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Abstract – In this paper, we study a class of Finsler metrics which contains the class of P-reducible and 
general relatively isotropic Landsberg metrics, as special cases. We prove that on a compact Finsler manifold, 
this class of metrics is nothing other than Randers metrics. Finally, we study this class of Finsler metrics with 
scalar flag curvature and find a condition under which these metrics reduce to Randers metric. 
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1. INTRODUCTION 
 

In Finsler geometry, there are several important non-Riemannian quantities. Let ),( FM  be a Finsler 

manifold. The second derivatives of 2

2

1
xF  at 0MTy x  is an inner product yg  on MTx . The third order 

derivatives of 2

2

1
xF  at 0MTy x  is a symmetric trilinear form yC  on MTx . We call yg  and yC  the 

fundamental form and the Cartan torsion, respectively. The rate of change of the Cartan torsion along 

geodesics is the Landsberg curvature yL  on MTx  for any 0MTy x . Set 


n

i iiyy eeL
1

,.),(:J , where 

}{ ie  is an orthonormal basis for ),( yx gMT . yJ  is called the mean Landsberg curvature. F  is said to be 

Landsbergian if 0L  , and weakly Landsbergian if 0J   [1, 2].  

Various interesting special forms of Cartan and Landsberg tensors have been obtained by some 
Finslerians. The Finsler spaces having such special forms have been called C-reducible, P-reducible, 
general relatively isotropic Landsberg, and etc. In [3], Matsumoto introduced the notion of C-reducible 
Finsler metrics and proved that any Randers metric is C-reducible. Later on, Matsumoto-Hōjō proves that 
the converse is true too [4]. A Randers metric  F  is just a Riemannian metric   perturbated by a 
one form . Randers metrics have important applications in both mathematics and physics [5]. As a 
generalization of C-reducible metrics, Matsumoto-Shimada introduced the notion of P-reducible metrics 
[6]. This class of Finsler metrics has some interesting physical means and contains Randers metrics as a 
special case.  

In [7], Prasad introduced a new class of Finsler spaces which contains the notion of P-reducible and 
general relatively isotropic Landsberg spaces, as special cases. Let us put 

 
                                                      ,ijkkijjkiijkijk hahahaCL                                                  (1) 
 
where ),( yx   and ),( yxaa ii   are scalar functions on TM and jiijij yyFgh 2  is the 
angular metric.   and ia  are the homogeneous function of degree 1 and degree 0 with respect to y , 
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respectively. By definition, we have 0i
i ya . Therefore, the study of this class of Finsler spaces will 

enhance our understanding of the geometric meaning of Randers metrics. If 0ia , then F  is reduce to a 
general isotropic Landsberg metric and if 0 , then F  is a P-reducible metric.  

Let F  be a Landsberg metric satisfied in (1). Then F  is a C-reducible metric. In a 1974 paper [3], 
Matsumoto showed that  F  is a Landsberg metric if and only if   is parallel. In a 1977 paper 
[8], M. Hashiguchi and I. Ichijyo showed that for a Randers metric  F , if   is parallel, then F  
is a Berwald metric. Then every Landsberg metric satisfyed in (1) is Berwaldian.  

In this paper, we prove that on a compact Finsler manifold, this class of metrics reduces to the class 
of Randers metrics. More precisely, we prove the following.  
 
Theorem 1. Let ),( FM  be a compact Finsler manifold with dimension 3n . Suppose that F  satisfy 
in the equation (1). Then F  is a Randers metric.  

Then we study this class of Finsler metrics with scalar flag curvature and find a condition under 
which these metrics reduce to a Randers metric. More precisely, we prove the following.  
 
Theorem 2. Let ),( FM  be a Finsler manifold of scalar flag curvature K  with dimension 3n . 
Suppose that F  satisfy in the equation (1) with 02

|  Kyi
i  . Then F  is a Randers metric.  

There are many connections in Finsler geometry [9-11]. Throughout this paper, we set the Berwald 
connection on Finsler manifolds. The h- and v- covariant derivatives of a Finsler tensor field are denoted 
by “ | " and “, " respectively. 
 

2. PRELIMINARIES 
 
Let M  be an n-dimensional C   manifold. Denote by MTx  the tangent space at ,x M  by 

x M xTM T M   the tangent bundle of M , and by }0{\:0 TMTM   the slit tangent bundle of M . A 
Finsler metric on M  is a function ),0[: TMF  which has the following properties: (i) F  is C   on 

0TM ; (ii) F  is positively 1-homogeneous on the fibers of tangent bundle TM , and (iii) for each 
MTy x , the following quadratic form yg  on MTx  is positive definite, 

 

MTvutvsuyFvu xtsy   ,,)]([
2

1
:),( 0,

2g . 

 
Let ),( FM  be a Finsler manifold of dimension n. Fix a local frame }{ ib  for TM . The Finsler metric 

)( i
i byFF   is a function of ),( ii yx . Let 

 

).,(][
4

1
:),( 2 yxFyxC kji yyyijk   

 
For a non-zero vector MTbyy xi

i  , the Cartan torsion yC  on MTx  is a trilinear symmetric form on 
MTx  defined by ),(:),,(C yxCbbb ijkkjiy  . The mean Cartan torsion yI  is a linear form on 

MTbyy xi
i   defined by 

 

).,(),(:),()(I yxCyxgyxIb ijk
jk

iiy   
 
The spray of F  is a vector field on 0TM . In a standard local coordinate system ),( ii yx  in TM , the 
spray is given by 
 

i
i

i
i

y
yxG

x
y








 ),(2G  
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where )}.(][]){[,(
4

1
:)( 22 yFyFyxgyG llk x

k

yx

ili   A Finsler metric F  is called a Berwald metric if 

kji
jk

i yyxyxG )(
2

1
:),(   are quadratic in MTy x . It is known that every Berwald metric has the same 

geodesics as a Riemannian metric [12]. The local structures of Berwald metrics have been completely 

determined by Z. I. Szabo [13]. Thus Berwald metrics can be identified with Riemannian metrics at 

geodesic level.  

Let )(tc  be a C   curve and )(|)()( tci
i

x
tUtU



  be a vector field along c . Define the covariant 
derivative of )(tU  along c  by  
 

)(|))(),(()()(:)( }{ tcij

i
j

i

c x
tctc

y

G
tUt

dt

dU
tUD







   

 
)(tU  is said to be linearly parallel if .0)( tUDc   
For a vector MTy x , define  

 

,|))](([:)(

,|))](),(),(([:),,(

0)(

0)(

IJ

CL









tty

tty

tU
dt

d
u

tWtVtU
dt

d
wvu








 

 
where )(t  is the geodesic with x)0( , y)0(  and   W(t)V(t), U(t),  are linearly parallel vector 
fields along   with w W(0)v,V(0) u,U(0)  . We call yL  the Landsberg curvature. The 
Landsberg curvature measures the rate of change of the Cartan torsion along the geodesics. Let 

),,(:),( L kjiyijk bbbyxL   and )(:),( J iyi byxJ  . We have that ),(),(),( yxLyxgyxJ ijk
jk

i  . Thus 
we call yJ  the mean Landsberg curvature [1].  

L/C is regarded as the relative rate of change of C along the geodesics. A Finsler metric F  on a 
manifold M is said to be a general relatively isotropic Landsberg metric if CL  , where   is a 
positively 1-homogeneous scalar function on 0TM  [14]. The generalized Funk metrics on the unit ball 

nn RB   satisfy L+cFC=0 for some constant 0c  [15]. To the same way, J/I is regarded as the relative 
rate of change of I along the geodesics and F  is said to be a general relatively isotropic mean Landsberg 
metric if IJ   [16]. 

For a non-zero vector MTy x , the tensor T induces a multi-linear form 
ki

kiy wuyxTvuT   ),(:),,(   on MTx . Let )(t  denote the geodesic with y)0( . We have 
 

)()()())(),(())](,),(([ |)(T tWtUtttTtWtU
dt

d kim
mkit      

 

where 
)()( |)()(,,|)()( tck

k
tci

i

x
tWtW

x
tUtU








   are linearly parallel vector fields along  . Thus 

the L-curvature kji
ijk wwwL L  and the J-curvature i

i wJJ  are given by 
 

                                                        ., ||
m

mii
m

mijkijk yIJyCL                                                       (2) 
 
Let 
 

}.{
1

1
: ijkkijjkiijkijk hIhIhI

n
CM 


  

 
We obtain a symmetric trilinear form yM  on MTx  defined by ),(:),,(M yxMbbb ijkkjiy  . This 
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quantity is introduced by M. Matsumoto [17]. Thus we call yM  the Matsumoto torsion. Matsumoto 
proves that every Randers metric satisfies that 0M y . Later on, Matsumoto-Hōjō proves that the 
converse is true too. 
 
Lemma 1. ([17][4]) A Finsler metric F  on a manifold of dimension 3n  is a Randers metric if and 
only if 0M y , 0TMy .  

Finsler metrics in this paper are always assumed to be regular in all directions. If this regularity is not 

imposed, Matsumoto-Hōjō’s theorem says that F has vanishing Matsumoto torsion if and only if 

 F  or 

 2

F , where   is a Riemannian metric and   is a 1-form on M.  

Define RMTMTMT xxxy :M  by kji
ijky wvuywvu M )(:),,(M   where 

 

}.{
1

1
: ijkkijjkiijkijk hJhJhJ

n
LM 


  

 

A Finsler metric F  is said to be P-reducible if 0M y . The notion of P-reducibility was given by 

Matsumoto-Shimada [6]. It is obvious that every C-reducible metric s a P-reducible metric.  

The Riemann curvature 
i kK dx T M T My x x xk ix

    


K  is a family of linear maps on tangent 

spaces, defined by 
 

2 2

2 2
i i i i j

i j j
k k j k j k j k

G G G G G
K y G

x x y y y y y

    
    

      
 

 
For a flag span{ }P y u T Mx    with flagpole y, the flag curvature ( )P y K K  is defined by 
 

( ( ))
( ) 2( ) ( ) ( )

u uy y
P y

y y u u y uy y y


  

   

g K
K

g g g
 

 
where ( ) i j

y ijg x y dx dx  g . When F is Riemannian, ( )PK K  is independent of y P , which is just 
the sectional curvature of P in Riemannian geometry. We say that a Finsler metric F is of scalar curvature 
if for any xy T M , the flag curvature ( , )K K x y  is a scalar function on the slit tangent bundle 

0TM . If K=constant, then F is said to be of constant flag curvature.  
 

3. PROOF OF THEOREM 1 
 
In this section, we are going to prove a generalization of Theorem 1. First, we define the norm of the 
Matsumoto torsion at Mx  by   
 

.
),(),(),(g

|),,(|)(
sup:

y

y

,,.

M
||M||

0 wwgvvguu

wvuyF

yy
MTwvuy

x
x

  

 
Theorem 3. Let ),( FM  be a complete Finsler manifold satisfied in equation (1) with dimension 3n . 
Suppose that F  has bounded Matsumoto torsion. Then F  is a Randers metric.  
 

Proof: We will first prove that the Matsumoto torsion vanishes. To prove this, we assume that the 
Matsumoto torsion 0),(),,(yM  kji

ijk uuuyxMuuu  for some 0, MTuy x  with 1y) F(x,  . Let 
)(t  be the unit speed geodesic with x)0(  and y)0( . Let )(tU  denote the linear parallel vector 
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field along  , that is, 0)( tUD . From the above equation, we see that a linearly parallel vector field 
)(tU  along   linearly depends on its initial value )( 0tU  at a point )( 0t .  

Let 
 

).()()())(),(())(),(),((M:)( tUtUtUttMtUtUtU kji
ijktM    

 
We have 
 

)()()()())(),((|)( tUtUtUtttM kjip
pijktM    

 
Now we assume that F is satisfied in the equation (1): 

 
                                                     ,ijkkijjkiijkijk hahahaCL                                                   (3) 
 
Contacting (3) with ijg  and using the relations 1 nhg ij

ij  and kikj
ij

jki
ij ahaghag  )()(  implies that 

 
                                                                .)1( kkk anIJ                                                                  (4) 
 
Then 

 

                                                                .
11

1
iii I

n
J

n
a








                                                             (5) 

 
Putting (5) in (3) yields 
 

                                          

}.{
1

}{
1

1

ijkkijjki

ijkkijjkiijkijk

hIhIhI
n

hJhJhJ
n

CL














                                                (6) 

 
By simplifying (6), we get 

 

                      )}.(
1

{)(
1

1
ijkkijjkiijkijkkijjkiijk hIhIhI

n
ChJhJhJ

n
L 







              (7) 

 
The equation (7) is equivalent to 

 

                                                                 .),(| ijk
s

sijk MyxyM                                                               (8) 
 
It follows from (8) that 

 

                                                                 ).()()( tMttM                                                                 (9) 
 
Take an arbitrary unit vector xy T M  and an arbitrary vector MTv x . Let  c(t) be the geodesic with 

yc )0(  and )(tV  the parallel vector field along c with vV )0( . From equation (9), we have 
 

                                                                      .)( tectM                                                                    (10) 
 
Since M is complete and |||| M , by letting t  or t , we have c=0. Thus the Matsumoto 
torsion vanishes. By Lemma 1, F must be a Randers metric. 
By the relation (7), we get the following corollaries.  
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Corollary 1. Let F  be a Finsler metric satisfied in the equation (1) with dimension 3n  and 0 . 
Then F  is C-reducible if and only if F  is P-reducible.  
By a simple calculation on the equation (7), we have the following.  
 
Corollary 2. Let F  be a Finsler metric satisfied in the equation (1) with dimension 3n  and 0 . 
Then the following are equivalent:  
(a) F  has a general relatively isotropic Landsberg curvature;  
(b) F  has a general relatively isotropic mean Landsberg curvature.  
 

4. PROOF OF THEOREM 2 
 
Lemma 1. ([18, 19]) Landsberg curvature and Riemann curvature are related by the following equation 
 

                                           

.
6

1

6

1
3

1

3

1

,,

,,|

m
kijm

m
kjim

m
ikjm

m
jkim

m
kijm

m
mijk

RgRg

RgRgRCyL




                                 (11) 

 
Contracting (11) with ijg  gives 

 

                                                  }.2{
3

1
,,|

m
km

m
mk

m
km

m
mk KKRIyJ                                            (12) 

 
Proof of Theorem 2. We will first prove that the Matsumoto torsion vanishes. To prove this, we assume 
that the Matsumoto torsion 0),(),,(yM  kji

ijk uuuyxMuuu  for some 0, MTuy x  with 
1y) F(x,  . Let )(t  be the unit speed geodesic with x)0(  and y)0( . Let )(tU  denote the 

linear parallel vector field along  , that is, 0)( tUD . From the above equation, we see that a linearly 
parallel vector field )(tU  along   linearly depends on its initial value )( 0tU  at a point )( 0t .  
Let 
 

).()()())(),(())(),(),((M:)( tUtUtUttMtUtUtU kji
ijktM    

 
We have 
 

)()()()()())(),((||)( tUtUtUttttM kjiqp
qpijktM    

 
Now we assume that F is of scalar curvature with flag curvature  y).K(x,K   This is equivalent to the 
following identity: 

 

                                                                       ,2 i
k

i
k hKFR                                                                     (13) 

 
where jk

iji
k hgh : . Differentiating (13) yields 

 

                                       }2{2
,,

i
kl

i
k

p
kp

i
k

p
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i
kl

i
lk ygygygKhFKR                                   (14) 

 
By (11), (12) and (14), we obtain 

 

                                       }3{
3

1
,,,

2
| ijkjikikjjki

m
mijk KChKhKhKFyL                                    (15) 

 
And 
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                                                    }3)1{(
3

1
,

2
| kk

m
mk KIKnFyJ                                                  (16) 

 
By (2), we have 
 

., ||||||
m

mk
qp

qpk
m

mijk
qp

qpijk yJyyIyLyyC   
 

                      }.{
1

1
: |||||| ij

m
mkki

m

mjjk
m
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m

mijk
qp

qpijk hyJhyJhyJ
n

yLyyM 


                   (17) 

 
Plugging (15) and (16) into (17) yields 

 

                                                           .02
||  ijk

qp
qpijk MFKyyM                                                     (18) 

 
It follows from (18) that 

 
                                                              0)()()(  tMtKtM                                                             (19) 
 
By (9) we have 

 

                                               .)()()()( 2 MtMtMtM                                              (20) 
 
By (20) and (19) we get 

 

                                                                  0)( 2  MK                                                               (21) 
 
By assumption 02  K , then 0M . This completes the proof.
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