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Abstract – In this paper, we study cyclic surfaces in 5
1E  generated by homothetic motions of a Lorentzian 

circle. The properties of these cyclic surfaces up to first order are investigated. We show that, as it is shown in 
5E , cyclic 2-surfaces in 5

1E , in general, are contained in canal hypersurfaces. Finally, we give an example. 
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1. INTRODUCTION 
 

Homothetic motions are a general form of Euclidean motions. It is crucial that homothetic motions are regular 

motions. These motions have been studied in kinematic and differential geometry in recent years. Under these 

motions, the point paths of the circle 0c  generate a surface which is called the cyclic surface [1, 2]. In papers written 

in recent years, these surfaces seem to be the leading surfaces in geometric modeling [1, 3, 4]. 

Abdel-All and Hamdoon gave some first order properties of cyclic surfaces generated by homothetic motions in 

five dimensional Euclidean space and obtained some new theorems [5]. In Minkowski (semi-Euclidean) space, 

hyperbolas (Lorentzian circles) play the role of circle in Euclidean space [6]. We generalize the cyclic surfaces by 

studying the surfaces generated by motions of hyperbolas. 

 
2. NORMAL HYPERPLANES 

 

A cyclic surface in 5
1E  is given by  

  RttdxtAttX   ,,)()()()(,  
 

where   5,,2,1,,)()(  jitatA ij  is an semi orthogonal matrix and  Tshchx 0,0,0,,)(    represents 

the unit Lorentzian circle 0c .  Ttbtbtbtbtbtd )(),(),(),(),()( 54321  is the translational part of the motion. We 

also assume that all involved functions are a class of 1C . Let 5,,1,)( itai  be the column vectors of the matrix 

)(tA , hence the cyclic surface can be written as follows 
 

                                                           )()()()(, 21 tdshtachtattX                                                   (1) 
 

where )(td  is the center of the moving Lorentzian circle and )(),( 21 tata  are two orthogonal vectors in the plane 

of the Lorentzian circle. The velocity vectors of the points of the Lorentzian circle are given by 
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                                 )()()()()()()(, 2121 tdshtachtatshtachtattX                     (2) 
 

where '  denotes the derivative with respect to the time t . 
The equation of the hyperplanes orthogonal to such a path is 
 

      ,,, tXtXtXY TT 
 

 
where  TyyyyyY 54321 ,,,,  is the position vector of an arbitrary Y in the hyperplane. The scalar product in the 

above equation is Lorentzian metric. According to the inner product this equation is 
 

                                                                      ,,, tXtXtXY TT 
                                                            (3) 
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  is the sign matrix. 

Substituting (1) and (2) into (3), we have 
 

 )(])()()[(])()()[( 2121 tdYshtaYchtaYtshtaYchtaYt TTTTT   

.)](])()()[([ 21  tdshtachtat TTT   

 
                                       )()()()()()()( 2121 tdshtachtatshtachtat   .                           (4) 

 
The left hand side of (4) gives  
 
(*) )()]()()()([)]()()()([... 2211 tdYtaYttaYtshtaYttaYtchshL TTTTT   . 
 

Since  AAT  and AAT   is a skew symmetric matrix, the right hand side of (4) is 
 

(**) )]()()())()()()()(([)()()()(... 111 tatdttatdtdtatchtdtdttshR TTTT    

)]()()())()()()()(([ 222 tatdttatdtdtatsh TTT   . 
 

Let )()()(),()()( tatdthtdtate k
T

k
T
kk    and 2,1),()()(  ktatdtl k

T
k  . A point Y now will 

be situated in all the normal hyperplanes for all R  (t constant), if (*) and (**) hold for all  . By comparing the 

coefficients of   shch ,,1  in (*) and (**), we obtain 
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where 5,4,3,2,1,11  jj . Moreover, all these normal hyperplanes for fixed t, in general, intersect in a 

plane. 
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3. LOKAL STUDY IN CANONICAL FRAMES 
 

By using Taylor's expansion, up to the first order the representation of motion is given by 
 

    tddxtAAAtX )0()0()())0()0()0()0(()0()0(,    
 

We assume the moving frame 5
1E  and fixed frame Σ coinciding at the zero position (t=0), then we have  

 
1)0(,)0(  IA  and .0)0( d  

 
Thus we have  
 

    tdxtAIItX )0()())0()0((, 55  
 

 
where 10,,2,1),()0(  kwA k  is a semi skew symmetric matrix. For simplicty we write   and ib  instead 

of )0(   and )0(ib  respectively. 
In these frames, the representation of the motion up to the first order is given by 

 

                                 












































































































5

4

3

2

1

10974

10863

9852

7651

4321

5

4

3

2

1

0

0

0

1

1

1

1

1

b

b

b

b

b

t

sh

ch

ttwtwtwtw

twttwtwtw

twtwttwtw

twtwtwttw

twtwtwtwt

X

X

X

X

X












                          (6) 

 





























5

4

3

2

1

b

b

b

b

b

t


















































 

7

6

5

1

4

3

2

1 1

1

tw

tw

tw

t

tw

sh

tw

tw

tw

tw

t

ch






  

 
For any fixed t in equation (6), we gain a curve for R . The orthogonal projection of these curves (t constant) on 

the  21xx  plane is 
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Thus, we have the following. 

 

Corollary 3.1. The orthogonal projection of these curves (t constant in (6)) on the  21xx  plane are Lorentzian 

circles whose centers are given by  21, btbt   and radii by 22
1

2 )1(  twtr . Degenerate cases are given 

for 
t

t
w




1
1 . 

For constant   and varying Rt , formula (7) presents the parametrisation of a straight line )(g . Its equation is 

given by 
 

                                   1211222111121 wbxbxchbxwxshbwxx                               (8) 
 

The equation of the envelope of all these lines )(g  then is gained by eliminating   from the equation (8) and its 

derivative with respect to  , which is given by 
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                                                 011212211   chbwxxshbxwx .                                          (9) 
 

Thus the equation of this envelope is 
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Therefore, we have the following. 

 

Lemma 3.1. The envelope of the lines (8) in general is a conic section, which is given by (10). 

We can classify the conic section (10) according to the relation between the two values 22
1  wm  and 

2
1

2
2 bbn  . We exclude the case 0m  since it is equivalent to 1w . 

 

Lemma 3.2. The envelope of the lines (8) in general will be a conic section of the following type: 
(i) ellipse if nm  , 
(ii) hyperbola if nm  , 
(iii) parabola if nm  . 

 

4. THE TANGENT LORENTZIAN SPHERE OF CYCLIC SURFACE IN 5
1E  

 
In this section, we will show at any instant t there exist a Lorentzian sphere )(t , which is tangent to a given cyclic 

2-surface (1) in all points of the instantaneous position )(tc  of the Lorentzian circle 0c . Without loss of generality 

we investigate the situation at the zero position. Any Lorentzian sphere 0  which is tangent to a given cyclic 2-

surface (1) along 0c  has to contain 0c ; hence the center of 0  has coordinates ),,,0,0( 543 mmm  with 

Rmmm 543 ,, . On the other hand, since 0  has to be tangent to all velocity vectors of the motion, the center of 

0  has to lie in each of the hyperplanes through the points of )(tc , orthogonal to these velocity vectors. This gives 

us the additional condition 
 

)()()( 745563445233  shwchwbmshwchwbmshwchwbm   

                                                                           shbchb 21 .                                                               (11) 
 

By comparing the coefficients of   shch ,,1  in (11), we have the system of linear equations 
 

                                                                                      HBM                                                                              (12) 
 

where should be lowercase. 
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By solving (12), we get 
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with should be lowercase. 
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0)()()( 536257254464733  wwwwbwwwwbwwwwb . 
 

Therefore, if the system (12) is not singular ( 0 ), we have the following theorem 

 

Theorem 4.1. In general there is a 4-dimensional Lorentzian sphere with a center ),,,0,0( 543 mmm  which 

contains the Lorentzian circle 0c , which is tangent to all tangent planes )(  of the given cyclic surface (1). This 

Lorentzian sphere is given by 
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where 543 ,, mmm given by (13). 

 

Definition 4.1. Canal hypersurfaces in nE1  are envelope hypersurfaces of one-parametric sets of Lorentzian spheres. 

 

Theorem 4.2. Any cyclic 2-surface in nE1  in general is contained in a canal hypersurface, which is gained as an 

envelope of a one-parametric set of 4-dimensional Lorentzian spheres. 

 

4.1. The Singular Cases 

If the system of equations (12) is singular ( 0 ), we have many cases: 

 

Case 1. BrankBrank ()(  \ 2) H . In this case, we have a one-parametric set of Lorentzian spheres whose 

centers fulfill a straight line in the 321 xxx space 
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with arbitrary Rm 3 . Thus, we gain a straight line of possible centers. 

 

Case 2. BrankBrank ()(  \ 1) H . In this case, we have a plane of possible centers. 

 

Case 3. BrankBrank (2)(  \ )H .  In this case, we assume 
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By using the homogenous coordinates 
 

,0,0,0 210  mmm
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))(( 5463214 wbwbbbm   . 
 

the centers of the Lorentzian spheres are an ideal point (point at infinity) and its coordinates are given as above. The 

corresponding Lorentzian sphere degenerates into a hyperplane. 

 

Case 4. BrankBrank (1)(  \ )H . In this case the centers of the possible Lorentzian spheres become a straight 

line at infinity. The corresponding Lorentzian spheres degenerate and form a pencil of the hyperplane. 
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5. CURVE OF CENTERS OF THE LORENTZIAN SPHERES 
 

Now, we consider t as varying and in this section, we will determine the centers of the Lorentzian sphere which 

contain the Lorentzian circle )(tc  and are tangent to all tangent planes ),(  t  of the cyclic surface (1). We know 

from the inital position, that the hyperplanes of the cyclic surfaces contain a point )(tm  for any ,t  such that 

)(tm  is the center of this Lorentzian sphere. In the moving space of the Lorentzian circle the center of the 

Lorentzian sphere at the moment t is given by ))(),(),(,0,0()( 543 tmtmtmtm  . Then from (5), one can find 
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where 2,1,5,4,3,)()()()()(  rktattattT krkrkr  . By solving (14), we obtain 
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))()()()())(()())()()((( 413314222 tTtbtTtbtltthtet    
 

where 
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  0)()()()()( 324142315  tTtTtTtTtb . 
 

Therefore, the coordinates of the centers of the Lorentz spheres in the fixed frame at any instant t are given by 
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Theorem 5.1. At any instant t, there is a Lorentzian spheres )(t  with centers given by 

))(),(),(,0,0( 543 tmtmtm  which contains the Lorentzian circle )(tc , which is tangent to all tangent planes 
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),(  t  of the given cyclic surface (1). The curve of the centers of these Lorentzian spheres in the moving frame is 

given by ))(),(),(,0,0()( 543 tmtmtmtm  , where )(),(),( 543 tmtmtm  are given by equations (15)-(17) 

and in the fixed frame it is given by (18). 

 

Example 5.1. We consider cyclic surfaces generated by the motion given by 
 

                             






























tchttchtt

tt

tt

tt

tshttshttch

tA








cossin00sin

sincos000

00cossin0

00sincos0

cossin00

)(                            (19) 

 
such that }0{ R . We assume   qt( t ) e  and Tvttd )0,,0,0,0()(  , where 0q  and 0v . We 

compute by differentianting )(tA  and put 0t , one can find  
 

1, 1054  www   and 9,8,7,6,3,2,1,0  kwk . 
 

Substutiting into (13), we have 
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Then, the Lorentzian sphere which contains a Lorentzian circle 0c  and is tangent to all tangent planes of the 

corresponding cyclic surface is given by 
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After differentiation of (19), and substitution into (14), we get 
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Then, for the general centers of the tangent Lorentzian spheres 
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Therefore, the parametric representation of the curve of centers of the Lorentzian spheres in the moving frame is 

given by 
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From (19) and (1) its parametrization in the fixed frame is 
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