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Abstract — In this paper, we study cyclic surfaces in E15 generated by homothetic motions of a Lorentzian
circle. The properties of these cyclic surfaces up to first order are investigated. We show that, as it is shown in
E’ , cyclic 2-surfaces in E15 , in general, are contained in canal hypersurfaces. Finally, we give an example.

K eywor ds — Minkowski space, cyclic surfaces, homothetic motions

1. INTRODUCTION

Homothetic motions are a general form of Euclidean motions. It is crucial that homothetic motions are regular
motions. These motions have been studied in kinematic and differential geometry in recent years. Under these
motions, the point paths of the circle C, generate a surface which is called the cyclic surface [1, 2]. In papers written
in recent years, these surfaces seem to be the leading surfaces in geometric modeling [1, 3, 4].

Abdel-All and Hamdoon gave some first order properties of cyclic surfaces generated by homothetic motions in
five dimensional Euclidean space and obtained some new theorems [5]. In Minkowski (semi-Euclidean) space,
hyperbolas (Lorentzian circles) play the role of circle in Euclidean space [6]. We generalize the cyclic surfaces by
studying the surfaces generated by motions of hyperbolas.

2.NORMAL HYPERPLANES

A cyclic surface in E15 is given by

X(t,9) = pOADX(@) +d(t), t,4cR

where A(t) = (aij (t)), I,]=12,...,5 is an semi orthogonal matrix and X(¢@) = (Ch¢, sh,0,0,0)" represents
the unit Lorentzian circle C,. d(t) = (b1 (t),b, (t),b, (1), b, (t),b, (t))T is the translational part of the motion. We
also assume that all involved functions are a class of C'. Let a (t),i =1,...,5 be the column vectors of the matrix
A(1) , hence the cyclic surface can be written as follows

X(t,¢)= p(t)a, (tichg + a, (H)shg]+ d(t) (M

where d(t) is the center of the moving Lorentzian circle and 8, (t),a, (t) are two orthogonal vectors in the plane

of the Lorentzian circle. The velocity vectors of the points of the Lorentzian circle are given by
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X'(t,¢)= p'(O]a (t)chg +a, (t)shg] + p(t)[a] (t)chg +a; (shg ]+ d' () o

where  denotes the derivative with respect to the time 1.
The equation of the hyperplanes orthogonal to such a path is

YTX(t,¢)= X" (t,¢)X(t,¢)

T . - . . .
where Y = (y1 > Y2 Y3 Y Ys ) is the position vector of an arbitrary Y in the hyperplane. The scalar product in the
above equation is Lorentzian metric. According to the inner product this equation is

YTeX'(t.¢)= X7 (t,9)eX(t. ) 3)
-1.0 0 0 O
O 1 0 0 O
where s=| 0 0 1 0 0] is the sign matrix.
0O 0 01 0
0 0 0 0 1

Substituting (1) and (2) into (3), we have

P (O[Y ea, (t)chg + Y ea, (t)shg]+ p(H)[Y  ea/(t)chg + Y eal (t)shg]+ Y ed'(t) =
[p(D[a] ()chg +a; (Hshg]+d" (D)]e.

[o'®)[a (tychg + &, (Dshg] + p(b)]a] (tehg + &, (shg]+ d'(1)] @
The left hand side of (4) gives
(" Lhs. =chg[p' ()Y ea, (t) + p(t)YTea ()] + shg[ o' ()Y ca, (t) + p(t)Y T eal )]+ YTed'(t).
Since ATéA =g and ATgA’ is a skew symmetric matrix, the right hand side of (4) is

(** Rhs.=-p(t)p'(t) +d" (e d'(t) + chg[ p(t)(@ (D)ed'(t) +dT (Dea/(t) + p' 1A (e & (1)]
+shg[ p(t)(a; (Ded'(t) +dT (Hea; (1) + p'(DdT (e a, (D)].

Let (1) = a, ()ed'(t), h () =d " (H)eaj(t) and |, () =d" (t)ea, (t),k =1,2. A point Y now will
be situated in all the normal hyperplanes for all ¢ € R (t constant), if (*) and (**) hold for all ¢ . By comparing the
coefficients of {1,CNg, Sh} in (*) and (**), we obtain

2.8 YB0 =2 &b (PO - p(H)P'(M)
PO & Yia O+ PO 2 Y& O =p1(& O+ b 1)+ AL O )

PO & vian )+ p1)Y &y (Da, O =pb)(e,®) +h, D)+ o', (1)

where &, = -1, ¢ | = 1, j = 2,3,4,5. Moreover, all these normal hyperplanes for fixed t, in general, intersect in a
plane.
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3. LOKAL STUDY IN CANONICAL FRAMES
By using Taylor's expansion, up to the first order the representation of motion is given by
X(t,4)=[p(0)A0) + (0'(0) A0) + p(0) A'(O))tx(¢) + d(0) + d’(O)t
We assume the moving frame E,’ and fixed frame X coinciding at the zero position (t=0), then we have
A0)=1, p(0)=1 and d(0)=0.
Thus we have
X(t.¢)=[15+ (o' (O, + AO)t]x(g) +d'(O)t

where A'(0) = (W, ), K =1,2,...,10 is a semi skew symmetric matrix. For simplicty we write 0" and B instead
of p'(0) and b'(0) respectively.
In these frames, the representation of the motion up to the first order is given by

X, 1+tp"  tw, tw, tw, tw, ) chg b
X, tw, 1+tp"  tw, tw, tw, | sh¢ b;
X5 =] tw, —tw, 1+tp" tw tw, 0 [+t b} (6)
X, tw, —tw, —tw, 1+tp"  tw, 0 b,
X tw, —tw, -—tw, —tw, 1+t O b;
by 1+tp’ tw,
b; tw, 1+tp’
=t/ b; |+ chg| tw, |+shg| —tw
b; tw, —tw
b; tw, —tw,

For any fixed t in equation (6), we gain a curve for ¢ € R. The orthogonal projection of these curves (t constant) on
the [X1 X2] plane is
X b' 1+t tw,
[ e Y p e ™)
X, b W, 1+tp

Corollary 3.1. The orthogonal projection of these curves (t constant in (6)) on the [X X ] plane are Lorentzian

Thus, we have the following.

circles whose centers are given by ('[b1 ,tb ) and radii by I' = \/ ‘t W —(I+tp ) ‘ Degenerate cases are given
1+ tp

t
For constant ¢ and varying t € R, formula (7) presents the parametrisation of a straight line g(¢) . Its equation is

for W, =

given by

(le' — XKWt b1,)5h¢ + (X1W1 - sz’ - bé )Ch¢ = Xzb{ - le; W (8)
The equation of the envelope of all these lines g(¢) then is gained by eliminating ¢ from the equation (8) and its

derivative with respect to ¢, which is given by
Winter 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A1



22 D. Saglam/ et al.

(W, — X, 0" =1 )shgp + (X, " — X,W, +b/)chg = 0. )
Thus the equation of this envelope is
—X (P =W +BP)+ (P =W —b?) + 2%, X,b/b, —2x, pb! + 2%, o0, =w +b/* —hi*. (10)

Therefore, we have the following.

Lemma 3.1. The envelope of the lines (8) in general is a conic section, which is given by (10).
We can classify the conic section (10) according to the relation between the two values M= le - p'2 and
n= béz - b{z . We exclude the case M= 0 since it is equivalent to W, = |p'| .

Lemma 3.2. The envelope of the lines (8) in general will be a conic section of the following type:
(i) ellipse if M< N,

(i) hyperbola if M>nN,

(iii) parabola if M= nN.

4. THE TANGENT LORENTZIAN SPHERE OF CYCLIC SURFACE IN E15

In this section, we will show at any instant t there exist a Lorentzian sphere & (1), which is tangent to a given cyclic
2-surface (1) in all points of the instantaneous position C(t) of the Lorentzian circle C,. Without loss of generality
we investigate the situation at the zero position. Any Lorentzian sphere &k, which is tangent to a given cyclic 2-
surface (1) along C, has to contain C,; hence the center of &, has coordinates (0,0,m,,m,,M,) with
m,,m,,m; € R. On the other hand, since K, has to be tangent to all velocity vectors of the motion, the center of
K, has to lie in each of the hyperplanes through the points of C(t), orthogonal to these velocity vectors. This gives

us the additional condition

m, (b; +w,chg — w,shg) + m, (b; + w,chg —w,shg) + m, (b; + w,chg — w,shg)

=-b/chg+b;shg—p’. (11
By comparing the coefficients of {1, Chg, @} in (11), we have the system of linear equations
BM =H (12)
where should be lowercase.
by by b m, -p
B=lw, w, w,|, M=m, |andH =| -Db/
W, W, W, m, -b;

By solving (12), we get
m, = i[,o'(wétw6 —w,W, ) + b/ (bw, —blw,) + b’ (blw, —blw,)]
m, = i[p'(W2W7 —w,wy) + by (bow, —biw, ) + b (Bw, —b{w,)] (13)
m, = i[,o'(w3w5 —W,W, ) + by (0w, —bjw,) + b} (b w, —bjw;)]

with should be lowercase.
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Cyclic surfacesin E generated by homothetic motions 23
A = by (W W, — W, W) + by (W, Wy — Wa W, ) + s (W, W — W W) # 0.
Therefore, if the system (12) is not singular (A # 0), we have the following theorem

Theorem 4.1. In general there is a 4-dimensional Lorentzian sphere with a center (0,0,m,,m,, M) which
contains the Lorentzian circle C,, which is tangent to all tangent planes 7(¢) of the given cyclic surface (1). This

Lorentzian sphere is given by
S XX (% = M) (X, =M+ (X — M) = |1+ ]+ m] + |
where M, M,, M given by (13).
Definition 4.1. Canal hypersurfaces in Eln are envelope hypersurfaces of one-parametric sets of Lorentzian spheres.

Theorem 4.2. Any cyclic 2-surface in Eln in general is contained in a canal hypersurface, which is gained as an

envelope of a one-parametric set of 4-dimensional Lorentzian spheres.

4.1. The Singular Cases
If the system of equations (12) is singular (A = ), we have many cases:

Case 1. rank(B) =rank(B\H) =2. In this case, we have a one-parametric set of Lorentzian spheres whose
centers fulfill a straight line in the X X, X; — space

— W, (p' +bmy) + bl (] +w,m,) w3<p'+b;m3)—b;<u+vvzm3>j

M={0,0,m, )
( m b,w, —biw, b,w, —biw,

with arbitrary M, € R. Thus, we gain a straight line of possible centers.
Case2. rank(B) =rank(B\H) =1. In this case, we have a plane of possible centers.

Case3. rank(B) =2 = rank(B\H) . In this case, we assume

W, W, w b
2 3 4

2= 3 =4 o) Lz

w,oow, W, b;

By using the homogenous coordinates
m,=A=0,m=0,m, =0,
m, = (b; - ﬂb; )(b!xW7 _bsl We ), m, = (b; - ﬂb; )(bgws _b3’ W, )
m, = (b — Ab] )(byw, —b,w;).

the centers of the Lorentzian spheres are an ideal point (point at infinity) and its coordinates are given as above. The

corresponding Lorentzian sphere degenerates into a hyperplane.

Case4. rank(B) =1 rank(B\H) . In this case the centers of the possible Lorentzian spheres become a straight
line at infinity. The corresponding Lorentzian spheres degenerate and form a pencil of the hyperplane.
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5. CURVE OF CENTERS OF THE LORENTZIAN SPHERES

Now, we consider t as varying and in this section, we will determine the centers of the Lorentzian sphere which
contain the Lorentzian circle C(t) and are tangent to all tangent planes 7(t,¢) of the cyclic surface (1). We know
from the inital position, that the hyperplanes of the cyclic surfaces contain a point M(t) for any t,¢ such that
M(t) is the center of this Lorentzian sphere. In the moving space of the Lorentzian circle the center of the
Lorentzian sphere at the moment t is given by mM(t) = (0,0, m, (t), m, (t), M, (t)). Then from (5), one can find

b1 bi(®) i) m ) | 250 ORO=POAW
T O T, ® T, mo|=| st ®+h @)+ o'l o ()
T (M T, Ty, ®Ams (M) pt)(E, M) +h, )+ p O, 1)

where T, () = p'(Da,, (1) + p(t)a, (1), k=3,4,5,r =1,2.By solving (14), we obtain

m, (t) = H(Ze b (b (t) - p(t)p'(t)j(u OTe (1) - Ty OT, (1)
- (p(t)(lq (t5_+ hy (£) + (O], (D)(0] (DT, (t) ~ bl (DT, (1) (15)
— (p(t)(E&, (t) +h, (1) + (O, ()DL DT, (1) — b (DT, (1)]
m, (t) = H(Ze b, (b (t) - p(t)p'(t)}(m DT () - T, OT, (1)
- (p(txei ®) ; h, (1) + p'®1, )b DT, (1) -b; OT, (1) (16)
— ()&, (t) +h, (1) + P (O, (D)0} DT, (1) - b (OT,, (1))]
m(t) = H[Z &b (b (1) - p(t)p'(t)j(nl (OT, () =T, (0T, (1)

— (P&, O +h, )+ o' O, (O)b; (OT,, (O -bs (OT, (1) a7
— ()&, (1) +h, (1) + PO (D)(0; (DT, ()~ BT, (1)]

where

A1 = b3' (t)(T41 (t)TSZ (t) _TSI (t)T42 (t))+ bz’l (t)(TSI (t)T32 (t) _T3l (t)TSZ (t))
+b! (O(T,, OT,, O =T, )T, (1) # 0.

Therefore, the coordinates of the centers of the Lorentz spheres in the fixed frame at any instant t are given by

M, 0
M, 0

M, | = p(OAD) My (1) [+d(t) (18)
M, m, (t)

M m; (t)

Theorem 5.1. At any instant t, there is a Lorentzian spheres &(t) with centers given by
(0,0,m, (t),m, (t),m, (t)) which contains the Lorentzian circle C(t), which is tangent to all tangent planes
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7(t, ) of the given cyclic surface (1). The curve of the centers of these Lorentzian spheres in the moving frame is
given by m(t) = (0,0, m; (t), m, (t), my (t)), where m,(t), m,(t), m(t) are given by equations (15)-(17)

and in the fixed frame it is given by (18).

Example5.1. We consider cyclic surfaces generated by the motion given by

Alt) =

chat
0
0
0
—sin At

0
cos At
sin At

0

0

0
—sin At
cos At
0
0

sint shAt
0
0
cost
—sint chAt

—cost shit
0
0
sint
cost chit

(19)

such that 1 € R—{0}. We assume p(t) =€% and d(t)=(0,0,0,Vt,0)", where q#0 and V#0. We

compute by differentianting A(t) and put t =0, one can find
W, =W, =-A4,W,, =landw, =0, k=123,6,7.89.

Substutiting into (13), we have

Then, the Lorentzian sphere which contains a Lorentzian circle C, and is tangent to all tangent planes of the

corresponding cyclic surface is given by

q q
—X{ X X A (X, )T XD = =1 —
\Y; v?2
After differentiation of (19), and substitution into (14), we get
0 v 0 m; (t) vit—ge®
0 0 —e(gshat+ Achat) | m, (t) | = 0
e® (gsin At + Acos At) 0 0 m, (t) 0
Then, for the general centers of the tangent Lorentzian spheres
vit—qge’®
m,(t) =0, m,(t) = —, my(t) = 0.

Therefore, the parametric representation of the curve of centers of the Lorentzian spheres in the moving frame is

given by

vt — ge’®
m(t) = | 0,0,0,——— 0
v

From (19) and (1) its parametrization in the fixed frame is
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m, (t)sint shit '
0
« vit—ge’®
M) =e 0 , myt) = ——
m, (t)cost +wvt v
—m, (t)sint chit
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