoto-Hojo proves that
the converse is true too [4]. A Randers metric F = @ + £ is just a Riemannian metric @ perturbated by a
one form . Randers metrics have important applications in both mathematics and physics [5]. As a
generalization of C-reducible metrics, Matsumoto-Shimada introduced the notion of P-reducible metrics
[6]. This class of Finsler metrics has some interesting physical means and contains Randers metrics as a
special case.

In [7], Prasad introduced a new class of Finsler spaces which contains the notion of P-reducible and
general relatively isotropic Landsberg spaces, as special cases. Let us put

Lijk =/1Cijk + 3 hjk +a, h; +a, hij, (1)

where 4 =A(X,Yy) and & =a(XYy) are scalar functions on TM and h; =g; — F2y, y; is the
angular metric. A and @ are the homogeneous function of degree 1 and degree 0 with respect to Y,
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respectively. By definition, we have g yi = (. Therefore, the study of this class of Finsler spaces will
enhance our understanding of the geometric meaning of Randers metrics. If & = 0, then F is reduce to a
general isotropic Landsberg metric and if A =0, then F is a P-reducible metric.

Let F be a Landsberg metric satisfied in (1). Then F is a C-reducible metric. In a 1974 paper [3],
Matsumoto showed that F = & + £ is a Landsberg metric if and only if £ is parallel. In a 1977 paper
[8], M. Hashiguchi and I. Ichijyo showed that for a Randers metric F = a + £, if [ is parallel, then F
is a Berwald metric. Then every Landsberg metric satisfyed in (1) is Berwaldian.

In this paper, we prove that on a compact Finsler manifold, this class of metrics reduces to the class
of Randers metrics. More precisely, we prove the following.

Theorem 1. Let (M, F) be a compact Finsler manifold with dimension N> 3. Suppose that F satisfy
in the equation (1). Then F is a Randers metric.

Then we study this class of Finsler metrics with scalar flag curvature and find a condition under
which these metrics reduce to a Randers metric. More precisely, we prove the following.

Theorem 2. Let (M, F) be a Finsler manifold of scalar flag curvature K with dimension n>3.
Suppose that Fsatisfy in the equation (1) with 4, y' + 17 +K #0.Then F isa Randers metric.

There are many connections in Finsler geometry [9-11]. Throughout this paper, we set the Berwald
connection on Finsler manifolds. The h- and v- covariant derivatives of a Finsler tensor field are denoted
by “| " and “, " respectively.

2. PRELIMINARIES

Let M be an n-dimensional C” manifold. Denote by T,M the tangent space at X e M, by
™ =U,_,T,M the tangent bundle of M, and by TM, :=TM \ {0} the slit tangent bundle of M . A
Finsler metric on M is a function F : TM — [0,00) which has the following properties: (i) F is C” on
TM,; (i) F is positively 1-homogeneous on the fibers of tangent bundle TM , and (iii) for each
y € T,M , the following quadratic form g, on T,M is positive definite,

g,(u,v) ::% [F(y+su+tv)l,,,, uveTM.

Let (M, F) be a Finsler manifold of dimension n. Fix a local frame {b} for TM . The Finsler metric
F =F(y'b) isa function of (X', y'). Let

1
Ci(Xy) = Z[F z]yi gy (5 ).

For a non-zero vector Y = y'b € T, M, the Cartan torsion Cy on T,M is a trilinear symmetric form on
T,M  defined by C,(b,b;,b):=C(X,y). The mean Cartan torsion I, is a linear form on
y=Yy'b € T,M defined by

Iy(bi) =1, (xy)=g"(xy) Ci (X, ).

The spray of F is a vector field on TM, . In a standard local coordinate system (X',y') in TM , the
spray is given by

e, i 0
G=y = -2G' (xy)—
y p% (X Y)—
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where G (y) = g"(X, i{[F’ Ly y* —[F ]2 (Y)}. A Finsler metric F 1is called a Berwald metric if
G'(x,Y):= —F']k (X)y' y* are quadratic in y € T, M . It is known that every Berwald metric has the same
geodesics as a Riemannian metric [12]. The local structures of Berwald metrics have been completely
determined by Z. 1. Szabo [13]. Thus Berwald metrics can be identified with Riemannian metrics at

geodesic level.
Let ¢c(t) bea C” curveand U(t) =U' (t) v e, be a vector field along C. Define the covariant
derivative of U (t) along C by

D.U@®):= {di(t) U J(t)W(C(t) C(t))}

a i C(t)
U (t) is said to be linearly parallel if D, U (t) = 0.
Fora vector y € T,M , define

L (00w i= < 1C (U OV QWO

I,y = Lo U O

where o(t) is the geodesic with o(0) = X, 6(0) =y and U(t), V(t), W(t) are linearly parallel vector
fields along o with U(0)=u, V(0)=v, W(0)=w. We call Ly the Landsberg curvature. The
Landsberg curvature measures the rate of change of the Cartan torsion along the geodesics. Let
L (% y)=L,(b,b;,b) and J,(x,y):=J (b). We have that J;(X,y) = g™ (X, y)L; (X, y) . Thus
we call J y the mean Landsberg curvature [1].

L/C is regarded as the relative rate of change of C along the geodesics. A Finsler metric F on a
manifold M is said to be a general relatively isotropic Landsberg metric if L = #C, where u is a
positively 1-homogeneous scalar function on TM [14]. The generalized Funk metrics on the unit ball
B" < R" satisfy L+cFC=0 for some constant C # 0 [15]. To the same way, J/| is regarded as the relative
rate of change of | along the geodesics and F is said to be a general relatively isotropic mean Landsberg
metric if J = ul [16].

For a mnon-zero vector YeT M, the tensor T induces a multi-linear form
T,(U,-- V) =T, (XY) u'---won T,M . Let o(t) denote the geodesic with 6(0) = y. We have

%[Tdm(U (©), - W) =T ym(a(V), (NS (1) U'(®) - W (1)

where U (t)=U" (t)8 |C(l)’ -, W(t) =W¥ (t)6 ley are linearly parallel vector fields along o . Thus
X )
the L-curvature L = L W ® W @ W* and the J-curvature J = J, W' are given by

Lijk = Cijk\m ym, ‘]i = Ii\mym' (2)
Let
) 1
Mijk = Cijk —m{li hjk + I j hki + | K hlj}
We obtain a symmetric trilinear form M on T,M defined by M (b,b;,b) =M, (X y). This
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quantity is introduced by M. Matsumoto [17]. Thus we call My the Matsumoto torsion. Matsumoto
proves that every Randers metric satisfies that My = 0. Later on, Matsumoto-HGj0 proves that the
converse is true too.

Lemma 1. ([17][4]) A Finsler metric F on a manifold of dimension N> 3 is a Randers metric if and
onlyifl\/[y =0,VyeTM,.

Finsler metrics in this paper are always assumed to be regular in all directions. If this regularity is not

imposed, Matsumoto-Hojo’s theorem says that F has vanishing Matsumoto torsion if and only if

612

F=a+pf orF-=
Define M, :Tﬁ/l ®T,M ®T,M — R by M, (u,v,w):= M, (y) u'v!w* where

, where & is a Riemannian metric and £ is a 1-form on M.

— 1
M = L _E{Ji hy +3J; hy + 3, hy}.
A Finsler metric F is said to be P-reducible if My = 0. The notion of P-reducibility was given by
Matsumoto-Shimada [6]. It is obvious that every C-reducible metric s a P-reducible metric.
The Ri Ky =K &< ®-2 | Ty M 5Ty M is a family of I ¢

e Riemann curvature Ky k o XX x WV is a family of linear maps on tangent

spaces, defined by
oG, 0°G

Kikzzaxk—yJ

, G 0G' oG’
wof o oy o
For a flag P =span{y,u} CTX M with flagpole y, the flag curvature K=K(P,Y) is defined by

gy (UK y )

K(P.y):= -
gy (yay)gy (U,U)—gy (yau)

where g, = 0;(% y)dX ®dx'. When F is Riemannian, K =K (P) is independent of y e P, which is just
the sectional curvature of P in Riemannian geometry. We say that a Finsler metric F is of scalar curvature
if for any yeT M, the flag curvature K =K(X,Y) is a scalar function on the slit tangent bundle
TM, . If K=constant, then F is said to be of constant flag curvature.

3. PROOF OF THEOREM 1

In this section, we are going to prove a generalization of Theorem 1. First, we define the norm of the
Matsumoto torsion at X€ M by

F(y)IM, (u,v,w) |

IM]l:= sup '
vuvweT M, ([g (U,U) g, (V, V)G, (W, W)

Theorem 3. Let (M, F) be a complete Finsler manifold satisfied in equation (1) with dimension N> 3.
Suppose that F has bounded Matsumoto torsion. Then F is a Randers metric.

Proof: We will first prove that the Matsumoto torsion vanishes. To prove this, we assume that the
Matsumoto torsion M (u,u,u) = M, (X, y)u'u'u“£0 forsome y, ueT,M, with F(x,y)=1. Let
o(t) be the unit speed geodesic with o(0) = X and 6(0) = y. Let U (t) denote the linear parallel vector
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field along o, that is, D, U(t) = 0. From the above equation, we see that a linearly parallel vector field
U (t) along o linearly depends on its initial value U (t,) at a point o(t,).
Let

M) =M, U®,U1®),UWD) =M (o®),ct)U' OU U
We have
M) =M, (e®,6() 6°®) U'OU OU)
Now we assume that F is satisfied in the equation (1):
Ly =4Cy +a hy +a, hy +a, hy, (3)

Contacting (3) with g" and using the relations g’ h, =n-1and g’(a h,)=g"(a, h,)=a, implies that

Jy =4l +(n+1)a,. 4)
Then
1 A
=—J ——— .. 5
& n+1 ' n+1 ' )

Putting (5) in (3) yields

1
Liw = AC +m{\]i h, +J;hg +J, h}

P (6)
_m{li hjk +IJ. he + 1, hij}.
By simplifying (6), we get
L _ﬁ(‘]‘ hy +J;hg + 3, ;) =2{C, —%(Ii hy +1, hg +1,h)}. (7)
The equation (7) is equivalent to
Mis ¥° = A(% )My ®)
It follows from (8) that
M(t) = A(t) M (b). ©)

Take an arbitrary unit vector Y€ T M and an arbitrary vector Ve T,M . Let c(t) be the geodesic with
€(0) =y and V(1) the parallel vector field along ¢ with V(0) = V. From equation (9), we have

M(t):ce’“. (10)

Since M is complete and || M ||< o0, by letting t — +o0 or t — —o0, we have c=0. Thus the Matsumoto
torsion vanishes. By Lemma 1, F must be a Randers metric.
By the relation (7), we get the following corollaries.
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Corollary 1. Let F be a Finsler metric satisfied in the equation (1) with dimension N>3 and A #0.
Then F is C-reducible if and only if F is P-reducible.
By a simple calculation on the equation (7), we have the following.

Corollary 2. Let F be a Finsler metric satisfied in the equation (1) with dimension N>3 and A #0.
Then the following are equivalent:

(a) F has a general relatively isotropic Landsberg curvature;

(b) F has a general relatively isotropic mean Landsberg curvature.

4. PROOF OF THEOREM 2

Lemma 1. ([18, 19]) Landsberg curvature and Riemann curvature are related by the following equation

m m 1 m 1 m
Likm Y +Cimn R === Gin R, == 9im R'y;
3 3
X ] (11
_g gim ij,k _g gjm Rmi,k-
Contracting (11) with gij gives
‘]k\m ym+|mRn?< :_%{2Kn?<,m+Kmm,k}' (12)

Proof of Theorem 2. We will first prove that the Matsumoto torsion vanishes. To prove this, we assume
that the Matsumoto torsion My(u,u, u) =M, (X, y)u'u'u*£0 for some y,ueT M o With
F(x,y)=1. Let o(t) be the unit speed geodesic with (0) =X and c(0)=Yy. Let U(t) denote the
linear parallel vector field along o, thatis, D, U (t) = 0. From the above equation, we see that a linearly
parallel vector field U (t) along o linearly depends on its initial value U (t,) at a point o(t,).

Let

M(t)=M_ U 1),U®),U1) =M (at),ct)U' U’ U ).
We have

M) =Mjypq (6(®),61) P (1) U'OU U D)
Now we assume that F is of scalar curvature with flag curvature K = K(x,y). This is equivalent to the
following identity:
R, = KF’h,, (13)
where h' = g" h,, . Differentiating (13) yields
R\ =K, F’h +K{29, ¥*6, -9,y Y*5\ —9uY'} (14)
By (11), (12) and (14), we obtain

1

—gFZ{K,ihjk +K h + K h; +3KC,, } (15)

Liim y" =

And
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J ym:—in{(n+1)K’k+3Klk} (16)

kim

By (2), we have

m

Cijk\p|qypyq = Lijym y", Ik\p\qypyq =dmY -

m 1 m m m
Mijk|p\q yPyt = Lijk|m y _m{‘]i\m y hjk + Jj‘m y"h + ‘]k|m y hij}' (17)

Plugging (15) and (16) into (17) yields

Mg Y° Y+ KF2My, =0. (18)
It follows from (18) that
M"(t)+K({t) M(t)=0 (19)
By (9) we have
M’(t)=A" M(@{t)+A M'(t) =1+ 2 )M. (20)
By (20) and (19) we get
A+ A2 +K)M =0 21)

By assumption A'+A* + K # 0, then M = 0. This completes the proof.

10.

11.

12.

13.
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