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Abstract 

In this paper, biharmonic slant helices are studied according to Bishop frame in the Heisenberg group Heis3. We 
give necessary and sufficient conditions for slant helices to be biharmonic. The biharmonic slant helices are 
characterized in terms of Bishop frame in the Heisenberg group Heis3. We give some characterizations for tangent 
Bishop spherical images of B-slant helix. Additionally, we illustrate four figures of our main theorem. 
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1. Introduction 

Let ),( gM  and ),( hN  be manifolds and 

NM :  a smooth map. Denote by   the 

connection of the vector bundle TN  induced 

from the Levi-Civita connection h  of ),( hN . 

The second fundamental form d  is defined by 
 
        .,,=, TMYXYdYdYXd XX     
 

Here   is the Levi-Civita connection of 

),( gM . The tension field    is a section of 

TN  defined by 
 
  .=  dtr                                                     (1) 

 
A smooth map   is said to be harmonic if its 

tension field vanishes. It is well known that   is 

harmonic if and only if   is a critical point of the 

energy: 
 

    gdvddhE  ,
2

1
=   

 
over every compact region of M . Now let 

NM :  be a harmonic map. Then the 

Hessian H  of E  is given by 
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      .,,,=, TNWVdvWVhWV g
  JH  

 
Here the Jacobi operator J  is defined by 

 

     ,,:= TNVVVV   RJ           (2) 
 

      ,,=,:= 1=1= ii
Nm

iie
ieieie

m
i ededVRV 


 R






  

 (3) 

 

where NR  and  ie  are the Riemannian curvature 

of N , and a local orthonormal frame field of M , 
respectively [1]. 

Let ),(),(: hNgM   be a smooth map 

between two Lorentzian manifolds. The bienergy 

)(2 E  of   over compact domain M  is 

defined by 
 

       .,=2 gdvhE    

 
A smooth map ),(),(: hNgM   is said to 

be biharmonic if it is a critical point of the )(2 E , 

[2-11]. 

The section )(2   is called the bitension field of 

  and the Euler-Lagrange equation of 2E  is 
 

  0.=)(:=)(2  J                                   (4) 
 

In [12] the authors completely classified the 
biharmonic submanifolds of codimension greater 
than one in the n-dimensional sphere. The 
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biharmonic submanifolds into a space of 
nonconstant sectional curvature were also 
investigated. The proper biharmonic curves on 
Riemannian surfaces were studied in [13]. Inoguchi 
classified the biharmonic Legendre curves and the 
Hopf cylinders in three-dimensional Sasakian space 
forms [14]. Then, Sasahara gave, in [15], the 
explicit representation of the proper biharmonic 
Legendre surfaces in five-dimensional Sasakian 
space forms. 
The second variation formula for biharmonic maps 
in spheres was deduced [8] and the stability of 
certain classes of biharmonic maps in spheres was 
discussed in [4]. Also, in [16] there were given 
some sufficient conditions for the instability of 
Legendre proper biharmonic submanifolds in 
Sasakian space forms and the author proved the 
instability of Legendre curves and surfaces in 
Sasakian space forms. 

Biharmonic functions are utilized in many 
physical situations, particularly in fluid dynamics 
and elasticity problems. Most important 
applications of the theory of functions of a complex 
variable were obtained in the plane theory of 
elasticity and in the approximate theory of plates 
subject to normal loading. That is, in cases when 
the solutions are biharmonic functions or functions 
associated with them. In linear elasticity, if the 
equations are formulated in terms of displacements 
for two-dimensional problems, then the 
introduction of a stress function leads to a fourth-
order equation of biharmonic type. For instance, the 
stress function is proved to be biharmonic for an 
elastically isotropic crystal undergoing phase 
transition, which follows spontaneous dilatation. 
Biharmonic functions arise when dealing with 
transverse displacements of plates and shells. They 
can describe the deflection of a thin plate subjected 
to uniform loading over its surface with fixed 
edges. Biharmonic functions also arise in fluid 
dynamics, particularly in Stokes flow problems 
(i.e., low-Reynolds-number flows). There are many 
applications for Stokes flow such as in engineering 
and biological transport phenomena (for details, see 
[17-19]). Fluid flow through a narrow pipe or 
channel, such as that used in micro-fluidics, 
involves low Reynolds number. Seepage flow 
through cracks and pulmonary alveolar blood flow 
can also be approximated by Stokes flow. Stokes 
flow also arises in flow through porous media, 
which have been long applied by civil engineers to 
groundwater movement. The industrial applications 
include the fabrication of microelectronic 
components, the effect of surface roughness on 
lubrication, the design of polymer dies and the 
development of peristaltic pumps for sensitive 
viscous materials. In natural systems, creeping 

flows are important in biomedical applications and 
studies of animal locomotion. 

In this paper, biharmonic slant helices are studied 
according to Bishop frame in the Heisenberg group 
Heis3. Necessary and sufficient conditions are given 
for slant helices to be biharmonic. We characterize 
the biharmonic slant helices in terms of Bishop 
frame in the Heisenberg group Heis3, and give some 
characterizations for tangent Bishop spherical 
images of B-slant helix. Additionally, four figures 
of our main theorem are illustrated (Fig. 1 and Fig. 
2). 
 

 
 

Fig. 1. Biharmonic slant helices according to Bishop 
frame for different constants with the help of the  

programme of Mathematica 
 

 
 

Fig. 2. Tangent spherical indicatrix of   according to 

Bishop frame with the help of the  
programme of Mathematica 

2. The Heisenberg group Heis3 

Heisenberg group Heis3 can be seen as the space 
3R  endowed with the following multipilcation: 
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)
2

1

2

1
,,(=),,)(,,( yxyxzzyyxxzyxzyx   (5) 

 
Heis3 is a three-dimensional, connected, simply 
connected and 2-step nilpotent Lie group. 

The Riemannian metric g  is given by 
 

.)(= 222 xdydzdydxg   
 

The Lie algebra of Heis 3  has an orthonormal 
basis 
 

,=,=,= 321 z
e

z
x

y
e

x
e














                (6) 

 
for which we have the Lie products [20, 21] 
 

1 2 3 2 3 3 1[e , e ] = e , [e , e ] = [e , e ] = 0  
 
with 
 

1.=),(=),(=),( 332211 eegeegeeg  
 

We obtain 
 

0,=== 332211
eee eee   

,
2

1
== 31221

eee ee   

,
2

1
== 21331

eee ee   

.
2

1
== 12332

eee ee   

 
We adopt the following notation and sign 

convention for Riemannian curvature operator on 
Heis3 defined by 
 

,=),( ],[ ZZZZYXR YXYYYX   
 
while the Riemannian curvature tensor is given by 
 

),,),((=),,,( WZYXRgWZYXR  
 
where WZYX ,,,  are smooth vector fields on 

Heis3. 

The components }{ ijklR  of R  relative to 

 321 ,, eee  are defined by 
 

  .=,),( ijkllkji ReeeeRg  
 

The non vanishing components of the above 
tensor fields are 
 

,
4

3
=,

4

1
=,

4

3
= 112231312121 eReReR   

,
4

1
=,

4

1
=,

4

1
= 223311333232 eReReR   

 
and 
 

.
4

1
==,

4

3
= 232313131212 RRR  (7) 

3. Biharmonic B-Slant Helices with Bishop 
Frame In The Heisenberg Group Heis3 

Let 3: HeisI   be a non geodesic curve on the 

Heisenberg group Heis 3  parametrized by arc 
length. Let }{ BN,T,  be the Frenet frame fields 

tangent to the Heisenberg group Heis 3  along   

defined as follows: 

T  is the unit vector field '  tangent to  , N  is 

the unit vector field in the direction of TT  

(normal to  ), and B  is chosen so that }{ BN,T,  

is a positively oriented orthonormal basis. Then, we 
have the following Frenet formulas: 
 

N,TT =  

B,TNT   =                                             (8) 

,= NBT   
 
where   is the curvature of   and   is its torsion 

and 
 
      1,=1,=1,= BB,NN,TT, ggg         (9) 

      0.=== BN,BT,NT, ggg  
 

In the rest of the paper, we suppose everywhere 
0  and 0 . 

The Bishop frame or parallel transport frame is an 
alternative approach to defining a moving frame 
that is well defined, even when the curve has 
vanishing second derivative [22]. The Bishop frame 
is expressed as  
 

,= 2211 MMTT kk   

,= 11 TMT k                                               (10) 

,= 22 TMT k  
 
where 
 
      1,=,1,=,1,= 2211 MMMMTT, ggg   (11) 

      0.=,=,=, 2121 MMMTMT ggg  
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Here, we shall call the set }{ 11 M,MT,  as 

Bishop trihedra, 1k  and 2k  as Bishop curvatures 

[23, 24], where  
1

2arctan=
k

k
s ,  ss ' =)(  

and .=)( 2
2

2
1 kks   Thus, Bishop curvatures 

are defined by 
 

 ,cos)(=1 ssk                                          (12) 

 .sin)(=2 ssk   
 

With respect to the orthonormal basis 

}{ 321 e,e,e  we can write 
 

,= 3
3

2
2

1
1 eeeT TTT   

,= 3
3
12

2
11

1
11 eeeM MMM                      (13) 

.= 3
3
22

2
21

1
22 eeeM MMM   

 

Theorem 3.1. 3: HeisI   is a biharmonic 

curve with Bishop frame if and only if 
 

0,=constant=2
2

2
1  Ckk  

  ,
4

1
= 3

2
3
12

23
2111 MMkMkCkk '' 



    (14) 

  .
4

1
=

23
12

3
2

3
1122 



  MkMMkCkk ''  

 
Proof: Using (10), we have 
 

T)T(T,T TT  R3
2 =)(  

' ' '' 3 2
1 1 2 2 1 1 1 2 1

'' 3 2
2 2 2 1 2

= ( 3k k 3k k )T (k k k k )

(k k k k )

    

  

M

M

.),(),( 2211 TMTTMT RkRk   
 

By (4), we see that   is a biharmonic curve if 

and only if 
 

0,=2211 kkkk ''   

'' 3 2
1 1 1 2 1 1 1

2 2 1

k k k k = k R( , , , )

k R( , , , ),

 


T M T M

T M T M             (15) 

'' 3 2
2 2 2 1 1 1 2

2 2 2

k k k k = k R( , , , )

k R( , , , ).

 


T M T M

T M T M  

 
Making necessary calculations from (15), we 

have 
 

0,=constant=2
2

2
1  Ckk  
''
1 1 1 1 1

2 2 1

k Ck = k R( , , , )

k R( , , , ),




T M T M

T M T M                            (16) 

).,,,(),,,(= 22221122 MTMTMTMT RkRkCkk '' 
 
A direct computation using (7) yields 
 

  ,
4

1
=),,,(

23
211 MR MTMT  

,=),,,( 3
2

3
112 MMR MTMT                     (17) 

,=),,,( 3
2

3
121 MMR MTMT  

  .
4

1
=),,,(

23
122 MR MTMT  

 
These, together with (11), complete the proof of 

the theorem. 
 

Definition 3.2. A regular curve 3: HeisI   is 

called a slant helix, provided the unit vector 1M  of 

the curve   has constant angle   with some fixed 

spacelike unit vector ,u  that is 
 

   .allforcos=,1 Isusg M               (18) 
 

The condition is not altered by reparametrization, 
so without loss of generality we may assume that 
slant helices have unit speed. The slant helices can 
be identified by a simple condition on natural 
curvatures. 

To separate a slant helix according to Bishop 
frame from that of Frenet-Serret frame, in the rest 
of the paper, we shall use notation for the curve 
defined above as B-slant helix. 
 

Theorem 3.3. Let 3: HeisI   be a unit speed 

curve with non-zero natural curvatures. Then   is 

a B-slant helix if and only if 
 

constant.=
2

1

k

k
                                                (19) 

 
Proof: Differentiating (18) and by using the Bishop 
frame (3.3), we find 
 

      0.=,=,=, 111 ugkukgug TTMT  
 

From the above equation, we get 
 

  0.=,ug T  
 

Again differentiating from the last equality, we 
obtain 
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   ukkgug ,=, 2211 MMTT   

                       ugkugk ,,= 2211 MM   

                    0.=sincos= 21  kk   
 

Using the above equation, we get 
 

constant.=tan=
2

1 
k

k
                              (20) 

 
The converse statement is trivial. This completes 

the proof. 
 

Theorem 3.4. Let 3: HeisI   be a unit speed 

biharmonic B-slant helix with non-zero natural 
curvatures. Then 
 

constant.=andconstant= 21 kk                (21) 
 
Proof: Suppose that   be a unit speed biharmonic 

slant helix. From (19), we have 
 

.tan= 21 kk                                                   (22) 
 

On the other hand, using the first equation of 

(14), we obtain that 2k  is a constant. Similarly, 1k  

is a constant. 
Hence, the proof is completed. 

 

Corollary 3.5. 3: HeisI   is biharmonic B-

slant helix if and only if 
 

0,constant=1 k  

0,constant=2 k  

 
,tan=

4
1 23

2

3
2

3
1 
 MC

MM
                             (23) 

 
,tan=4

1

3
2

3
1

23
1


MM

MC 
 

where 
2

1=tan
k

k  and .= 2
2

2
1 kkC   

Corollary 3.6. If 3: HeisI   is biharmonic B-

slant helix, then 
 

      0,=
4

1

4

1 23
1

23
2

23
2

3
1 






 





  MCMCMM            (24) 

where .= 2
2

2
1 kkC   

 

Theorem 3.7. Let 3: HeisI   be a unit speed 

biharmonic B-slant helix with non-zero natural 
curvatures. Then, the parametric equation of   are 
 

    ,sincos
1

= 1cs
k

sx   

    ,coscos
1

= 2cs
k

sy                      (25) 

      ,cos2cos
4

1
)cossin(= 3

12 cs
k

c
s

k
ssz    

 
where ,1c  ,2c  3c  are constants of integration, 

      skks sincos= 22
2

2
1  and 

.sincos= 22
2

2
1   kkk  

 

Proof: Assume that 3: HeisI   be a unit 

speed biharmonic B-slant helix. So, without loss of 
generality, we take the axis of   parallel to the 

vector 3e . Then, 
 

  ,cos== 3
131 Mg e,M                               (26) 

 
where   is constant angle. 

On the other hand, the vector 1M  is a unit 

vector, so the following condition is satisfied 
 

    .cos1= 222
1

21
1  MM                           (27) 

 

Noting that 1,=sincos 22    we have 
 

    .sin= 222
1

21
1 MM                                  (28) 

 
The general solution of (28) can be written in the 

following form 
 

 ,cossin=1
1 sM                                      (29) 

 ,sinsin=2
1 sM   

 
where   is an arbitrary function of .s  

So, substituting the components ,1
1M  2

1M  and 
3
1M  in the second equation of (3.6), we have the 

following equation 
 

 
 

1 1

2 3

= sin cos s

    sin sin s cos .

 

    

M e

e e                       (30) 

 
On the other hand, using Bishop formulas (10) 

and (6), we have 
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    ,cossin= 212 eeM ss   

    .sinsincoscoscos= 321 eeeT   ss  
 

The covariant derivative of the vector field T  is: 
 

.)()(= 3323121321 eeeTT
''' TTTTTTT   

 
Therefore, we use Bishop formulas (10) and the 

above equation we get 
 

    ,sincos= 22
2

2
1   skks  

 
where   is a constant of integration. 
Thus proof is complete. 

4. Tangent Bishop spherical images of 
Biharmonic B-Slant Helix in the Heisenberg 
group Heis3 

Definition 4.1. Let 3: HeisI   be a regular 

curve in Heis3. If we translate the first (tangent) 
vector field of Bishop frame to the center O of the 

unit sphere 2S , we obtain a spherical image 

)(=  s . This curve is called Tangent Bishop 

spherical image or indicatrix of the curve 
)(= s . 

Let )(=  s  be tangent Bishop spherical 

image of a regular curve )(= s . One can 

differentiate   with respect to s : 
 

.== 2211 MM kk
ds

ds

ds

d' 



                     (31) 

 
Here, we shall denote differentiation according to 

s  by a dash, and differentiation according to s  by 

a dot. In terms of Bishop frame vector fields (10), 
we have the tangent vector of the spherical image 
as follows: 
 

,=
2
2

2
1

2211

kk

kk



 MM
T                                       (32) 

 
where 
 

 .== 2
2

2
1 skk

ds

ds
   

 

Theorem 4.2. Let 3: HeisI   be a unit speed 

biharmonic slant helix with non-zero natural 

curvatures. Then the parametric equation of the 
tangent spherical indicatrix of   are 
 

   ,coscos= ssx   

   ,sincos= ssy                                   (33) 

      ,sinsincoscos= 2   sssz  
 
where 
 

      skks sincos= 22
2

2
1 . 

 
Proof: Using (31) we have 
 

.= 2211 MM=TT kk'                             (34) 
 

Substituting (20) in (34), we get 
 

    .sinsincoscoscos= 321 eee   ss   (35) 
 

These, together with (30) give (33). 
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