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Abstract 

In this paper, we characterize the function space and ��-space of the [topological] tensor product of [topological] 

semigroups. As a consequence, for arbitrary [topological] groups ��and ��, it will be shown that �� × �� is an 

extension of ��⊗� ��	by a proper normal subgroup N i,e.��⊗� �� = 
�×
�

 . 
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1. Introduction 

For many algebraic and analytic structures the 

tensor product has been defined in many different 

ways. Following Howie [1], for any two nonempty 

sets, especially for semigroups, � and � tensor 

product � ⊗ � has been defined as the quotient 

space 
�×�
� 	, in which the equivalence relation � is 

generated by the set  
 

����� ′, ��, ��, � ′���:	�, � ′ ∈ �, � ∈ ��. 
 

Note that this structure does not necessarily 

inherit the algebraic structure of � and �. In other 

words � ⊗ �, as defined previously, is just a 

quotient space rather than a semigroup when � and 

� are two semigroups with identities. The 

topological tensor product of topological 

semigroups was introduced by Medghalchi and the 

author in 2004 [2, 3]. The special characteristic of 

this structure is completely different from the 

Sherier Product [4] and Semiditect Product [5]. The 

ideal structure of topological tensor product of 

topological semigroups and their results were 

characterized in [2]. Since compactification of 

semigroups and more general function spaces of 

semigroups play an important role in analysis on 

semigroups, this tool has been used by many 

authors (see [5-8], for example). The 

characterization of almost periodic compactification 

and weak, almost periodic compactification of 

topological tensor product of topological 

semigroups was developed in [3]. An important 

class of semigroups which has been studied 

extensively from various points of view, is 
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the class of completely 0-simple and completely 

simple semigroups [9, 10]. By applying the 

topological tensor product techniques, the function 

spaces of 0-simple and completely simple 

semigroup are characterized by the author [11]. 

These facts led to the motivation to study function 

spaces of [topological] tensor product of 

[topological] semigroups. 

This paper is organized as follows. In section two, 

we introduce our notation and the structure of 

[topological] tensor product of [topological] 

semigroups. Section three is devoted to discussing 

the concepts of  -compactifications where   is an 

arbitrary property of compactifications, and 

function spaces on the [topological] tensor product. 

In section four we characterize the !�-space on 

tensor products. Finally, in the last section we apply 

the results of previous sections to show that 

��⊗� �� = 
�×
�

 	 for an appropriate normal 

subgroup ".  

2. Preliminaries 

In this paper we assume that each semigroup 

possesses an identity. A semigroup # is called a 

right [left] topological semigroup if there is a 

topology on # such that $ ⟶ $&	[$ ⟶ &$]	 is 

continuous for all & ∈ #. A semigroup # is called 

semitopological [topological] semigroup if 

�$, &� ⟶ $&	 is separately [jointly] continuous. A 

topological semigroup # is called a topological 

group if the inverse mapping $ ⟶ $(� is 

continuous. 

Let # be a topological semigroup. A right 

topological semigroup � is called a semigroup 

compactification of # if � is compact, Hausdorff 
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and ): # ⟶ � is a continuous homomorphism such 

that )�#�******* = �, )�#� ⊆ Λ���, where Λ��� = {	& ∈
�:			$ ⟶ &$: � ⟶ �, -$	./0&-01/$	}. We say that 

the compactification �), �� of # has left [right] 

jointly continuity property if the mapping �$, �� ⟶
)�$��	[��, $� ⟶ �)�$�] is continuous. 

Let 4�#� be the 5∗-algebra of all bounded 

complex valued functions on #, ℱ be a unital 5∗-
subalgebra of ℬ�#�, #ℱbe the set of all 

multiplicative means on ℱ and		9: #	 ⟶ #ℱ be the 

evaluation mapping. We say that ℱ is :-admissible 

if ;<�ℱ� ⊆ ℱ for all = ∈ #ℱ, where ;<�>��$� =
	=?�@�>�A, $ ∈ #, > ∈ ℱ. If we equip #ℱ with the 

Gelfand topology then #ℱ with multiplication 

=B�>� = =�;C�>�, =, B ∈ #ℱ 		is a compact 

Hausdorff right topological semigroup. Moreover, 

the evaluation mapping is a continuous 

homomorphism into a dense subsemigroup of #ℱ 

which is contained in the topological center of #ℱ. 

Now, if �), �� is a compactification of #, then 

)∗�5���� is an :-admissible subalgebra of 5�#�. 
Conversely, if ℱ is an :-admissible subalgebra of 

5�#�, then there exists a unique (up to 

isomorphism) compactification �), �� of # such 

that )∗?5���A = ℱ. In other words, the 

compactification corresponding to the :-

admissible subalgebra ℱ is �9, #ℱ�. Moreover, 

9∗?5�#ℱ�A = ℱ [1]. 

Let # and ; be semitopological semigroups with 

semigroup compactifications #′ and 	;′. A 

continuous function D′: #′ ⟶ T′ is an extension of 

the continuous function D: # → ; if D′/9G = 9H/D 

and D′ is uniquely determined by D. Such an 

extension exists if and only if D∗�I� ⊆ J, where J 

and I are the associated function spaces of the 

compactifications. Let #′ and #′′ be 

compactifications of #. Then #′ is a factor of #′′ if 

the identity map on # has an extension 	D: #′′ ⟶ S′. 

A compactification with a given property   is 

called a  -compactification. A universal  -

compactification of # is a  -compactification of 

which, every  -compactification of # is a factor. 

Universal  -compactifications, if they exist, are 

unique (up to isomorphism). We denote the 

universal  -compactification of # by # 	. We refer 

the reader to [12] for more results about 

compactifications of semigroups.  

Following Howie [1], for a relation ! on a set �, 

we denote !∞ by !∞ = {!L: n≥1}, where !L =
!/!/ … /!. We recall that the equivalence generated 

by ! is the intersection of all equivalence relations 

containing ! [1, sec 1.4]. Following [1, Lemma 

1.4.8], if ! is a reflexive relation on �, then !∞ is the 

smallest transitive relation on � containing !. We 

denote [! ∪ !(� ∪ 1P]∞ by !Q, where !(� = {��, �� ∶
��, �� ∈ !} and 1P = {��, �� ∶ 	� ∈ �}. By [1, 

Proposition 1.4.9], !Q is an equivalence generated 

by !. So, if !∞ is an equivalence generated by !, then 

��, �� ∈ !Q if and only if, either � = � or, for some 

0 ∈ ℕ, there is a sequence of translations � =
T� ⟶ T� ⟶⋯⟶ TL = � such that, for each 

1 ≤ - ≤ 0 − 1, either �TX,TXY�� ∈ ! or, �TXY�, TX� ∈ ! 
[1, Proposition 1.4.10]. 

An equivalence � on a semigroup # is called a left 

[right] #-congruence if ��, �� ∈ � and $Z#, then 

�$�, $�� ∈ �	[��$, �$� ∈ �], and is called an #-

congruence if it is both a right and a left #-

congruence. 

Let #, ; be two [topological] semigroups with 

identities and � be a non-empty [topological] space. 

Then � is called a [topological] left #-system if 

there is an action �$, �� ⟶ $� of # × � into � 

which [is jointly continuous and] $��$��� =
�$�$���	, 1G� = �	�$�, $� ∈ #, � ∈ ��. A [topological] 

right #-system is defined similarly. A [topological] 

left #-system which is also a [topological] right ;-

system is called a [topological] �#, ;�-bisystem if 
�$��& = $��&�	�$ ∈ #, & ∈ ;, � ∈ ��. 

Let �, � be two [topological] left #-systems and 

D: � ⟶ � be a [continuous] map. We say that D is 

a [topological] left #-map if D�$�� = $D����� ∈
�, $ ∈ #�. Similarly, we can define a [topological] 

right ;-map. 
Now, let � be a [topological] �#, [�-bisystem, � be a 

[topological] �[, ;�-bisystem and \ be a [topological] 

�#, ;�-bisystem. Then � × � has the structure of a 

[topological]�#, ;�-bisystem		�-. ]. , $�$���, �� =$��$��, ��, 	1G��, �� = ��, ��, ��, ��&�&� = ��, �&��&�	,��, ��1H = ��, ��, for all $�, $� ∈ # and &�, &� ∈ ;�. 
Let [� × � be equipped with the product topology 

and] ^: � × � ⟶ \ be a [topological] �#, ;�-map 

(i.e., ^ is a [topological] left #-map and a 

[topological] right ;-map). We say that ^ is a 

[topological] bimap if further ^��1, �� =
^��, 1��		�1 ∈ [�. Let # and ; be two [topological] 

semigroups with identities 1G, 1H, respectively. Let 

_: # ⟶ ; be a continuous homomorphism. Then ; 

can obviously be regarded as a [topological] �#, ;�-
bisystem by $ ∗ & = $&		�$ ∈ #, & ∈ ;�, and # can be 

regarded as a [topological] �#, #�-bisystem where 

the action of # on # is just its multiplication. Let 5 

be a [topological] �#, ;�-bisystem and ^: # × ; ⟶
5be a [topological] �#, ;�-map. We say that ^ is a 

[topological] _-bimap if ^�$$′, &� = ^?$, _�$ ′�&A	�$, $ ∈
#, & ∈ ;�. 

By a [topological] tensor product we mean a pair 

�`, D� where ` is a [topological] �#, ;�-bisystem 

and D: # × ; ⟶ ` is a [topological] _-bimap such 

that for every [topological] �#, ;�-bisystem 5 and 

every [topological] _-bimap ^: # × ; ⟶ ` there 

exists a unique [topological] �#, ;�-map ^̅: ` ⟶ 5 

such that the diagram 
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# × ; 					b				cdde `
					^ ↓			↙ 	ĥ 						
				5													

 

 
commutes [2, 3]. 

In the following theorem the existence of the 

[topological] tensor product of # and ; with respect 

to _, which is denoted by # ⊗� ;, was proved. 

 

Theorem 2.1. [3, Theorem 3.3] Let S and T be two 

[topological] semigroups with identities, and 

σ: S ⟶ T be a [continuous] homomorphism. Then 

there is a unique [topological] tensor product of S 
and T. 

 

proof: (sketch) We regard # × ;[with the product 

topology] as a [topological] �#, ;�-bisystem. Let � 
be the equivalence relation on # × ; generated by 

{��$$′, t�, �s, σ�s′�t��:	s, s′ ∈ S, t ∈ T}. Let 

 
l = {�m, n� ∈ �	# × ;� × �# × ;�:	1, o ∈ # ×

;, �1mo, 1no� ∈ �}. 
 

By [1, Proposition 1.5.10], l is the largest 

congruence on # × ; contained in �. Now, we 

denote 
G×H
p  by # ⊗� ; and the elements of 

G×H
p  

by	$ ⊗� &. We use the techniques of [1, Proposition 

8.1.8] to show that if $�⊗� &� = $�⊗� &� then 

$� = $� and &� = &�, or there exist m�,m�, … mL(� ∈
#, n�, … , nL(� ∈ ;, 1�, … , 1L	, o�, … , oL ∈ # (see the 

introduction) such that  
 

$� = m�1�,																		_�1��&� = _�o��n�, 
 

m�o� = m�1�,																				_�1��n� = _�o��n�, 
 
                        ⋮				 
 
aivi=ai+1ui+1,						σ�ui+1�bi=	σ(vi+1)bi+1      (i=2,…, n-2), (*) 
 

																⋮				 	
mL(�oL(� = $�1L,				_�1L�nL(� = &�. 

 
Let D: # × ; ⟶ #⊗� ;	be defined by D�$, &� =

$ ⊗�t. D is a [topological] _-bimap and 

�# ⊗� ;,φ) is a unique (up to isomorphism) 

[topological] tensor product of # and ;. 

3. Function spaces on topological tensor product 

of topological semigroups 

Let # and ; be two topological semigroups and 

# ⊗� ; be their topological tensor product. Let   

be the property of compactifications. In this setting 

it is natural to ask whether universal  -

compactification of �# ⊗� ;�	  of # ⊗� ; is 

canonically isomorphic to # ⊗� ; . Results of 

this type are known for mw-compactification and 

$mw-compactification in [5]. In this chapter we 

generalize these results, obtaining compactification 

theorem of the form �# ⊗� ;�	 ⋍ # ⊗� ; . 

Remember that the following results were proved in 

[3]. 

 

Theorem3.1. [3, Theorem 3.6] Let �ψ�, X�� and 

�ψ�, X�� be two topological semigroup 

compactifications of topological semigroups S and 

T, respectively. Let σ: S ⟶ T	, η:	X� ⟶ X� be two 

continuous homomorphisms such that 	ηoψ� =ψ�oσ. Then X�⊗} X� is a topological semigroup 

compactification of S ⊗} T. 

 

Theorem3.2. [3, Corollary 3.7] Let ?ε�, S�ℱ�A�i =1,2� be two canonical compacitifications of 

topological semigroups S� such that S�ℱ� is a 

topological semigroup. Let σ: S ⟶ T be a 

continuous homomorphism such that σ∗�ℱ�� ⊆ ℱ�. 

Then S�ℱ�⊗} S�ℱ�  exists and is a compactification 

of S ⊗} T. 

 

Theorem 3.3. Let # and ; be two topological 

semigroups with identities, and � be a continuous 

homomorphism of # into ;. Let # . ;  and 

�# ⊗� ;�  be the universal topological semigroup 

 -compactifications of #, ; and # ⊗� ;, 

respectively where   has joint continuity property 

and is invariant under multiplication. Then 

�# ⊗� ;�	 ⋍ # ⊗� ; . 

 

Proof: Let ?9G⊗�H , �# ⊗� ;� A, �9G, # �,			�9H , ; � be 

universal topological semigroup  -compactific-

ations of # ⊗� ;, # and ; respectively. By 

Theorem 3.2, ��G⊗�H , # ⊗� ; � is a topological 

semigroup compactification of # ⊗� ;. The 

universal property of  -compactification 

�9G⊗�H , �# ⊗� ;� � gives a continuous 

homomorphism �: �# ⊗� ;� ⟶ # ⊗� ;  such 

that the following diagram commutes. 
 

# ⊗� ;
					��⊗��				cdddddde �# ⊗� ;� 

					�G⊗�H ↓															↙ 	�																					
				# ⊗� ; .												

 

 
Also, since �9G × 9H, �# × ;�  is a topological 

semigroup compactification of # × ;, via the 

homomorphism		�: # × ; 						�												cddddde 	# ⊗� ;
��⊗��cddde 

�# ⊗� ;� , there is a continuous homomorphism 

��: �# × ;� ⟶ �#⊗� ;�  such that the 

following diagram commutes. 
 

# × ; 					�				cdde �# ⊗� ;� 
					9G × 9H ↓															↙ 	��																					

				�# × ;� .												
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On the other hand, �# × ;� = # × ; , thus we 

can assume that ��: # × ; ⟶ �# ⊗� ;� . 

Observe that �� preserves congruence, because, if 

oo′⊗�μ=o ⊗� ��o ′�=, where o, o ′ ∈ S , μ ∈ T , 

we can get the nets {	$� 	} ,�$′�� in # and �&�� in ; 

such that lim� 9G�$�� = o, lim� 9G?$′�A = o′ and 

lim� 9H?&�A = =. Therefore, 
 
���oo′⊗� =� = ��� lim�,�,� 9G × 9H� $�$′� , &��� 

																																	= lim�,�,����9G × 9H� $�$′� , &��� 
																																	= lim�,�,� 9G⊗�H���� $�$′� , &��� 
																														= lim�,�,� 9G⊗�H���� $� , _�$′��&���. 

 
For the reverse calculations we have 
 
���o ⊗� ��o ′�=� = ��� lim�,�,� 9G × 9H� $� , _�$ ′��&��� 
																															= lim�,�,� 9G⊗�H���� $� , _�$ ′��, &���. 

 
Now, by an argument similar to equations (*) of 

Theorem 2.1, �� preserves congruence. Thus there 

exists a continuous homomorphism ��: 
# ⊗� ; ⟶ �# ⊗� ;� such that the following 

diagram commutes. 
 

# × ; 					��			cddde �# ⊗� ;� 
		�� 			 ↓															↗ 	��																					
				# ⊗� ; .																									

 

 
Now, �/�� is an identity map on 	# ⊗� ; , 

because if o ⊗� = ∈ # ⊗� ; , then we can find a 

net {	$� 	} in # and �&�� in ; such that lim� 9G�$�� =
o, and lim� 9H?&�A = =. Thus 
 
									/��?o ⊗� =A = �/��?���o, =�A

= lim�,������9G × 9H� $� , &��� 
																																= lim�,^�� �� $�, &^��

= 	 lim�,^ ���1�9#⊗_;� $�⊗_ &^�� 
																																= lim�,^ �#⊗_;�$�⊗_ &^�=	o ⊗� =. 
 
Therefore �# ⊗� ;�	 ⋍ # ⊗� ; . 

 

Corollary 3.4. Let # and ; be two topological 

semigroups with identities, and _: # ⟶ ; be a 

continuous homomorphism. Then �# ⊗� ;�	�� ⋍#��⊗� ;��. 
 

Corollary 3.5. Let # and ; be two topological 

semigroups with identities, and _: # ⟶ ; be a 

continuous homomorphism. Then �# ⊗� ;�	@�� ⋍#@��⊗� ;@��. 

4. ��-Spaces on tensor products of semigroups 

We recall that for semigroup #,  
 

!��#� = {	> ∶ >: # ⟶ 	ℂ, |>�$�| < ∞	}.
@∈G

 

 
With pointwise addition and scalar multiplication, 

with convolution 
 

�> ∗ ¤��$� =   >�1�¤�o�
@¥¦§

 

 
as product (�> ∗ ¤��$� =0 if $ = 1o has no 

solutions) and with the norm 
 

‖f‖� = |>�$�|
@∈G

 

 
is a Banach algebra that we call it Discrete 

semigroup algebra. 

 

Theorem 4.1. Let S and T be two semigroups with 

identities, and σ: S ⟶ T be a continuous 

homomorphism. Then l��S ⊗} T� ⋍ ª��«×¬�
­  , where 

k is a closed subspace of l��S × T�. 
 

Proof:    For every > ∈ !��# × ;�, consider the 

function 
 

�$, &� ⟶   >�1, o�.
¦⊗�§¥@⊗�¯

 

 
Since this function is constant on each 

congruence class, it is of the form >/̅�G⊗�H , where 

> ̅ is a function on the quotient space !��# ⊗� ;�. 
Now put 
 

):	!��# × ;� ⟶ !��# ⊗� ;� 
)�>� = > ̅

 
In fact, 
 

	)�>��$ ⊗� &� = >̅�$ ⊗� &� =   >�1, o�
¦⊗�§¥@⊗�¯

. 
 

We have )�> ∗ ¤� = )�>� ∗ )�¤�, for 
 

)�> ∗ ¤��$ ⊗� &� = > ∗ ¤*******�$ ⊗� &� 
 = ∑ > ∗ ¤�1, o�¦⊗�§¥@⊗�¯  

 = ∑ [∑ >�w, ±�¤�0,:��¦,§�¥��,²��L,³� 	]¦⊗�§¥@⊗�¯  

 = ∑ [∑ >�w, ±�¤�0,:�¦¥�L,			§¥²³ 	]¦⊗�§¥@⊗�¯  
 = ∑ [∑ >�w′, ±′�¤�0′, :′��⊗�²¥�′⊗�²′,			L⊗�³¥³′⊗�L′ 	]@⊗�¯¥�L⊗�²³  

 = ∑ ´∑ >�w′, ±′��⊗�²¥�′⊗�²′		 	µ∑ ¤�0′, :′�L⊗�³¥L′⊗�³′		 ]@⊗�¯¥�L⊗�²³  

 = ∑ >̅@⊗�¯¥��⊗�²��L⊗�³� �w, ±�¤̅�0,:� 
 = )�>� ∗ )�¤��$ ⊗� &�. 
 

Also, we assert that ) maps !��# × ;� onto 

!��# ⊗� ;�. Indeed, let any >̅ ∈ !��# ⊗� ;� be 

given; then we can obtain an > ∈ !��# × ;� such 

that )�>�=> ̅as follows. Put  
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" = {	$ ⊗� & ∶ >�̅$ ⊗� &� ≠ 0	} 
 
and 
 

¸ = π@⊗�¯
(� �N�. 

 
Now define for �$, &� ∈ # × ;,	 
 

>�$, &� = »>/̅�G⊗�H�$, &�, �G⊗�H�$, &� ∈ "
0																													,			/&ℎ]½-$]

¾ 
 
Then > ∈ !��# × ;�, for 
 

  |>�$, &�| =   ¿>̅/�G⊗�H�$, &�¿
��⊗���@,¯�∈
�@,¯�∈G×H
=   ¿>�̅$ ⊗� &�¿ < ∞

��⊗���@,¯�∈

 

 
and 
 

)�>� = >̅. 
 
Let  

À = ker	�)�={ > ∈ !��# × ;�:	)�>� = 0}. 
It is clear ) is a linear operator from !��# × ;� 

onto !��# ⊗� ;�. Then 
 

!��# ⊗� ;� ⋍ !
��# × ;�
À . 

5. Topological tensor products and extension 

group 

In this section we study some properties of 

[topological] tensor products. We will show for 

arbitrary [topological] groups �� and ��, �� × �� is 

an extension of ��⊗� �� by a proper [closed] 

normal subgroup " i,e. ��⊗� �� = 
�×
�

 . Also, by 

extension argument we get a number of interesting 

results on tensor product. 

 

Lemma 5.1. Let G�and G�, be two [topological] 

groups and σ: G� ⟶ G� be a [continuous] 

homomorphism. Let G�⊗} G� = Ä�×Ä�
Å , π: G� ×

G� ⟶ Ä�×Ä�
Å 	 be the quotient map. Then s ⊗} t =

a⊗} b if and only if �s ⊗} t��a ⊗} b�(� ∈
π�1Ä� , 1Ä�� 
 

Proof: Since ��⊗� �� is a group, [3, Theorem 

2.5], we have $ ⊗� & = m ⊗� n if and only if 

�s ⊗} t��a ⊗} b�(� = π�1Ä� , 1Ä�� and or 

�s ⊗} t��a ⊗} b�(� ∈ π�1Ä� , 1Ä��. 
 

Lemma 5.2. Let G�and G�, be two [topological] 

groups and σ: G� ⟶ G� be a [continuous] 

homomorphism. Then N = {�m, n� 	∈ 	G� × G�: 

(m,n)	 ρ	 (1Ä� , 1Ä��} is a [closed] normal subgroup 

of G� × G�. 

 

Proof: Suppose �:�, 0�� ∈ " and �:�, 0�� ∈ ", 

then �:�, 0��	l	�1Ä� , 1Ä��, �:�, 0��	l	�1Ä� , 1Ä��	. 
Since l is a congruence, �:�, 0��(�	ρ (1Ä� , 1Ä�� 
and �:�, 0���:�, 0��(�	ρ	 (1Ä� , 1Ä��?1Ä� , 1Ä�A =
?1Ä� , 1Ä�A. This implies that 	" is a subgroup of 

G� × G�. Now, let �:, 0� ∈ " and �¤�, ¤�� ∈ G� ×G�.	Since l is a congruence on G� × G�, 

�¤�, ¤���:, 0��¤�, ¤��(�		ρ
�¤�, ¤��?1Ä� , 1Ä�A�¤�, ¤��(�, 

	�¤�, ¤���:, 0��¤�, ¤��(�	ρ	�1Ä� , 1Ä��	. 
This implies that �¤�, ¤���:, 0��¤�, ¤��(�∈N. Thus 

" is a normal subgroup of �� × ��. Let {�:� , 0��} 
be a net in " such that �:� , 0�� → �:, 0�. By the 

definition of ", �:� , 0��l�1Ä� , 1Ä��. Since l is a 

closed congruence on G� × G�, we have 

�:, 0�l�1Ä� , 1Ä��. Thus �:, 0� ∈ ". 

 

Theorem 5.1. Let G�and G�, be two [topological] 

groups and σ: G� ⟶ G� be a [continuous] 

homomorphism. Then ��⊗� �� = 
�×
�

 , where 

N = {�m, n� 	∈ 	G� × G�:(m,n)ρ(1Ä� , 1Ä��}. In 

other words, ��⊗� �� is an extension of �� × �� 

by ". 

 

Proof: Let �:	�� × ��→	 
�×
�p
	 =��⊗� �� be the 

quotient map and ���� = ¤�⊗� ¤� ∈ ��⊗� ��. 

We show that ���� = "�. Let 0 ∈ ", by Lemma 

5.2, " is a subgroup of G� × G�. Now, 0(� =

��0��(� ∈ ". By Lemma 5.1, 0� ∈ ����. This 

implies that "� ⊆ ����. Conversely, let � ∈ ����, 

so ��(� ∈ ". Since " is a subgroup of �� × ��, so 

��(� = ���(��(� ∈ ". Thus there is an 0 ∈ " 

such that ��(� = 0 and so � = 0�. This implies 

that ���� ⊆ "�. Thus ���� = "�	�� ∈ G� × G��. 

Now, ��⊗� �� = ⋃ ����Ê∈Ä�×Ä�
= ⋃ "�Ê∈Ä�×Ä�

=

�×
�



. 
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