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Abstract

In this paper, we give the characterization of some classes of compact operators given by matrices on the normed
sequence space rz? (B™), which is a special case of the paranormed Riesz B™-difference sequence space
r(p, B™). For this purpose, we apply the Hausdorff measure of noncompactness and use some results.
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1. Introduction

Let w be the space of all real valued sequences.
Any vector subspace of w is called a sequence
space. We write €, ¢, ¢y and ¢ the sets of all
bounded, convergent, null and finite sequences,
respectively. Also, by £, and £, (1 <p < ) we
denote the sequence spaces of all absolutely and
p —absolutely convergent series, respectively.
Throughout this paper, if x € w, then we write
x = (x;) instead of x = (xy)i=,. Further, we use
the conventions that e = (1,1,...) and e® is the
sequence whose only non-zero term is 1 in the kth
place for each k €N, where N ={0,1,2,...}.
Morever, by F.(r €N), we denote the
subcollection of F consisting of all nonempty and
finite subsets of N with elements that are greater
than r, that is

F.={NeF:n>rforalln e N}; (r eN).

It is quite natural to find conditions for a matrix
map between BK-spaces to define a compact
operator since a matrix transformation between BK-
spaces is continuous.

This can be achieved by applying the Hausdorff
measure of noncompactness. In the past, several
authors characterized classes of compact operators
given by infinite matrices on some sequence spaces
by using this method [1-12].
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Recently, Malkowsky and Rakocevi¢ [13],
Djolovi¢ and Malkowsky [14] and Mursaleen and
Noman [15] have established some identities or
estimates for the operator norms and Hausdorff
measures of noncompactness of linear operators
given by infinite matrices that map an arbitrary BK-
space or the matrix domains of triangles in arbitrary
BK-spaces. Also, Mursaleen [16] has determined
the Hausdorff measure of noncompactness on the
sequence space n(¢) of W. L. C. Sargent and
applied the technique of measure of
noncompactness to the theory of infinite systems of
differential equations.

In this paper, by taking a special case of the
paranormed Riesz B™-difference sequence space
r%(p, B™), we obtain a BK-space and investigate
the classes of some compact operators given by
matrices on this space by applying the Hausdorff
measure of noncompactness and using some results
in [15] and [13].

2. Preliminaries and notations

The B-dual of a subset X of w is defined by

XB = [a € w: Z ayx, converges forall x € Xt.
k

If A is an infinite matrix with real entries a,
(n,k € N), then we write A,, for the sequence in
the nth row of A, that is, A, = (Qnx)r=o- Also, if
x = (x) € w, then we define the A-transform of x
as the sequence Ax = (4, (x))n=,, Where
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[ee]

An() = ) aneri; (nEN)

k=0

provided the series on the right side converges for
eachn € N.

Let X and Y be subsets of w. We say that A
defines a matrix mapping from X into Y, and we
denote it by writing A: X — Y, if for every sequence
x = (x,) € X the sequence Ax = (4,(x)) isin Y.
Furthermore, the set

Xy,={x€ew:Ax € X} (D

is called the matrix domain of 4 in X and (X,Y)
denotes the class of matrices that maps X into Y,
that is A€ (X,Y) if and only if X, VY, or
equivalently A, € X# for all n € N and Ax € Y for
allx € X.

A sequence space X is called FK-space if it is a
complete linear metric space with continuous
coordinates p,:X — R (n € N), where R denotes
the real field and p,(x) = x,, for all x = (x) € X
and every n € N. A BK-space is a normed FK-
space, that is, a BK-space is a Banach space with
continuous coordinates. An FK space X D ¢ is said
to have AK if every sequence x = (x;) € X has a
unique representation x = Yo x,e®, that is
x = lim,_,, x™. Here, xI™ is called the n-section
ofx (n € N).

The sequence spaces ¢, ¢ and ¥, are BK-spaces
with the usual sup-norm given by |lx|[, =
supgen|x| and the space £, is a BK- space with
the usual £,-norm defined by |x]| 0 =

XEw_olxk|P)Y/P, where 1 < p < 0. Also, all of the
¢o and €, (1 < p < o) have AK [17, Example 1.13
and 1.20].

Let X be a normed space. Then, we write Sy for
the unit sphere in X, that is Sy = {x € X: ||x]| = 1}.
If X and Y be Banach spaces then B(X,Y) is the set
of all continuous linear operators L: X —» Y; B(X,Y)
is a Banach space with the operator norm defined
by LIl = sup{liILGl: lIxll <1} for all L€
B(X,Y).

If (X,]|-]) is a normed sequence space, then we
write llally = supyes, S0 aexil for a€w,
provided the expression on the right hand side
exists and is finite, which is the case whenever X is
a BK space and a € X? [18, Theorem 7.2.9, p.107].
Throughout, let 1 <p <o and g denote the
conjugate of p, thatis,q =p/(p—1) for 1 <p <
oorq = oo forp = 1.

The following  well-known results are
fundamental for our investigation.

Lemma 2.1. [18, Theorem 4.2.8]. Let X and Y be
BK-spaces. Then we have (X,Y) € B(X,Y), that is,

every A € (X,Y) defines a linear operator L, €
B(X,Y), where Ly(x) = Ax forall x € X.

Lemma 2.2. [17, Theorem 1.29(b)]. Let 1 <p <
. Then, we have fg = £, and ||a||}p = ||a||€q for
all a = (ay) € 44.

3. The Riesz B™-difference sequence space
rp(B™) (1< p <)

Let us give the definition of some triangle

limitation matrices which are used in the text. Let
(qx) be a sequence of positive numbers and

Q= i (mEN).
k=0

Then the matrix R? = (r,,) of the Riesz mean is
given by

q
Tff{Q_: 0<k<n)
0 (k > n).

The difference and generalized difference
matrices A= (A,;) and B = (by;,) are defined by

A _ (_1)7’1—’( (n—lSkSTl)
nk_{ 0 (0<k<n—-1or(k>n)
and
r (k=n)
bnk= S (k=7’l—1)

0 (0<sk<n-—1or(k>n)

for allk,n € N and r,s € R — {0} (for the matrix
B see [19], [20]). If we take r =1 and s = —1 in
the matrix B, then we have B = A. Thus, for any
sequence space X, the space X is more general and
more comprehensive than the corresponding
consequences of the space X,.

Recently, the generalized B™-Riesz difference
sequence space r(p, B™) has been introduced by
Basarir and Kayike1 [21] as follows:

ri(p,B™) ={x = () € w: T™(x) € £(p)}; (1
< pn <H),

where £(p)is the paranormed sequence space
defined by Maddox [22] and the matrices B™ =
(byy) and RIB™ = T™ = (t;7},) are defined by

b
- {(n T ) rmsnk (max {0,n —m} < k <n)
0 (0 < k <max{0,n —m}) or (k > n)

and
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(Qiz (i T—nk) rm—i+ksi—kqi (k < Tl)
ik

4

thke = m
) T (k=n)
0 (k>n)

for all k,n € N. It is obvious that the matrix B™
reduced the difference matrix A™ in case r = 1 and
s = —1, where A= A(A™™D).

If we take p,, = p for all n € N, then we have

n (B™) = {x = (1) € w: 7o T (0)IP <
w}; (1 <p < o). 2)

Also, if we take m = 1 in (2) then we have

r(B) = {x = (x) € w: ZITn(X)I” < OO}; (1<p<o).

n=0

With the notation of (1), we can redefine the
sequence spaces 7, (B™) and 1, (B) as follows:

r (B™) = (£,)rm and 7,'(B)
= ({{p)r; (1<p < o).

It is easy to see that the spaces rpq(Bm) and
rpq (B) are BK-spaces with the norm, respectively,
as follows:

el gggmy = IT™ GOl =
(ol T )PP (1< p < o0) 3)

and
IIXIITg(m =T e, = Erzol Tu(DIP)P; (L < p < ). (4)

Throughout, for any sequence x = (xi), we
define the associated sequence y = (yx), which
will be frequently used, as the T™-transform of x,
ie.,y = T™(x) and so

1 k-1 k m it i
Yk = _Qijzo [Zi:j (i _j)Tm st JQi]xj +
_; qixi; (k €N). (5)
k

Obviously, if the sequences x and y are
connected by the relation (5), then x € rpq (B™) if
and only if y € ¢,, further if x € r,/(B™), then
el agsmy = 1Yle,-

In this paper, we characterize classes of compact
operators given by infinite matrices from rpq (B™)
to ¢y, ¢, £ and £4. Also, we give the necessary and
sufficient conditions for 4 € (r,"(B™),¥,) to be
compact, where 1 < p < oo.

The following result is immediate by [13,
Theorem 3.2].

Lemma3.1. Let

j-i o
VG k) = (D * e (M T 1)%; ij,e,m € N).

q k = _ (A
Ifa=(ay) € (Vp (Bm)) , then @ = (@) € £, and
the equality

Dm0 WXy = Do Ak Vi (6)

holds for every x = (x;) € qu (B™), where
y = T™(x) is given by (5) and

0 k+1
G = Q <%+ Z [Z v(i,J, k)] aj>; (k € N).
i=k

j=k+1 L3

On the other hand, let 1 < p < co. Then, it can
easily be shown that the inclusion  7./(B™) > ¢

. . 1 1
holds if and only if 1/Q € ¢, where 0= (Q_k) So,
we shall assume that 1/Q € ¢, whenever we study
the space 1,/ (B™).

Lemma 32. Let 1<p <o and d = (d;) be
defined as in Lemma 3.1. Then, we have

[ee)

1/q
D) a<p<e
”allrg(Bm) =dag =

k=0
sgpldkl =1

B
forall a = (a;) € (1 (B™) .
q B

Proof: Let a = (ay) € (T'p (Bm)) . Then we have
from Lemma 3.1 that @ = (d) € ¢, and the
equality (6) holds for all x = (x;) € rpq (B™) and
¥y = (¥x) € £, which are connected by the relation
(5). Also, we can write by (3) that x € Srg(Bm) if
and only ify € S{;p. Thus, we have from (6) that

Ag X
k=0

”a”*q my — sup
p (B™)
p xESTg(Bm)
(o]

Z Y

k=0

: (7

= sup
YESpy

Further, since d@ € £, we get by Lemma 2.2 and
(7) that

lall;gpm, = lalls, = llalle, < o
which concludes the proof.

Lemma 3.3. Let X be a sequence space, A = (a,)
an infinite matrix and 1<p<o. If A€
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(ry (B™),X), then A € (£,,X) such that Ax = Ay
for all x € (rpq (B™),X) and y € £,, where the
sequences x and y are connected by the relation (5)

and A = (d,,) is the associated matrix with
A = (ayy) defined by

S
Ok (e 4 20T VG 0] any) ;- (K € N)(B)
Proof: Let x €r/(B™) and A € (1, (B™),X).
B
Then A, € (rpq(Bm)) for all n € N. Thus, it

follows by Lemma 3.1 that 4,, € (t’p)ﬁ = {4 for all
n €N and the equality Ax = Ay holds. Hence,
Ay € X. Since every y €¢, is the associated
sequence of x €7, (B™), we obtain that A€
(£p, X). This completes the proof.

4. The Hausdorff measure of noncompactness
and compact operators on the space rZ(B"‘)
1<sp<x)

The Hausdorff measure of noncompactness was
defined by Goldenstein, Gohberg and Markus in
1957, and later studied by Goldenstein and Markus
in 1968.

In this section, we give some classes of compact
operators on the space rpq (B™) forl <p < oo,

We recall that if X and Y are Banach spaces and L
is a linear operator from X to Y, then L is said to be
compact if its domain is all of X and for every
bounded sequence (x,) in X, the sequence (L(x;,))
has a convergent subsequence in Y. We denote the
class of such operators by C(X,Y).

If (X,d) is a metric space, we write My for the
class of all bounded subsets of X. By B(x,r) =
{r € X:d(x,y) <r} we denote the open ball of
radius r >0 with the centre in x. Then the
Hausdorff measure of noncompactness of the set
Q € My, denoted by x(Q), is given by

n
x(Q) = inf{e >0: Qc UB(xi,rl-), x €EX, 1
i=0
<e(i=01,..,n) ne N}.

The function y: My — [0,00) is called the
Hausdorff measure of noncompactness.
The basic properties of the Hausdorff measure of
noncompactness can be found in [17], for example
if Q, Q1 and Q. are bounded subsets of a metric
space (X, d), then

x(Q) = 0ifand only if Q is totally bounded
Q1 < Qz implies ¥(Q1) < x(Q2)-

Further, if X is a normed space, then the function
x has some additional properties connected with the
linear structure, e.g.

x(Q1+ Q2) < x(Q1) + x(Q2),
x(aQ) = |a|x(Q) forall « € C.

The following lemma is related to the Hausdorff
measure of noncompactness of a bounded linear
operator.

Lemma 4.1. [17, Theorem 2.25, Corollary 2.26].
Let X and Y be Banach spaces and L € B(X,Y).
Then we have

LI, = x(L(Sx)) ©)
and
L € C(X,Y) ifand only if ||L||, = 0. (10)

Lemma 4.2. [6, Lemma 5.5]. Let Q be a bounded
subsets of the normed space X, where X is £, for
1<p<w or ¢y If P,:X—> X is the operator
defined by
P,(x) = x™ = (x, %1, %, ..., Xp, 0,0, ..) for all
x = (x;) € X, then we have

x(@) = lim (Stelgll(l - Pn)(x)”>-

Lemma 4.3. [15, Theorems 3.7 and 3.11]. Let
X D ¢ be a BK-space. Then, we have
(a) IfA € (X,cp), then

ILally = limsupl[A,[I%

n—-oo

and

L, is compact if and only if lim ||4,||% = 0.
n—-oo
(b) If X has AK and A € (X, c), then

1 .
E.llmsupIIAn —allx < |Lall,
n—oo

< limsup||4,, — a||}

n—-oo

and

L, is compact if and only if lim ||4, — ||} = 0,
n—-oo

where a = (a;) with a; =lim, . ay, for all
k € N.

(c) IfA € (X,4y), then

0 < ||L4ll, < limsup||4,|l%

n—-oo
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and

L, is compact if lim [|A,||x = 0.
n—-oo

(d) IfA € (X, ¢,), then

S

neN

*

lim [ sup

< IILally
r—00 NETr

X

*

<4.lim | sup
T2\ NeF,

S

nenN

X
and
L, is compact if and only if

S

nenN

*

lim | sup =0.

roo \ NefF,

X

This lemma gives necessary and sufficient
conditions for a matrix transformation from a BK-
space X to ¢y, ¢, £1 and £, to be compact (the only
sufficient condition for €,). Thus, we have:

Theorem 4.4. Let 1 <p <o and and ¢ = p/(p —
1). Then we have

(a) If A €(r,'(B™),cy), then

ILall,, = limsup(ERol G| D4 an

n—-oo

and

L, is compact if and only
if 1imy, o, (Zie=ol@nic| D9 = 0. (12)

(b) If A €(r,/(B™),c), then
= imsup, oo (X ol — il DY < [ILall,, <
limsupy, o0 (Ciol @nie — @4 (13)
and
L, is compact if and only
1m0 (S| Ge — Bl )7 = O, (14)

where & = (&) with &, = lim,,_,, d,, for all
k € N.

() If A €(r,'(B™), %), then

0 < IILall,, < limsup(EyLol@n,el®)*/ (15)

n-oo

and

L, is compact if 1im,,_,e (Xsol@nk |9/ = 0. (16)

Proof: (a) Let A E(rpq (B™),cy). Since A, €
(r,/(B™))F for all n € N, we have from Lemma 3.2
that

”An”:g(Bm) = ”An”[q = (Zl;wzoldnqu)l/q (17)

for all n € N. Hence, we get (11) and (12) from
(17) and Lemma 4.3(a).

Parts (b) and (c) can be proved similarly by using
Lemma 4.3(b) and (c).

The conclusions of Theorem 4.4 still hold for
r'(B™) instead of r,/(B™) with q =1, and on
replacing the summations over k by the supremums
over k.

Theorem 45, Let 1<p<o. If AE€
(r'(B™), €,), then

) 1/p
lim <sup Z |dnk|p> . (18)
r—o k

Proof: Let S =S +4gm)- Then, we have by Lemma
1

2.1 that L,(S) = AS € ¢,. Thus, from (9) and
Lemma 4.2 we can write that
a 4.2 we can write that

ILally = x(AS) = lim (supyesll (U = BI(Ax)]lg, ),(19)

where B.: ¢, > £, (r € N) is the operator defined
by P.(x) = (x¢,x1,...,%-,0,0,...) for all x=
(xx) € £

Now, let x=(x)€nr’(B™). Since A€
(/(B™),%,), we obtain from Lemma 3.3 that
A€ (£1,4,) and Ax = Ay, where y = (y),) € ¥4 is
the associated sequence defined by (5). Therefore,
we have that

10 = BN, = (|0 = POV,

=< i Iﬁn(y)lpf

n=r+1

(5

n=r+1

0 e 1/p
< Z( Z |dnkyk|p>
n
o 1/p
< Iyll, sgp( > |ank|p>

n=r+1

[

[ee]

Z AnicYr

k=0

:
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) 1/p
= llxlla gm) Sgp< Z Iml”)

n=r+1

for every n € N. This yields that

0 1/p
supll(/ = P4, < sup( > |anklp>
XES k

n=r+1

for every n € N. Hence, from (19) we have that

IILally

) 1/p
< lim Sl}iP( Z Idnk|”> : (20)
n=r+1

Conversely, let elgk) er(B™) such that
Tm(ed) =e® (keN), that is, e® is the
associated sequence of elgk) for each k € N. Then,
we have by Lemma 3.3 that Ael” = Ae® =
(Gni)m=o for every k € N. Now, let E = {eék): k e

N}. Then, E c S and hence AE c AS which implies
that

X(AE) < x(AS) = ||Lall - (21)

Morever, we can write from Lemma 4.2 and
(21) that

0 1/p
¥(AE) = lim sup( Z |An(e§k))|p>
r—00 k

n=r+1

) 1/p
= lim sup( Z Iﬁnk|p>
r—00 k

n=r+1
< I[Lally-

Thus, we get (18) from (20) and (21).

Corollary  4.6.  Let
(r'(B™),4,), then

1<p<owlIf AE€

L, is compact if and only if

) i/p
lim (sulednk|p> = 0.
r—00 k
Proof: This is an immediate consequence of (10)

and Theorem 4.5.

Theorem 4.7. Let 1 <p < oo and q = p/(p — 1).
If A € (1] (B™), £,), then

) g\ 1/4
lim { sup (Z > ) < ILall,
NEFr \i=o lew
oo q\ 1/q
<4.lim | sup <Z Z Ak ) (22)
r—o
N&Fr \k=0 lnen

and

L, is compact if and only if
rli_)rg(suPNeTT(ZIilolZneN dnqu)l/q) =0. (23)

Proof: Let A € (r,/(B™), 41). Since 4, € 1] (B™)F
for all n € N, we derive from Lemma 3.2 that

”ZnENAn”;g(Bm) = ||ZnENAn||€q- (24)
Thus, we get (22) and (23) from Lemma 4.3(d)
and (24).
Remark: Let
- si—k-1 sik
i k) = (=1)/- (i
V0,0 = 0/ (e + ) Gk e
If we take
~ Ank .
A = Q| —+ V(,K)ay; |; (n,k €N)
rqy .4
j=k+1

then, we can obtain the above same results for the
sequence space 1 (B) (1 < p < o).
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