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Abstract – Bifurcations leading to chaos have been investigated in a number of one dimensional dynamical 
systems by varying the parameters incorporated within the systems. The property hyperbolicity has been 
studied in detail in each case which has significant characteristic behaviours for regular and chaotic 
evolutions. In the process, the calculations for invariant set have also been carried out. A broad analysis of 
bifurcations and hyperbolicity provide some interesting results. The fractal property, self-similarity, has also 
been observed for chaotic regions within the bifurcation diagram. The results of numerical calculations 
assume significant values. 
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1. INTRODUCTION 

 
While studying regular and chaotic evolutions of a dynamical system, we regularly vary the system 
parameters. This can be observed clearly through bifurcation diagrams. The chaotic evolutions observed in 
certain critical values of the systems parameters are interesting phenomena to study. Many research 
articles appearing in recent times discuss the cause of chaotic evolution, controlling chaos, identifying 
chaotic and regular motions etc. [1-7] and many others. In the process of detailed analysis, we come across 
the property of hyperbolicity which is an important ingredient to discuss evolutionary motions of the 
system concerned. This hyperbolicity induces invariant sets for different systems, as suggested by 
Devaney [8]. The invariant set is nothing but a set of invariant measures within the chaotic domain 
(Strange Attractor) of the system. After certain steps of regular bifurcations, we reach a state where the 
bifurcation diagram shows self-similar or fractal properties. Within the chaotic regions, we also have 
periodic windows, where again we can observe similar fractal properties. 

The objective of the present study is mainly confined to one or two dimensional discrete maps, and 
the calculations followed here similar to one initiated by Jonassen [9], to study hyperbolicity. Also, we 
wish to observe clearly the bifurcation phenomena of the systems conserned. A close range of bifurcation 
shows some interesting results. The numerical results for every case reveal very significant hyperbolic 
sets. The study can be extended to other maps which may produce important results. 

 
2. BASIC CONCEPTS AND DEFINITIONS 

 
Consider nonlinear time-invariant system or recursive system 1 ( )t tx f x   
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Definition 2.1. A set nS R  is said to be invariant with respect to the system if for every trajectory x,  
for all tx S x S t      

i.e., trajectories can enter, but cannot leave set S. 
In other words, S is an invariant set if every trajectory which starts from a point in S remains in S for 

all time. 
 
Definition 2.2. Let :f R R  be a 1C  function and suppose that K is a compact invariant set for f (i.e. 
f(K)=K). Then K is a hyperbolic set for f if there are constants C > 0 and r > 1 such that 
( ) ( ) and all 1n nf x C r x K n      

The C in the definition takes care of the fact that 1f   may stretch some intervals (i.e., 
( ) 1 for some f x x K   ), in which case C<1, but r>1 implies the shrinking under nf   eventually 

dominates any stretching when 1nC r  . 
 

3. CALCULATIONS OF HYPERBOLIC SET AND INVARIANT  
SET FOR SOME DISCRETE MODELS 

 
Consider the quadratic discrete map 2

1n n nx r x x    , where [ 1.5,2.5]x I   , from [10]. Here 
we have examined the various hyperbolic properties of this map by obtaining hyperbolic fixed points and 
discussing the stability of such points. 

It can easily be checked out that this map is not a diffeomorphism, so the backward orbits do not 
exist. The figure below, Fig. 1, shows the graphs of rf  for different values of r . Here we have used 
r=0.5, r=1.0, r=1.5, r=2.0, r=2.25, r=2.5, with different colours in Fig. 1, from the lower to the upper 
curve respectively. 

 

  
Fig. 1. Graph of rf  for different values of r 

 

It can be easily seen that if 2.25r   then ( ) ( , 2.5]rf I   , but for r > 2.25, ( ) [ 1.5,2.5]rf I   . 

Particularly, at 2.25r  , ( ) [ 1.5,2.5].rf I    Further, if we take 
5

,
2

r  we get an interval  0,1J   

which has the property that 5

2

( )f J I    and 5

2

( )nf x  as n  . 

Now let 
0 1I I J I   , where 0 [ 1.5,0]I    and 

1 [1, 2.5]I   for which 5 0

2

( ) [ 1.5,2.5]f I    and 

5 1

2

( ) [ 1.5,2.5]f I   . Further there exist open intervals in 0 1and I I  such that the second iterate is 

mapped outside [ 1.5,2.5] . These intervals can be calculated and given by  
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   1

1 1
1 11 , 1 7

2 2
J

    
 

,    2

1 1
1 7 , 1 11

2 2
J     

 
 . 

 

Thus, there exist four intervals  00

1
1.5, 1 11

2
I      

,  01

1
1 7 ,0

2
I     

,  10

1
1, 1 7

2
I     

, 

 11

1
1 11 ,2.5

2
I     

 such that 2
5

2

( ) [ 1.5,2.5],ijf I    00,01,10,11ij  . Note that 
00 01 0 10 11 1, ; ,I I I I I I  . 

While continuing this process, we observe that there exists exactly one open interval inside each interval 

iI  such that these intervals are mapped to [ 1.5,2.5]  on the second iterate and mapped outside 

[ 1.5,2.5]  on the third iterate.  

So, we find that there exists eight intervals , 000,001,010,011,100,101,110,111ijkI ijk   such that 
3

5

2

( ) [ 1.5,2.5]ijkf I   . This discussion can easily be seen graphically from the lower figure of Fig. 2, 
where rf  is plotted in red, 2

rf  is plotted in green and 3
rf  is plotted in blue.  

 

  
Fig. 2. Shows two diagrams; three iterations of rf   with r = 2.25 in the upper  

one and three iterations of rf  with r = 2.5 in the lower one 
 

In the two graphs given above, one can easily observe that ( )n
rf x  as n   till 2.25r  , 

but ( )n
rf x  as n   for r > 2.25. Further, we will show that a hyperbolic set exists in this 

function for r > 2.25. 
We can proceed with the above process an infinite number of times, and label the intervals according to 
the following rule: 
 

0 1 2 0 1 2 1 0 1 2 1... ... ...( )
n n n n

n
i i i i i i i i r i i i i iI I f I I

 

    where 0,1ji  . 
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It will give us a nested sequence of closed intervals, 
0 0 1 0 1 2 0 1 2 ......

ni i i i i i i i i iI I I I    . Finally, we come to 

the conclusion that 
 

0 1 2 ...
1

ni i i i
n

I



  

 
consists of a single point (x). It is clear that the orbit of such a point will stay in I forever. So now we 
define the itinerary of a point x as  
 

0 1 2( ) ... ...nh x i i i i  where 0ji   if 0( )j
rf x I  and 1ji   if 1( )j

rf x I . 
 

Now, let K I  denote the set of points staying in I forever. The above argument shows that this set 
will be non-empty and consists of all intersections of nested intervals which we have given above. Further, 
we see that 2:h K    is a homeomorphism, and 1f h h    . 
Then the following diagram commutes: 
 

fK K  

h         h  

2 2
    

 
Finally, we find that the set K  is an invariant set and rf  has a dense orbit in K  for r > 2. 

This same set K  is the hyperbolic set for our given map. It is to be noted that the map under discussion 
evolves chaotically for r > 2.25 and can also be observed through the bifurcation diagram shown in a later 
section. For the Logistic map 1 (1 )nx x x    ([11-13]). It has been also proved that the hyperbolic set 
exists for   > 4. 

Next, we consider another discrete map: 3
1 (1 )n n nx r x x     , where [ 2,2]I R   , as in [10]. 

The parameter r  stands for a certain rate of change of population during the evolution. The figure, given 
below, Fig. 3, shows the graph of rf  for 0.1, 0.5, 1.0, 1.5, 2.0, 2.2r r r r r r      , with different 
colours from the inner to outer curve respectively. 

 

  
Fig. 3. Six curves of 3

1 (1 )n n nx r x x      map for different parameter  

values r = 0.1 to r = 2.2 from inner to outer 
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As we have obtained the hyperbolic set in the earlier considered map, here, for this map we are giving 
a brief idea about the hyperbolic set. As the parameter is increasing from 0.1 to 2.2 in the graphs of the 
considered map shown above, the graphs are lying in the interval till the parameter 2r  . But if we take 

2.2r  , the graph of the map lies outside the interval I. Further, we have observed that for the parameter 
r = 2, the higher iterations lies in the interval [-2, 2] as shown in the upper graph of Fig. 4, but for r = 2.2, 
the higher iterations goes to   as shown in the lower graph of Fig. 4 below.  
 

 

 
 

Fig. 4. Shows two diagrams; three iterations of rf   with r = 2 in the upper  

one and three iterations of rf  with r = 2.2 in the lower one 

 

And as shown in the earlier model, in this map the hyperbolic set will also be the intersection of all the 
iterations. Hyperbolic set is nothing but the invariant set with the condition that the intersection of all the 
iterations should go to   or   or both. 

Consider an another discrete map named Cubic map: 2
1 (1 )n n nx r x x   , from [14]. We have shown 

below, in Fig. 5, the graph of this Cubic map for different values of the parameter r. Here we have taken 
r=1, r=1.5, r=2, r=2.5, r=3, r=3.5. The interval of x is taken as [-1, 1]. But the interval of the function is 
[-1.155, 1.155]. Till 3r  , ( ) [ 1.155,1.155]rf x    and for 3r  , ( ) [ 1.155,1.155]rf x    

 

  
Fig. 5. Six curves of 2

1 (1 )n n nx r x x    map for different 

 parameter values r = 1 to r = 3.5 from inner to outer 
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Now the question arises: 
How can one decide an appropriate interval for the function concerned? Whether the interval for x and f(x) 
is same in all kinds of discrete maps? 
The answer to the question above can be obtained from the next topic ‘Hyperbolicity and Bifurcation’. 

Further, we have shown below the iteration diagrams of the above discrete cubic map with parameter 
r = 2 and r = 2.2 and we have again observed that for r = 2 the further iterations are lying in a certain 
limit. But, as we exceed this parameter from two, the iterations are moving towards   and  , 
particularly for r = 2.2, which is shown in the lower diagram of Fig. 6 below.  
 

 
 

Fig. 6. Shows two diagrams; three iterations of rf   with r = 2 in the  

upper and three iterations of rf  with r = 2.2 in the lower 

 
4. BIFURCATION AND HYPERBOLICITY 

 
While considering bifurcation, we see that there is a strong relation between hyperbolicity and bifurcation 
leading to chaos. As we have restricted our discussion to discrete models, in any discrete model the 
invariant set always exists for any parameter value. But this invariant set contains only a single point till 
that value of parameter, after which bifurcation starts. Later on as the value of the parameter is increasing 
or decreasing (according to the discrete map), the cardinality of the invariant set keeps on increasing. As 
we have defined the hyperbolic set above and given a detailed idea to get the hyperbolic set in one 
dimensional discrete map, we know that hyperbolic set is an invariant set with a certain condition. That 
condition we have shown clearly while leading towards the computation of the hyperbolic set in the above 
three one dimensional discrete models. 
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Now we are moving towards the answer of the question which we have left in the last section of this 
paper. 

To answer that question, we have considered three one dimensional models in this paper and studied 
many more that are not included in this paper. One of which is the most general, Logistic map, from which 
we have started the study of this hyperbolic set, but in that particular map our interval for x and f(x) was, 
fortunately, the same. Jonassen, [9], has extended his further calculations without any discussion of the 
considered interval. But after a detailed observation we found that these intervals are not, in general, the 
same for x and f(x) while calculating the hyperbolic set. In the computations which have been done till 
now, we have taken three discrete models in which for two of these, the intervals were same, but for the 
third it was different. But still a question remains, how can this interval be found out? The answer to this 
question can be obtained by studying the bifurcation diagrams of the following discrete maps: 

Consider the discrete map 2
1n n nx r x x    . In this map the interval for x was taken as [ 1.5,2.5]  

earlier while computing hyperbolicity through iterations. Now we have to find the interval for f(x). 
Drawing of the bifurcation diagram of this map is given below in Fig. 7, for r = 0 to r = 2.5. 
 

  
Fig. 7. Shows the Bifurcation diagram of the discrete map  

2
1n n nx r x x     from parameter r = 0 to r = 2.5 

 
In this diagram it can be easily observed that the bifurcation stops at parameter r = 2.25 (approx.). 

And for r > 2.25, we can get the hyperbolic set, as we have seen in earlier computations through iteration 
diagrams. So for this parametric value let us draw the first iteration diagram in the given interval of x and 
then find the limiting interval of f(x) from this diagram. This interval will be the required interval of f(x) 
for finding the hyperbolic set. In this discrete map this interval is the same as that of x as shown in Fig. 8 
below. Further, the interval of x is taken as [ 1.5,2.5]  because all iterations are meeting on the end points 
of this interval as shown for the three iterations in the lower diagram of Fig. 8. 
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Fig. 8. Shows the first iteration for the discrete map 2

1n n nx r x x     with parameter 

 r = 2.25 in the interval [ 1.5,2.5]  in the upper diagram, and three iterations with the  

same parameter r = 2.25 meeting at the end points of the interval in the lower one 
 

Further, for the second map 3
1 (1 )n n nx r x x     , we can see the same observation. We have drawn 

the bifurcation diagram of this map as shown in Fig. 9. 
 

  
Fig. 9. Shows the Bifurcation diagram of the discrete map  

3
1 (1 )n n nx r x x      from parameter r = -0.1 to r = 2.2 

 
In this bifurcation diagram it can be observed that bifurcation stops at parameter r = 2. And for this 

parameter the first iteration diagram lies in the limiting interval [-2, 2]. So, the interval for f(x) is [-2, 2] for 
finding the hyperbolic set. For this map, as computed earlier, the interval for x was also taken as [-2, 2]. In 
this map, the interval for x and f(x) is also the same as in the earlier case. 
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Now, let us consider the third discrete map 2
1 (1 )n n nx r x x   . Take the interval for x as [-1, 1] where 

all the iterations meet at the end points of this interval. Now consider the bifurcation diagram for this map 
as shown in Fig. 10. In this diagram bifurcation stops at parameter r = 3, and for this parameter we found 
the interval for f(x) is [-1.155, 1.155], which is not same as interval of x.  

 

  
Fig. 10. Shows the Bifurcation diagram of the discrete  map  

2
1 (1 )n n nx r x x    from parameter r = 1 to r = 3.2 

 
So we came to the conclusion that while calculating the hyperbolic set, in general, intervals for x and 

f(x) are not necessarily the same. So, bifurcation plays a very important role in hyperbolicity. 
 

5. HYPERBOLICITY IN TWO DIMENSIONAL DISCRETE SYSTEMS 
 

Earlier we have computed hyperbolic set for one dimensional maps and suggested a method to get the 
parameter after which a discrete map will be hyperbolic. Now we want to extend our discussion to higher 
dimensions. Let us consider two dimensional discrete maps. For such maps, calculations of hyperbolic sets 
cannot be similar to what has been explained above. However, we can obtain certain set of critical values 
of pamameter (s), after which the existence of the hyperbolic set can be observed. Graphically, the 
intersection of iterations of the two or higher dimensional discrete maps cannot be observed. As the 
bifurcation diagram for two dimensional discrete maps can easily be drawn, we can get the parameter(s) 
after which hyperbolic set exists. 
Let us consider the popular two dimensional discrete Henon map  
 

2
1

1

1n n n

n n

x a x y

y b x




  


 

 
The phase plot for the map is shown as in Fig. 11 and the bifurcation diagram is shown in Fig. 12. 
 

  
Fig. 11. Phase plot for the Henon map 
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Fig. 12. Bifurcation diagram of the Henon map from  

parameter a = 0 to a = 1.6 and fixed b = 0.3 
 

In the above bifurcation diagram, bifurcation stops at a = 1.45(approx.). So for Henon map, if we fix 
b = 0.3, then hyperbolic set exists for a > 1.45. 

Similarly, for any two dimensional discrete map this parametric limit can be found out. 
For example, let us consider a very interesting Burger’s map  
 

2
1

1

n n n

n n n n

x a x y

y b y x y




 
 

 

 
The phase plot for this map is shown in Fig. 13 and the bifurcation diagram is shown in Fig. 14: 
 

  
Fig. 13. Phase plot for the Burger’s map 

 

 
 

Fig. 14. Bifurcation diagram of the Burger’s map from  
parameter b = 0.2 to b = 2 and fixed a = 0.75 
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In this bifurcation diagram one can observe that the bifurcation stops at parameter b = 1.88. So if we 
fixed the parameter a = 0.75, then hyperbolic set exists in Burger’s map for b > 1.88.  

 
6. PERIOD DOUBLING PHENOMENA 

 
We observe through the bifurcation diagram of one dimensional discrete maps, period doubling 
phenomena introduced by Feigenbaum [15] holds in the form of two cycles, four cycles, eight cycles etc. 
from one cycle (e.g. in Fig.7, Fig. 9, Fig. 10) and then leading to chaos. But during this period, doubling 
phenomena may not hold for all two or higher dimensional systems. For example, in Henon map it holds 
as shown in Fig. 12, but for Burger’s map it does not hold as shown in Fig. 14. To get a clearer picture, a 
very small magnified region of the bifurcation diagram of Burger’s map is shown in Fig. 15. 
 

  
Fig. 15. Shows the magnified region of Bifurcation diagram shown in Fig. 12 

 
In this diagram one can easily observe that no period doubling phenomena appears in it. It has been 

observed that the steady state solution of one cycle suddenly changes into chaotic. The orbits are random 
in nature. 

 
7. CONCLUDING REMARKS 

 
Through the above investigation we find that the property hyperbolicity has a great role while discussing 
regular as well as chaotic motion in the dynamical system. Parameters of the systems have a specific role 
in deciding hyperbolic and invariant sets. As systems are nonlinear, the parameters variations may not be 
exactly similar. Also, the bifurcation diagrams play an important role in deciding hyperbolic and invariant 
sets. The results shown above are mostly graphical rather than numerical. For two or higher dimensional 
systems period doubling phenomena may not necessarily be observed. However, limiting values of the 
parameters can be obtained which play an important role in obtaining hyperbolic and invariant sets. One 
can extend the problem to other two or higher dimensional maps as well as for continuous maps. This part 
of the program may be considered in our future studies. 
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