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Abstract — In this paper, first the properties of one and two-dimensional differential transforms are presented.
Next, by using the idea of differential transform, we will present a method to find an approximate solution for
a Volterra integro-partial differential equations. This method can be easily applied to many linear and
nonlinear problems and is capable of reducing computational works. In some particular cases, the exact
solution may be achieved. Finally, the convergence and efficiency of this method will be discussed with some
examples which indicate the ability and accuracy of the method.
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1. INTRODUCTION

The purpose of this paper is to employ the two-dimensional differential transforms method for Volterra
integro-partial differential equations, which are often encountered in many branches of physics, chemistry
and engineering. The solution of integral and integro-differential equations has a major role in the fields of
science and engineering. When a physical system is modelled under the differential sense, it finally gives a
differential equation, an integral equation or an integro-differential equation. There are various techniques
for solving an integral or integro-differential equation, e. g. Galerkin, wavelet Galerkin, Haar wavelet
method [1-5], Adomian decomposition method [6, 7], homotopy perturbation method (HPM) [8],
polynomial solution [9] and multi-level iteration method [10]. Such methods are based on developing and
analyzing numerical methods for solving one-dimensional integral equations. But in two-dimensional
cases so far, a small amount of work has been done (see [11, 12]).

Differential transforms method (DTM) is a semi analytical-numerical technique and is an iterative
procedure that depends on Taylor series expansion. The concept of the differential transforms was first
proposed by Zhou [13]. By useing this method, it is possible to solve differential equations [14-24],
difference equations [24], differential-difference equations [25], KDV equations [26] fractional
differential equations [27, 28], two-dimensional integral equations [11, 12] and integro-differential
equations [29, 30]. In this paper, we apply one and two-dimensional differential transform method to solve
the Volterra integro-partial differential equations of the form:
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2u(x,y) %u(x,y) 0%u(x,y) u(x,y) u(x,y)
a—=Z—+p 3%y +y 272 to———+e¢ 3y +nu(x,y)

(1)
—AJ," f) K@y, s, tu(s, £)dsdt = f(x,),

where u(x,y) is an unknown function, a, 8, ¥, 6, € and 1 are some two variable given functions,
functions f(x,y) and K(x,y,s,t,u) are two known continuous functions defined respectively on D =
[0,X] x[0,Y] and E = {(x,y,5,t, u):0<s<x<X,0<t<y<Y,—o<u<o} and 1 is a given
constant. The completion conditions related to Eq. (1) are as follows:

1-j I+ku(x,y) .
212):1 Z]l':o k:{) dl(jplzaxk—ay] |x=x0 = ai(x) )X € [a,b], i=12 (2)
and
1-j I +ku(x,y) ;
S31 Bloo Tuch ek aniad ly=yo = bi¥),y € [c,d], i = 12, 3)
where di(f,? and ei(fk) are known constant coefficients, and b;(y), a;(x) for i = 1,2 are known functions.

2. DIFFERENTIAL TRANSFORM

a) One- Dimensional Differential Transform

Definition 2.1. Consider the analytical function of one variable u(x), which is defined on D = [0,X] € R
and x, € D. One- dimensional differential transform of u(x) is denoted by U(k) and is defined on
N U {0} as the following:

1 dk
V) = = [Py )

where u(x) is the original function and U (k) is called the transformed function.
Inverse differential transform of U (k) in the Eq. (4) is defined as follows:

Uy (x) = Yie=o UK)(x — xo)". (5)
Since u(x) is an analytical function, it is clear that u(x) = uy(x). By combination of Egs. (4) and (5),
with x, = 0, the function u(x) can be written as:

o 1 dku(x) k
w(x) = Y=o 1 [ lx=0x". (6)
The fundamental mathematical properties of one-dimensional differential transform can readily be
obtained and are summarized in the following theorem.

Theorem 2.2. If U(k),F(k) and G(k) are one-dimensional differential transforms of the functions
u(x), f (x) and g(x) respectively, then:

L Ifu(x) = f(x) £ g(x) thenU(k) = F(k) + G (k).

2. 1fu(x) = af (x) thenU(k) = aF (k).

3. 1fu(x) = f(x)g(x) thenU(k) = Xk, F(DG(k - D).

4.1 ux) = LE then U (k) = (k + DF (k + 1).

5.1fu(x) = L) then U (k) = (k + 1)(k +2) ... (k + m)F (k + m).

6.1fu(x) = [J f(Ddt thenU(k) =" k> 1,U(0) = 0.
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1, k=m;
0, O.Ww.

, ok . kn
8. Ifu(x) = sin(wx + a) then U (k) = Fsm(T +a).

7. fu(x) =xmthenU(k) = §(k —m) :{

wk k1
9. Ifu(x) = cos(wx + a) thenU (k) = FCOS(T + a).
b) Two- Dimensional Differential Transform

Definition 2.3. Consider the analytical function of two variable u(x, y), which is defined on D = [0, X] X
[0,Y] € R? and (xg,Yo) € D. The two- dimensional differential transform of u(x,y) is denoted by
U(k, h) and is defined on N2 U {(0,0)} as the following:

_ 1 akhy(xy)
U(k' h) - W[ axk ayh ]l(xOryO)’ (7)

where u(x, y) is the original function, and U(k, h) is called the transformed function. Inverse differential
transform of U (k, h) in Eq. (7) is defined as follows:

Uup(x, ) = Xi=o Li=o Uk, )(x — x0)*(y — yo)™. (8)

Since u(x, y) is an analytical function, it is clear that u(x,y) = uy(x,y). By combining Egs. (7) and (8),
with (xg,¥9) = (0,0), the function u(x, y) can be written as:

o oy 1 0 Mutey)
u(®,y) = Xi=0 Zh=0 qm Coxr oy J00X V"™ )

The fundamental mathematical properties of two-dimensional differential transform can readily be
obtained and are expressed in the following theorem.

Theorem 2.4. If U(k, h), F (k, h) and G (k, h) are two-dimensional differential transforms of the functions
u(x,y), f(x,y) and g(x, y) respectively, then:

L.Ifu(x,y) = f(x,y) £ g(x,y) thenU(k,h) = F(k,h) + G(k, h).

2. 1fu(x,y) = af (x,y) then U(k, h) = aF (k, h).

3.0fu(x,y) = f(x,v)g(x,y) thenU(k,h) = ¥¥_, S0 F(r,h — s)G(k —1,5).

41fu(r,y) = LD then Uk, h) = (k + DF(k + 1, h).

5. 01fu(x,y) = %’;wthen Uk, h) = (h+ 1)F(k,h + 1).

6. 1fu(x,y) =xmy"thenU(k,h) = §(k —m,h —n) = §(k —m)é(h —n).

7 Mfu(x,y) = %gfthen Ulk,h)=((k+1Dk+2)..(k+r)(h+1D)(h+2)...(h+s)F(k+1rh+
s).

In the following, we prove some fundamental theorems, which will be used in section three. It should
be pointed out that these theorems may be found in [11, 12, 17], but we claim that our approaches are
simpler and more preferable.

Theorem 25. If u(x,y) = f;c foy f(s,t)dsdt, U(k,h) and F(k,h) are differential transforms of the
functions u(x, y) and f(x, y), respectively, then:

0, if k=0 or h=0;
U(k,h) = {F(k—l,h—l) if k h=123 ... (10)
kh
Proof: By using the Leibniz's formula and mathematical induction on k and h we have:
Fu@y) _ v 0450
dxk = f() dxk—1 d 4 (11)
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and

Muxy) _ fx "1 (y,0)
axh  — Jo dxh-1

dt, (12)

respectively. Hence, by applying Egs. (11) and (12) in definition (2.3), with (x4, y9) = (0,0), we have:
F(k,h) =0,ifk =0o0rh=0.

Since fork > 1, h = 1, we get:

ak+hu(x’ y) ak ah
ok ayh ~ axk loxn vVl

k h-1
_a_[fxa f(y't)dt]

T oaxkbo  gxh-1
ak—l ah—l

= ekt gz f (6 )]
_ ak+h—2f(x'y)
T gxk-1 ayh-1’

therefore by definition (2.3), with (x4, yo) = (0,0), we will have:
E'hlUk, W) =k -DI(h—D!'F(k—1,h—1).
Hence:

F(k-1,h—1)

Uk, h) ===

Theorem 2.6. If u(x,y) = fox foy f(s,t)g(s,t)dsdt, U(k,h), F(k,h) and G(k,h) are differential
transforms of the functions u(x, y), f (x,y) and g(x, y), respectively, then:
0 if k=0 or h=0;
vtk = {ﬁ ¥20 Xiso Froh—s =16k —r—=1,5), if k, h=123,... (42

Proof: Define v(x,y) = f(x,y)g(x,y). By using theorem (2.5), where the corresponding function f is
replaced by v, and applying theorem 2.4(3), the assertion is immediately obtained.

Theorem 2.7. Suppose that u(x,y) =[Iv; fi(x,y). If U(k,h) and F;(k,h) for i =1,2,..n are
differential transforms of the functions u(x, y) and f;(x,y) for i = 1,2, ... n, respectively, then:

U(k: h) = Zl‘rfn_1=0 Z?n_1=0 E:Z:;:o Zzz:;:() Z:z:() Zizzo Z:i:() Zzizo
Fi(ry, s)F(r — 11,82 — $1) - (14)

Fn—l(rn—l ~Th-2,5n-1— Sn—Z)Fn(k ~Th-1 h — Sn—l)]l k=0,h=0.

Proof: The assertion is obviously obtained by induction on n and using theorem 2.4(3).
The next corollary is the direct result of the theorems 2.5 and 2.7.

Corollary 2.8. If the assumptions of theorem(2.7) are satisfied and

u(x,y) = fox foyﬁ fi(s, t)dsdt,
i=1

then U(k,h) = 0,ifk =0 or h = 0 and
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_ 1 k—1 h—-1 Th— Sn— T N T S
U(kl h) - Ezrn_lzo an_lzo Z " 1:0 ZSZ_;=0 "'Zr;:() Zszzo Zri:() Zsi:()

Th-2
[F1(ry,s0)F2(rz —ry,82 = 1) . Fuog(tno1 = n-2,8n-1 — Sn-2)Fn(k =1y —Lh—s,4 — 1)] (15)
k=1h=1

Now we prove the following complementary theorems as the basis of our method.

Theorem 2.9. Let u(x,y) = f(ax + fy), where f is a one variable function and «,  are two constants.
If U(k, h) and F (k) are differential transforms of the functions u(x,y) and f(x) , respectively, then:

Uk, h) = F(k+h) (© ’ M) akpn. (16)

Proof: We know that f(t) = X5_, F(k)t*. Therefore:

flax+By) = ) Fk)(ax + )

k=0

) k
=) F) ) (@) By
k=0 h=0

= Tieco Theo FUOGD @) (BY)* ™ i)

The result is obtained by comparing the coefficients of xiyj, fori,j =0,1,2,...in (9) and (17).

Corollary 2.10. If u(x,y) = sin(ax + fy) and v(x,y) = e®*5Y then:

akph . ((k+h)rt

kph
Kih! ), V(e h) == £

U(k,h) = kil (18)

Theorem 2.11. Let u(x,y) = f(x,y)g(x) where g is a one variable function of x. If U(k, h), F (k, h) and
G (k) are differential transforms of the functions u(x, y), f(x,y) and g(x), respectively, then:

U(k,h) =Yk_, F(k —r,h)G(r). (19)

Proof: By defining go(x,y): = g(x), we will have u(x,y) = f(x,y)go(x,y). We know that G,(k, h) =
G (k)6 (h). By applying theorem 2.4(3), we have:

k h
U(k,h) = F(k —1,5)Gy(r,h —5)
=Yoo Li=o Flk —1,5)G(r)8(h — 3). (20

According to the definition of §, equation (20) implies that:

k
Uk, h) = z Flk — 7 ))G(T).
r=0

Theorem 2.12. Let u(x,y) = f(x,y)g(y), where g is a one variable function of y. If U(k, h), F(k, h)
and G (h) are differential transforms of the functions u(x, y), f(x,y) and g(y), respectively, then:
U(k,h) =¥, F(k, h — 5)G(s). (21)

Proof: The proof is similar to the previous theorem.
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Theorem 2.13. Let u(x,y) = f(x)g(y), where f and g are one variable functions of x and vy,
respectively. If U(k,h), F(k) and G(h) are differential transforms of the functions u(x,y), f(x) and
g(y), respectively, then:

Uk, h) = F(k)G(h). (22)

Proof: By defining fy(x,y):= f(x) and go(x,¥):= g(y), we will have u(x,y) = fo(x,v)go(x,y),
Fy(k,h) = F(k)d(h) and Gy(k, h) = G(h)J (k). By using theorem 2.4(3) and definition of §, we have:

Uk, h) = z z Fy(k —7,5)Go(r b — 5)

P
_ Z z Fr)8(h—s)G(s)8(k — 1)
= FUOG(h).

The following theorem will imply the differential transform of the completion conditions (2), (3). In this
theorem, we consider the applicable case x,, y, = 0 or 1.

Theorem 2.14. Assume that F(k), G(h) and U(k, h) are differential transforms of f(x), g(x) and
u(x,y), so we have:

LIf f(x) = "’”;’;” ly—o then F()=U(k,1), k=0,1,2,... .

2.1f f(x) = f’”;’;” ly=1 then F(k) = X7 sU(k,s), k = 0,1,2, ...

3 F(0) =252 then F(k) = (k + DU(k +1,0), k = 0,12, ...

4.0 F(x) =220 then F(k) = (k + 1) Xio Uk + 1,7), k = 01,2

5.1f g(y) = "’%’;” lyeo then G(h) = (h+ DU, h+ 1), h = 0,1,2, ...
6
7
8

Afg(y) = %’;” Loy thenG(R) = (h+ D E™, U(r,h+1),h =012, ....
N g(y) =ZED,_ thenG(h) = U(LK), h =012, ...
fg(y) =252, then G(h) = SIt, sU(s,h), h = 0,12,....

Proof: The assertions are obtained easily, by use of theorem 2.4(4) and 2.4(5) and comparing the results
to the equation (5).

3. APPLICATIONSAND NUMERICAL RESULTS

In this section, the differential transform is applied to solve Volterra integro-partial differential equations
of the form equation (1). To this end, we consider the solution of equation (1) in the form of Taylor series
as equation (8). Since the truncated Taylor series or the corresponding polynomial expansion is an
approximate solution of equation (1), by substituting the solutions U(k,h), for k =0,1,2,..m and
h=0,1,2,..nin Eq. (8) we have:

m

u(x,y) Z Z UG ) = %05 = Y0)" + emn(1,3)
k

=1 n(x y) +emn(x,y),

where e, ,(x,y) is the error function and #,, ,(x,y) is the approximate function. Now, for (x,y) =

(xi, xj), we define the absolute error by:
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emn (X, ¥j) = [u(xy, ¥;) — tmn (i, Y71 (23)
Corresponding to Eq. (1), we define ¢ (x,y) and ¥(x, y) as the follows:

%u(x,y) ‘B %u(x,y) %u(x,y) iy

du(x,y) 4 du(x,y)
9x2 oxay ' ay? ox ' °

3y + nu(x,y),

p(x,y):=a

x Yy
l[)(x,y):=—/1j;) fo K(x,y,s, t,u(s, t))dsds.

Therefore, equation (1) can be written as:

(x,y) +Y(x,y) = f(x,y). (24)

In order to obtain the approximate solution, i, it is sufficient to determine U(k, h) for k = 0,1,2, ...m,
h =0,1,2, ...n. By applying differential transform on the equation (24) and the completion conditions, (2)
and (3), they will be transformed into a system of recursive algebraic equations. This process is called
differential transform method (DTM).

Remark 3.1. In most of the practical cases, the exact solution is not available, hence the computation of
the absolute error is impossible. One way to show the convergence of the iterative solution i, ,, to the
exact solution, u(x, y), is as follows:

1. Compute i, » (x,y) and @y 14 p41 (X, Y).
2. Compute @iy 4 (x,y) and @iy 41 41 (X, ¥), form,n < p,q.
3. Define:

Em,n(xirYj) = Iﬁm,n(xi:yj) - ﬁm+1,n+1(xiryj)|
and:
Ep,q(xiryj) = |ﬁp,q(xi'3/j) - ﬁp+1,q+1(xi'yj)|

for some x; and y;.

4. If Ep (x5, ¥j) 2 Epq(x;,y;) it is concluded that i, ,(x,y) converges to the exact solution when m,n —
[o0]

The above technique will be applied in example (3.4).
In the following, we consider the case of:

K(x,y,s,t,u(s,t)) = X, wi(x, y)vi(s, Oui(s, ©), (25)

which is solvable by using differential transform method.

Example 3.2. Consider the following Volterra Integro-Partial Differential Equation:

du(x,y) . ou(x,y) X ry
o T o = Tlter e+ e+ [ [T u(s, tydsdt, (26)

subject to the initial conditions:

u(x,0) = e*,
Loy = o @
Transformed versions of Egs. (26) and (27) are:
(k+ DUk + 1,h) + (h + DUk, A+ 1) = =8(k)8(h) + 202 4 209 L UELD - (g
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and

U(k,0) ==, k=012,..,

U0 =+, h=012,...

(29)

respectively. By substituting (29) in (28), we obtain the closed form of the solution series as the follow:
2 2
u(6,y) = Bfo Tiizo Ul My = (b x + 4 ) (L by 454 0) = e,

which is the exact solution.

Example 3.3. Consider the following Volterra integro-partial differential equation:

px,y) +Yx,y) = f(xy), (30)
where
*u(x,y) 0%*u(x,y)
d0x? + dy?

x y
ox,y) = , o Yy = —J;) fo (es + tu(s, t)dsdt,

f(6,y) = €% =2 ye? —xye* +yet —x?y? + a7 — 2y
’ 2 4 3 27

is subject to the initial conditions:

u(0,y) =1-t,
u(x,0)) = x + e*, 31)

uGy)| g

ay y=07 )

If x indicates the location and y indicates the time, then the above equation will be the wave equation
which is affected by the power dependent on the location and the time. The exact solution is u(x,y) =
e +x—y.

Applying differential transform on Egs. (30) and (31) and using the Theorems of section 2, and theorem
2.14 for the initial conditions, we obtain:

®(k,h) +Y(k,h) = F(k,h), (32)
where:
Ok,h)y=(k+1)(k+2)Utk+2,h)+ (h+1)(h+2)U(k,h + 2),
0, if k=0 or h=0;

k-1
1~ U@ h-1)

Th o 4 1 = > .
kh k—r—1" if h=0and k> 1;
r=

¥(k, h) =4 0 -
L k- 1,n-2 +ZU(r’h_1)
g UG~ Lh=2) k—r—10 oW
r=0
\
1 .
i _5(h) Zké‘(h_l) —(k—l)!’ lka 1 and h=1;+5(h—1)
(k) = k! 2k! 0, o.w. k!

S(k=2h=2) 8(k—1h=-3) 8kh-1)

4 3 2 ’
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and:
U,h)=6(h)—6(h—1), h= 0
U(k,0)=5(k—1)+%, k> 0
k=0

lU(k, 1) = —8(k),

By solving the above recursive equations for cases n=m=4, n=m==8 and n=m=16 we obtain:
_ x? x3

Ty a(x,y) = 1+2x—y+—+§+

x2 x3 x* x> x% x7 «B

g g(x, }’)—1+2x—y+—+§+z+§+a+ﬁ+§

x4-

and:

¥2  x3 x* x5 x6  x7  x8xO x16
Gge(x,y) =1+ 20 —y+ o+ gttt grort g
83(*) N TET 51 71" 819! 16!
which are the truncated Taylor series of the exact solution. Table 1 shows the absolute errors at some

particular points.

Table 1. Numerical results for example 3.3

(xi'Yj) e4,4(xi,yj) es,s(xi:Yj) 916,16(xiiyj)
(0,0) 0 0 0
(0.1,0.3) | 8474e — 008 | 2.997e¢ — 015 2.22e — 016
(0.2,0.2) | 2.758e — 006 1.439e — 012 0
(0.3,0.1) | 2.130e — 005 5.591e — 011 2.220e — 016
(0.4,0.6) | 9.136e — 005 7.523e — 010 | 2.220e — 016
(0.5,04) | 2.837e — 004 | 5.664e — 009 | 4.440e — 016
(0.6,0.9) | 7.188e — 004 | 2.953e — 008 0
(0.7,0.6) | 1.581e — 003 1.195e — 007 | 4.440e — 016
(0.8,0.5) | 3.140e — 003 | 4.017e — 007 | 4.440e — 016
(0.9,0.2) | 5.765e — 003 1.172e — 006 0
(1,1 9.948e — 003 | 03.0586e — 006 | 2.664e — 015

Example 3.4. Consider the following Volterra integro-partial differential equation:

oY) +Y(x,y) = f(x ), (33)

where:

0%u(x,y) du(x,y)

Xy
px,y) = . Yl y) = —j f xcos(s — t)u(s, t)dsdt,
0 0

dx? oy
x3 xysin(2x
f(x,y) =2cos(x +y) —xcos(x+y)—1+t— ) + xsinx — xsiny + xycosy — }’T()
x%ycos(2x) x3cos(2
+ 4 2 (22) + 8( Y) _ xsin(x —y) — xycos(x — y),
subject to the initial conditions:
]
[uGey) + 52 g = 1+ ¢, .

u(x, y)|y=o = xsinx.
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This equation indicates that the heat transform process depends on the location and time.
Applying differential transform on Egs. (33) and (34) and using the Theorems of section 2 and the

theorem 2.14 we obtain:

@k, k) = (k + 2)(k + DUk + 2,h) — (h + DUk, h + 1) + U(k, h).

Y (k, h)

I
[
"H
S
;v

if k=01 or h=0;

== (- 571co S((h+r ))U(k—r—Zs)
l(k—l)h rl(h—s—1)! » oW ’
r=0 s=0
and:
cosEEIT) | g leth =D
Fle,h) =2 T 2 oo +8(k, h) + 8k, h — 1)
Wk IR
1 (k=Dm.
1 (k_l)!sm( > ), if h=0and k> 1;
— =8k —3,h) +
8 0, 0.w.
(h=Dnm .
—6(k — 1)msm(7) + 0, o
2t (k=Dm
1)k 1),sm( > ), if h=1and k>1;
8|0, 0.w.
2k—2 k—2
1 'cos(( )ﬂ)’ if h=1and k=2; 2"§(k— 3)cos(th)
S ICE)) 2 .
0, o.w. 8h!
0, if k=0; (0, if k=0 or h=0;
(- 1)h (M) B (—1)h_1COS((k + hz— 2)7‘[)
k—DIh—1 o™ =D , o.w.
and
(UO,h) + (h+ DU, h+ 1) = 5(h) + §(h—1), h=>0;
0, if k=0;
U(k,0) = 1 (k—Dm )
> 1.
(k—l)!sm< 2 ) U=l

By solving the above recursive equations for the cases n=m=4, n=m=8 and n=m=16 we obtain

4

3 x y
u4,4(x,y)=x2—g+y+xy———
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x3 x2y2 x4y2 Xy3 x3y3 N x2y4

xty*
+ -
2 2 12 6 12 24
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x4- x6 x8 x3 x5 x7 x2 2 x4- 2 X6 2 x8 2
tgg(x,y) =x* ——+—=— +y+xy——y+—y— y 1y, zr 7 4
' 6 120 5040 2 24 720 2 12 240 10080
xy3 N x3y3 x5y3 x3y3 x7y3 x4-y4-
6 4 126 14;1- 12 43229 1%4 ."7 24,2 4,.,2 6.,,2 8,,2
B x X x°y x°y x'y x°y* x*y* x°y x°y
) =x2—— 4+ ——— +y+xy———+ - — —
U160 Y) = X" =t o e VY Y T Y o T 720" 2 Y12 T 720 T 10080
xy3 x3y3 x5y3 N
6 12 144

Table 2 shows E,, ,,, which is introduced in remark (3.1), at some points.

Table 2. Numerical results for example 3.4

(xi:yj) E4,4(xl-,yj) Es,s(xi»}’j) E16,16(xi»yj)
(0,0) 0 0 0
(0.1,0.3) | 2.1380e — 006 | 5.4043e — 012 0
(0.2,0.2) | 3.1716e — 006 | 2.7994e — 012 0
(0.3,0.1) | 1.0132¢ — 005 | 4.8736e — 011 0
(0.4,0.6) | 4.7938e — 004 | 1.3903e — 008 0
(0.5,0.4) | 5.4439e — 004 | 1.9181e — 008 0
(0.6,0.9) 0.0050 7.2448e — 007 | 4.4409e — 016
(0.7,0.6) 0.0043 5.7998e — 007 0
(0.8,0.5) 0.0067 1.5989¢ — 006 | 4.4409e — 016
(0.9,0.2) 0.0049 1.9089e¢ — 006 | 1.5543e — 015
(1L, 0.0392 2.2359e — 005 | 4.2188e — 014
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