WEIGHTED STATISTICAL CONVERGENCE*

V. KARAKAYA^{1**} AND T. A. CHISHTI²

¹Department of Mathematical Engineering, Yildiz Technical University, Davutpasa Campus, Esenler, 34750 Istanbul, Turkey Email: vkkaya@yildiz.edu.tr ²Center of Distance Education, University of Kashmir, Srinagar, India Email: chistita@yahoo.co.in

Abstract – In this paper, the notion of (\overline{N}, p_n) - summability to generalize the concept of statistical convergence is used. We call this new method weighted statistically convergence. We also establish its relationship with statistical convergence, (C, 1)-summability and strong (\overline{N}, p_n) -summability.

Keywords - Norlund-type means, weighted statistical convergence, sequence spaces, Cesaro summability

1. INTRODUCTION

The idea of statistical convergence which is closely related to the concept of natural density or asymptotic density of a subset of the set of natural numbers N, was first introduced by Fast [1]. The concept of statistical convergence plays an important role in the summability theory and functional analysis. The relationship between the summability theory and statistical convergence has been introduced by Schoenberg [2]. Afterwards, the statistical convergence has been studied as a summability method by many researchers such as Fridy [3], Freedman et al. [4], Kolk [5, 6], Fridy and Miller [7], Fridy and Orhan [8, 9], Mursaleen [10] and Savaş [11]. Also, some topological properties of statistical convergence sequence spaces have been studied by Salat [12]. Besides in [13, 14], Connor showed the relations between statistical convergence and functional analysis. Quite recently, Mursaleen et al. [15] have proved some inequalities on statistical summability (C,1). Recent developments concerning this area can be found in [16-20].

In general, statistical convergence of weighted means is studied as a class of regular matrix transformations. In this work, we introduce and study the concept of weighted statistical convergence. The relations among strong (\overline{N}, p_n) -summability, (C,1)-summability and statistical convergence with respect to this novel method are also investigated.

Let $K \subseteq IN$ and $K_n = \{k \in K : k \le n\}$. Then the natural density of K is defined by $\delta(K) = \lim_{n \to \infty} \frac{|K_n|}{n}$ if the limit exists, where $|K_n|$ denotes the cardinality of K_n .

A sequence $x = (x_k)$ of real numbers is said to be statistically convergent to *L* provided that for every $\varepsilon > 0$ the set $K(\varepsilon) = \{k \in K : |x_n - L| \ge \varepsilon\}$ has natural density zero; in this case we write $S - \lim x = L$. The symbol *S* denotes the set of all statistically convergent sequences.

Let (p_n) be a sequence of the positive real constant such that $P_n = p_0 + p_1 + ... + p_n$ and $p_n \neq 0, p_0 > 0$. We have

^{*}Received by the editor April 20, 2009 and in final revised form April 10, 2010

^{**}Corresponding author

V. Karakaya / T. A. Chishti

$$t_{n} = \frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} x_{k} .$$
 (1.1)

It is well known that (1.1) is a transformation from a sequence space into another sequence space. Also, this transformation is regular if $P_n \to \infty$. The pair (\overline{N}, p_n) denotes the set of all sequences (t_n) of Nörlund-type transformations. The sequence (t_n) is the mean of the sequence (x_k) generated by the coefficients of the sequence (p_n) . The sequence (x_k) is said to be (\overline{N}, p_n) -summable to L if $t_n \to L$ as $n \to \infty$, and we write $x_k \to L(\overline{N}, p_n)$. If $p_n = 1$ for all n in (1.1), we have

$$\mathbf{t}_{n} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k} \; .$$

This is denoted by (C,1) and called Cesaro summability. Hardy [21] showed that the sequence $(-1)^n$ is (C,1)-summable but it is not $(\overline{N},2^n)$ -summable. Therefore, the inclusion $(\overline{N},p_n) \subset (C,1)$ is proper.

In addition, if $\lim_{n\to\infty} \frac{1}{P_n} \sum_{k=0}^n p_k |x_k - L| = 0$, the sequence $x = (x_k)$ is said to be strongly (\overline{N}, p_n) -summable to L and it is denoted by

$$\left|\overline{N}, p_{n}\right| = \left\{x = \left(x_{k}\right): \lim_{n \to \infty} \frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \left|x_{k} - L\right| = 0 \text{ for some } L\right\}$$
(1.2)

Besides, if $p_n = 1$ for all n in (1.2), this is denoted by

$$|C,1| = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n |x_k - L| = 0 \text{ for some } L \right\}$$

and called the space of sequences of strongly Cesaro summable to L, i.e., $x_k \to L([C,1])$. The matrix $A = (a_{nk})$ in (\overline{N}, p_n) -summability is given by

$$a_{nk} = \begin{cases} \frac{P_k}{P_n} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Also, the weighted means are equivalent to (C,1) summability over c (see, [22]), the space of convergent sequences.

Before we state the main results of this work, let us give the definition of a new statistical method.

Definition 1. A sequence $x = (x_k)$ is said to be weighted statistical convergent if for every $\varepsilon > 0$

$$\lim_{n \to \infty} \frac{1}{P_n} |\{k \le n : p_k | x_k - L| \ge \varepsilon\}| = 0$$

The set of weighted statistical convergence sequence is denoted by $S_{\overline{N}}$ as follows:

$$S_{\overline{N}} = \left\{ x = (x_k) : \lim_{n \to \infty} \frac{1}{P_n} \left| \left\{ k \le n : p_k \left| x_k - L \right| \ge \varepsilon \right\} \right| = 0, \text{ for some } L \right\}.$$

If the sequence $x = (x_k)$ is $S_{\overline{N}}$ -convergence, then we also use the notation $x_k \to L(S_{\overline{N}})$.

Iranian Journal of Science & Technology, Trans. A, Volume 33, Number A3

2. MAIN RESULTS

In this section, we find the relationships of $S_{\overline{N}}$ with $|\overline{N}, p_n|$ and (C,1). Firstly, let us begin the following theorem.

Theorem 1. If the sequence (x_k) is $|\overline{N}, p_n|$ -summable to *L*, then the sequence (x_k) is $S_{\overline{N}}$ -convergent and the inclusion $|\overline{N}, p_n| \subset S_{\overline{N}}$ is proper.

Proof: Let the sequence x_k be $|\overline{N}, p_n|$ -summable to L and $K_{\varepsilon} = \{k \le n : p_k | x_k - L | \ge \varepsilon\}$. Then, for a given $\varepsilon > 0$, we have

$$\frac{1}{P_n} \sum_{k=0}^n p_k |x_k - L| = \frac{1}{P_n} \sum_{k \in K_\varepsilon} p_k |x_k - L| + \frac{1}{P_n} \sum_{k \notin K_\varepsilon} p_k |x_k - L|$$
$$\geq \frac{1}{P_n} |\{k \le n : p_k |x_k - L| \ge \varepsilon\}|.$$

Hence, we obtain that the sequence x_k is $S_{\overline{N}}$ -convergent to *L*. In the following example, it is shown that the inclusion is proper. Let us define the sequence $x = (x_k)$ as follows:

$$x_k = \begin{cases} \sqrt{k} & \text{if } k = n^2, \\ 0 & \text{if } k \neq n^2. \end{cases}$$

Let $p_n = 1, 2, 3, \dots$. Then we have

$$\frac{1}{P_n} \left| \left\{ k \le n : p_k \left| x_k - 0 \right| \ge \varepsilon \right\} \right| = \frac{\sqrt{n}}{P_n} \to 0 \text{ as } n \to \infty.$$

On the other hand,

$$\frac{1}{P_n} \sum_{k=0}^n p_k |x_k - 0| = \frac{1}{P_n} \sum_{k=1}^n p_{k^2} x_{k^2} = \frac{3n^4 + 6n^3 + 3n^2}{12P_n} \to \infty \text{ as } n \to \infty.$$

Hence it can be seen that the inclusion $\left|\overline{N}, p_n\right| \subset S_{\overline{N}}$ is proper.

Theorem 2. Let $P_n \to \infty$ and $p_k | x_k - L | \le M$ for all $k \in IN$. If $x_k \to L(S_{\overline{N}})$, then $x_k \to L|\overline{N}, p_n|$ and hence $x_k \to L(C,1)$.

Proof: Let $x_k \to L(S_{\overline{N}})$ and $K_{\varepsilon} = \{k \le n : p_k | x_k - L | \ge \varepsilon\}$. Since $P_n \to \infty$ and $p_k | x_k - L | \le M$ for all $k \in IN$, then for a given $\varepsilon > 0$, we have

$$\frac{1}{P_n} \sum_{k=0}^n p_k |x_k - L| = \frac{1}{P_n} \sum_{k \in K_\varepsilon} p_k |x_k - L| + \frac{1}{P_n} \sum_{k \notin K_\varepsilon} p_k |x_k - L|$$
$$\leq \frac{M}{P_n} |\{k \leq n : p_k | x_k - 0| \geq \varepsilon\}| + \varepsilon.$$

Since ε is arbitrary, we have $x_k \to L | \overline{N}, p_n |$. Also, under conditons given in [21], we give the inclusions $(\overline{N}, p_n) \subset (C, 1)$ and $| \overline{N}, p_n | \subset (\overline{N}, p_n)$, that is;

Summer 2009

$$\frac{1}{n}\sum_{k=1}^{n}(x_{k}-L) \leq \frac{1}{P_{n}}\sum_{k=0}^{n}p_{k}(x_{k}-L) \leq \frac{1}{P_{n}}\sum_{k=0}^{n}p_{k}|x_{k}-L|.$$

So we obtain that $x_k \to L(C,1)$. This completes the proof.

In this section, we establish the relationships between S and $S_{\overline{N}}$ methods.

Theorem 3. Let
$$\left(\frac{P_n}{n}\right) > 1$$
 for all $n \in IN$. If $x_k \to L(S)$, then $x_k \to L(S_{\overline{N}})$ and the inclusion is proper.

Proof: For $\varepsilon > 0$, we have

$$\begin{split} \frac{1}{n} \Big| \big\{ k \le n : |x_k - L| \ge \varepsilon \big\} &= \frac{1}{n} \Big| \big\{ k \le n : p_k |x_k - L| \ge \varepsilon \big\} \\ &= \left(\frac{P_n}{n} \right) \frac{1}{P_n} \Big| \big\{ k \le n : p_k |x_k - L| \ge \varepsilon \big\} \\ &\ge \frac{1}{P_n} \Big| \big\{ k \le n : p_k |x_k - L| \ge \varepsilon \big\} \Big|. \end{split}$$

This completes the proof.

For the inclusion relation, we take $p_k = \frac{1}{k+1}$ and $x_k = (-1)^{k+1}$. Then we easily see that $x_k \in S_{\overline{N}}$. On the other hand, $(x_k) \in (C,1)$ but $(x_k) \notin S$. This is the desired result.

Theorem 4. If the sequence (P_n) is a bounded sequence such that $\limsup\left\{\frac{P_n}{n}\right\} < \infty$, then $S_{\overline{N}}$ is equivalent to S.

Proof: For a given $\varepsilon > 0$, we have

$$\begin{aligned} \frac{1}{n} \left| \left\{ k \le n : |x_k - L| \ge \varepsilon \right\} \right| &= \frac{1}{n} \left| \left\{ k \le n : p_k |x_k - L| \ge \varepsilon \right\} \right| \\ &\le \left(\frac{P_n}{n} \right) \frac{1}{P_n} \left| \left\{ k \le n : p_k |x_k - L| \ge \varepsilon \right\} \right| \\ &\le \frac{1}{P_n} \left| \left\{ k \le n : p_k |x_k - L| \ge \varepsilon \right\} \right|. \end{aligned}$$

Since $\limsup_{k \to \infty} \left\{ \frac{P_n}{n} \right\} < \infty$, we get $x_k \to L(S_{\overline{N}}) \Rightarrow x_k \to L(S)$, i.e $S_{\overline{N}} \subset S$. Hence by Theorem 3, the result follows.

REFERENCES

- 1. Fast, H. (1951). Sur la convergence statistique. Colloq. Math., 2, 241-244.
- 2. Schoenberg, I. J. (1959). The integrability of certain functions and related summability methods. *Amer. Math. Monthly*, *66*, 361-375.
- 3. Fridy, J. A. (1985). On statistical convergence. Analysis, 5, 301-313.
- 4. Freedman, A. R. & Sember, I. J. (1981). Densities and summability. Pacific J. Math. 95, 293-305.
- 5. Kolk, K. (1991). The statistical convergence in Banach spaces. Acta et Comment. Univ. Tartu., 928, 41-52.
- 6. Kolk, K. (1993). Matrix summability of statistically convergent sequences. Analysis, 13, 77-83.
- 7. Fridy, J. A. & Miller, H. I. (1991). A matrix characterization of statistical convergence. Analysis, 11, 59-66.

Iranian Journal of Science & Technology, Trans. A, Volume 33, Number A3

Summer 2009

222

- 8. Fridy, J. A. & Orhan, C. (1993). Lacunary statistical convergence. Pacific J. Math., 160, 43-51.
- 9. Fridy, J. A. & Orhan, C. (1993). Lacunary statistical summability. J. Math. Analysis Appl., 173(2), 497-504.
- 10. Mursaleen, M. (2000). λ -statistical convergence. *Math. Slovaca*, 50, 111-115.
- 11. Savaş, E. (1992). On strong almost A- summability with respect to a modulus and statistical convergence. *Indian J. Pure and Appl. Math.* 23(3), 217-222.
- 12. Salat, T. (1980). On statistically convergent sequence of real numbers. Math. Slovaca, 30,139-150.
- 13. Connor, J. S. (1988). The statistical and strong p-Cesaro convergence of sequence. Analysis, 8, 47-63.
- 14. Connor, J. S. (1989). On strong matrix summability with respect to a modulus and statistical convergence. *Canad. Math. Bull.*, 32, 194-198.
- 15. Mursaleen, M., Alotaibi, A. & Mohiuddine, S. A. (2008). Some inequalities on statistical summability (C, 1). J. *Math. Inequal.* 2, 239-245.
- 16. Moricz, F. (2002). Tauberian conditions under which statistical convergence follows from statistical summability (C, 1). *J. Math. Anal. Appl.* 275, 277-287.
- 17. Moricz, F. & Orhan, C. (2004). Tauberian conditions under which statistical convergence follows from statistical summability by weighted means. *Studia Sci. Math. Hung.* 41(4), 391-403.
- 18. Malafosse, B. & Rakocevic, V. (2007). Matrix transformation and statistical convergence. *Linear Algebra and its Appl. 420*, 377-387.
- 19. Edely, O. H. H. & Mursaleen, M. (2008). On statistical A-summability. *Math. Comput. Modelling*, doi:10.1016/j.mcm.2008.05.053.
- 20. Karakaya, V. (2004). On lacunary σ -statistical convergence. *Inform. Sci.* 166, no. 1-4, 271-280.
- 21. Hardy, G. H. (1949). Divergent series. Oxford University Press.
- 22. Borwein, D. & Cass, F. P. (1968). Strong Nörlund summability. Math. Zeith. 103, 94-111.