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Abstract

In this paper, we characterize the function space and L!-space of the [topological] tensor product of [topological]
semigroups. As a consequence, for arbitrary [topological] groups G;and G, it will be shown that G; X G, is an

extension of G; ®, G, by a proper normal subgroup N i,e.G; ®, G, =

G1XGy
N

Keywords: Topological semigroup; compactification; tensor product

1. Introduction

For many algebraic and analytic structures the
tensor product has been defined in many different
ways. Following Howie [1], for any two nonempty
sets, especially for semigroups, X and Y tensor
product X @ Y has been defined as the quotient

XXY . . . . .
space %, in which the equivalence relation t is
generated by the set

{((xx’,y), (x,x'y)): x,x €X,y € Y}.

Note that this structure does not necessarily
inherit the algebraic structure of X and Y. In other
words X ® Y, as defined previously, is just a
quotient space rather than a semigroup when X and
Y are two semigroups with identities. The
topological  tensor product of topological
semigroups was introduced by Medghalchi and the
author in 2004 [2, 3]. The special characteristic of
this structure is completely different from the
Sherier Product [4] and Semiditect Product [5]. The
ideal structure of topological tensor product of
topological semigroups and their results were
characterized in [2]. Since compactification of
semigroups and more general function spaces of
semigroups play an important role in analysis on
semigroups, this tool has been used by many
authors  (see [5-8], for example). The
characterization of almost periodic compactification
and weak, almost periodic compactification of
topological  tensor product of topological
semigroups was developed in [3]. An important
class of semigroups which has been studied
extensively from various points of view, is
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the class of completely O-simple and completely
simple semigroups [9, 10]. By applying the
topological tensor product techniques, the function
spaces of O-simple and completely simple
semigroup are characterized by the author [11].
These facts led to the motivation to study function
spaces of [topological] tensor product of
[topological] semigroups.

This paper is organized as follows. In section two,
we introduce our notation and the structure of
[topological] tensor product of [topological]
semigroups. Section three is devoted to discussing
the concepts of P-compactifications where P is an
arbitrary property of compactifications, and
function spaces on the [topological] tensor product.
In section four we characterize the [l-space on
tensor products. Finally, in the last section we apply
the results of previous sections to show that

G Qs G, = ax%

N for an appropriate normal
subgroup N.

2. Preliminaries

In this paper we assume that each semigroup
possesses an identity. A semigroup S is called a
right [left] topological semigroup if there is a
topology on S such that s — st[s — ts] is
continuous for all t € S. A semigroup S is called
semitopological  [topological]  semigroup if
(s,t) — st is separately [jointly] continuous. A
topological semigroup S is called a topological
group if the inverse mapping s — s~ ! is
continuous.

Let S be a topological semigroup. A right
topological semigroup X is called a semigroup
compactification of S if X is compact, Hausdorff
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and : S — X is a continuous homomorphism such
that 1 (S) = X,(S) S A(X), where A(X) = {t €
X: s > ts: X — X,is continuos }. We say that
the compactification (¥, X) of S has left [right]
jointly continuity property if the mapping (s, x) —
Y(s)x [(x,s) — xp(s)] is continuous.

Let B(S) be the C*-algebra of all bounded
complex valued functions on S, F be a unital C*-
subalgebra of B(S), S¥be the set of all
multiplicative means on F and &:S — S¥ be the
evaluation mapping. We say that F is m-admissible
if ,(F)SF for all u€ S¥, where T,(f)(s) =
u(Ls(f)), s€S,f €F. If we equip S¥ with the
Gelfand topology then S¥ with multiplication
w(f) = u(T,(f), u,veSt is a compact
Hausdorff right topological semigroup. Moreover,
the evaluation mapping is a continuous
homomorphism into a dense subsemigroup of S*
which is contained in the topological center of S¥.
Now, if (,X) is a compactification of S, then
P*(C(X)) is an m-admissible subalgebra of C(S).
Conversely, if F is an m-admissible subalgebra of
C(S), then there exists a unique (up to
isomorphism) compactification (¥, X) of S such
that zp*(C X )) =F. In other words, the
compactification corresponding to the m-
admissible subalgebra F is (g,5%). Moreover,
e"(C(sH) = F[11.

Let S and T be semitopological semigroups with
semigroup compactifications S’ and T'. A
continuous function ¢": S’ — T’ is an extension of
the continuous function @:S — T if @ ogs = er0¢
and ¢’ is uniquely determined by ¢. Such an
extension exists if and only if ¢*(B) € A, where 4
and B are the associated function spaces of the
compactifications. Let S’ and S” be
compactifications of S. Then S’ is a factor of S” if
the identity map on S has an extension ¢:S"” — S'.
A compactification with a given property P is
called a ®P-compactification. A universal P-
compactification of S is a P-compactification of
which, every P-compactification of S is a factor.
Universal P-compactifications, if they exist, are
unique (up to isomorphism). We denote the
universal P-compactification of S by S¥. We refer
the reader to [12] for more results about
compactifications of semigroups.

Following Howie [1], for a relation [ on a set X,
we denote [* by [”={l": n>1}, where [" =
lolo ...ol. We recall that the equivalence generated
by [ is the intersection of all equivalence relations
containing [ [1, sec 1.4]. Following [1, Lemma
1.4.8], if [ is a reflexive relation on X, then [ is the
smallest transitive relation on X containing [. We
denote [l U171 U 14]” by 18, where I71 = {(y,x) :
(x,y)€l} and 14 ={(x,x): x€ X} By [I,

Proposition 1.4.9], ¢ is an equivalence generated
by L. So, if [* is an equivalence generated by [, then
(x,v) € 1°¢ if and only if, either x = y or, for some
n € N, there is a sequence of translations x =
Zy — 2, — - — 7, =Yy such that, for each
1<i<n-1,either (z;2;4,) €l or, (241,%) €
[1, Proposition 1.4.10].

An equivalence 7 on a semigroup S is called a left
[right] S-congruence if (x,y) € T and seS, then
(sx,sy) € T[(xs,ys) € 1], and is called an S-
congruence if it is both a right and a left S-
congruence.

Let S,T be two [topological] semigroups with
identities and X be a non-empty [topological] space.
Then X is called a [topological] left S-system if
there is an action (s,x) — sx of SX X into X
which [is jointly continuous and] s;(s,x) =
(s182)x,1sx = x (51,5, €S,x € X). A [topological]
right S-system is defined similarly. A [topological]
left S-system which is also a [topological] right T-
system is called a [topological] (S, T)-bisystem if
(sx)t =s(xt) (seS,teT,x€X).

Let X,Y be two [topological] left S-systems and
@:X — Y be a [continuous] map. We say that ¢ is
a [topological] left S-map if @(sx) = sp(x)(x €
X,s € S). Similarly, we can define a [topological]
right T-map.

Now, let X be a [topological] (S, U)-bisystem, Y be a
[topological] (U, T)-bisystem and Z be a [topological]
(S,T)-bisystem. Then X XY has the structure of a
[topological](S, T)-bisystem (i.e.,s;5,(x,y) =
51(52%,y), 150, y) = (%, y), (x,y)tity = (x,yt9)t;,
(e, )17 = (x,y), forall 51,5, € Sand ty,t, € T).

Let [X X Y be equipped with the product topology
and] f:X XY — Z be a [topological] (S,T)-map
(i.e., [ is a [topological] left S-map and a
[topological] right T-map). We say that f is a
[topological] bimap if further Slxu,y) =
B(x,uy) (u €U).LetS and T be two [topological]
semigroups with identities 1g, 11, respectively. Let
0:S — T be a continuous homomorphism. Then T
can obviously be regarded as a [topological] (S, T)-
bisystem by s *t = st (s € S,t €T), and S can be
regarded as a [topological] (S,S)-bisystem where
the action of S on S is just its multiplication. Let C
be a [topological] (S, T)-bisystem and S:S X T —
Cbe a [topological] (S, T)-map. We say that § is a
[topological] o-bimap if B(ss’,t) = B(s,o(s)t) (s,s €
S,teT).

By a [topological] tensor product we mean a pair
(P,p) where P is a [topological] (S, T)-bisystem
and ¢:S X T — P is a [topological] o-bimap such
that for every [topological] (S, T)-bisystem C and
every [topological] o-bimap f:SXT — P there
exists a unique [topological] (S,T)-map B:P — C
such that the diagram
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SXT —25p

L <P
c

commutes [2, 3].

In the following theorem the existence of the
[topological] tensor product of S and T with respect
to o, which is denoted by S ®, T, was proved.

Theorem 2.1. [3, Theorem 3.3] Let S and T be two
[topological] semigroups with identities, and
0:S — T be a [continuous] homomorphism. Then
there is a unique [topological] tensor product of S
and T.

proof: (sketch) We regard S X T[with the product
topology] as a [topological] (S, T)-bisystem. Let T
be the equivalence relation on S X T generated by

{((ss',t), (s, c(s')t)): s,s €S,t € T}. Let

p={(a,b)e(SXT)X(SXT):uveSx
T, (uav,ubv) € 1}.

By [1, Proposition 1.5.10], p is the largest
congruence on S X T contained in 7. Now, we

denote SXTT by S®, T and the elements of S%T

by s @, t. We use the techniques of [1, Proposition
8.1.8] to show that if s; @, t; =s, ®, t, then
sy =5, and t; = t,, or there exist a; a,...a,_; €
S,by,.,bpy_1 €T, Uqg, ., Uy, Vg, ..., Uy €S (see the
introduction) such that

§1 = aqUy, o(ut, = U(Vl)bl,

a1V; = AUy, o(uy)b, = U(Vz)bz,

aviFainUiv,  o(Uir)bi= o(vi)biy (2., 0-2), (+)

Ap-1Vp-1 = S2Up, U(un)bn—l =ty

Let :SXT — S ®, T be defined by ¢(s,t) =
sQ®st. ¢ is a [topological] o-bimap and
(S®,T,p) is a unique (up to isomorphism)
[topological] tensor product of S and T.

3. Function spaces on topological tensor product
of topological semigroups

Let S and T be two topological semigroups and
S ®, T be their topological tensor product. Let P
be the property of compactifications. In this setting
it is natural to ask whether universal P-
compactification of (S®,T)* of S®,T is
canonically isomorphic to S¥ ®, T*. Results of
this type are known for ap-compactification and

sap-compactification in [5]. In this chapter we
generalize these results, obtaining compactification
theorem of the form (S®,T)% =S¥ ®, T”.
Remember that the following results were proved in

[3].

Theorem3.1. [3, Theorem 3.6] Let (Y,X;) and
(P, X,) be two  topological — semigroup
compactifications of topological semigroups S and
T, respectively. Let 0:S — T,1: X; — X, be two
continuous homomorphisms such that noy; =
P,00. Then X; ®4 X, is a topological semigroup
compactification of S @, T.

Theorem3.2. [3, Corollary 3.7] Let (si,Si?i)(i =
1,2) be two canonical compacitifications of
topological semigroups S; such that SijE Tis a
topological semigroup. Let o:S— T be a
continuous homomorphism such that ¢*(F,) € F;.

Then S;"* ®, S,”2 exists and is a compactification
of SQ, T.

Theorem 3.3. Let S and T be two topological
semigroups with identities, and ¢ be a continuous
homomorphism of S into T. Let S”.T® and
(S ®, T)” be the universal topological semigroup
P-compactifications of S, T and S&,T,
respectively where P has joint continuity property
and is invariant under multiplication. Then

(SQ®; )" =5"Q,T”.

Proof: Let (&5g,7, (S @, T)%), (5,5%), (er,T%) be
universal topological semigroup P-compactific-
ations of S®,T, S and T respectively. By
Theorem 3.2, (8sg,7,S” &, T”) is a topological
semigroup compactification of S &, T. The
universal ~ property of  P-compactification
(&59,m (S®;T)?)  gives a  continuous
homomorphism ¢: (S ®, T)” — ¥ @, T such
that the following diagram commutes.

ESQqgT

S T—— (S®,; 1)
Ss@,r b s ¢
S?®,T7.

Also, since (g X &7, (S X T)® is a topological
semigroup compactification of S X T, via the

. T ES®qT
homomorphism 6:S X T —— S Q, T —

(S ®, T)”, there is a continuous homomorphism
$1:(SXT)Y? - (S®,T)Y such that the
following diagram commutes.

0
SXT — (S®, T)®
ggXerd 7 ¢
(S xT)”.
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On the other hand, (S X T)*” = S x T®, thus we
can assume that ¢:ST?xT? - (S®,T)”.
Observe that ¢, preserves congruence, because, if
v @ppu=v @, n(v)u, where v,v' € S¥,peT?,
we can get the nets { s, } ,{S'B} in § and {ty} inT
such that lim, g5(s,) = v, limg ss(s’ﬁ) = v and
lim,, &7 (ty) = u. Therefore,

o1 (v Qn ) = ¢1(Olli{;r; & X ET(saS,E; ty))
= t}zllri’r}/ $1(es X sT(Sa,S B’ ty))
= Olllg'; &s@,1(M1(SaS i ty))

= ‘}lllfg}/ €@, (M1 (Sa, 0 (S p)ty)).
For the reverse calculations we have

1 (v @ n(v)Hu) = b1(lim &5 X er(sa, a(s'p)ty))

= lim &5@,r (M1 (S0, 0 (s ), ty))-

Now, by an argument similar to equations (*) of
Theorem 2.1, ¢, preserves congruence. Thus there
exists a continuous  homomorphism  ¢,:
S? ®, T? — (S ®, T)"such that the following

diagram commutes.

P xT? L (s @, T)”
T, 7 ¢,
s? @, T”.

Now, ¢o¢, is an identity map on S¥ @, T7,
because if v @, 4 € S @, T”, then we can find a
net { s, } in S and {t[;} in T such that lim, &¢(s,) =
v, and limg sT(tﬁ) = u. Thus

o, (U ®n #) = ¢0¢2(7T2(U; #))
= 1;%@((1)1(33 X er(Sq, tg))
= linﬁuﬁ( 0(Sa tp))
= loigg P(m1(g5g r(Sa &, tp))
= limyp 85 7(Se &, tp)=v &y 1.

Therefore (S ®, T) ¥ = ¥ ®, T”.

Corollary 3.4. Let S and T be two topological
semigroups with identities, and 0:S — T be a
continuous homomorphism. Then (S Q, T) % =
S?PQ, T?.

Corollary 3.5. Let S and T be two topological
semigroups with identities, and 0:S — T be a
continuous homomorphism. Then (S ®, T) 5% =
Sgsap ®0 TSsav.

4. L*-Spaces on tensor products of semigroups

We recall that for semigroup S,

BE = {f:f:5— €Y )| <)

SES

With pointwise addition and scalar multiplication,
with convolution

F9© =) fag®)

S=uv

as product ((f*g)(s) =0 if s=wuv has no
solutions) and with the norm

Il = Y 17l

SES

is a Banach algebra that we call it Discrete
semigroup algebra.

Theorem 4.1. Let S and T be two semigroups with
identities, and o0:S— T be a continuous

homomorphism. Then 1'(S ®, T) = ll(SkXT)
k is a closed subspace of I'(S x T).

, wWhere

Proof: For every f €l(SXT), consider the
function

(s, t) —> Z fu,v).

UuQgv=sQqt

Since this function 1is constant on each
congruence class, it is of the form fomsg r, where
f is a function on the quotient space [1(S ®, T).
Now put

YIS XT) = 'S ®, T)
v =1

In fact,

PGB0 =F® 0= Y fuw),

URQ V=5Q4t

We have Y(f * g) = Y(f) *P(g), for

PP t) =f*g(s Qs t)

= Zu®GV=s®atf * g(u' 17)

= Zu®gv=s®gt[Z(u,v):(p,q)(n,m) f(p' Q)g(n' m) ]

= Zu®gv=s®gt[2u=pn, v=qm fp,9)g(n,m)]

= Es®at:pn@aqm[zp®aq=p’®aq’, n®gm=m’®gn’f(p': qgn’,m) ]

= Zs®0r=pn®gqm[Zp@)aq:f'@aq’ f@.q)] Y n@gmen®om' 9, m)]
= Zs®gt=(p®aq)(n®am)f (pr q)g(nr m)

=9 *P(@(s Q, t).

Also, we assert that ¥ maps [*(SxT) onto
I*(S®, T). Indeed, let any f € I'(S®,T) be
given; then we can obtain an f € [1(S X T) such
that Y (f)=f as follows. Put
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N={s®,t:f(s®,t)#0}
and
M = mgg_(N).
Now define for (s,t) € S X T,

Tsg,r(S,t) EN
, othewise

fs,t) = {1; 0Tsg,7 (5 1),

Then f € 11(S X T), for
If(s, ) = |fortsg,r(s, )]

(s,t)ESXT Ts@qT(SEN

= ) fs®,0|<w

Ms@qT(StIEN

and

v =T

Let
k =ker W)={f € I*(S x T): Y(f) = 0}.

It is clear ¥ is a linear operator from [*(S x T)
onto [*(S ®, T). Then

1
(S ®, T) = @

5. Topological tensor products and extension
group

In this section we study some properties of
[topological] tensor products. We will show for
arbitrary [topological] groups G; and G,, G; X G, is
an extension of G; @, G, by a proper [closed]

G1XGy
T Also, by

extension argument we get a number of interesting
results on tensor product.

normal subgroup N ie. G; Q, G, =

Lemma 5.1. Let Gyand G,, be two [topological]
groups and o0:G; — G, be a [continuous]

G1xGy
, TGy X

homomorphism. Let G; ®, G, =

G1XGy
GZ_)

be the quotient map. Then s ®, t =

p
a®,b if and only if (s®,t)(a®,b)"!E€E
“(161: 1G2)

Proof: Since G; ®, G, is a group, [3, Theorem
2.5], we have sQ@,t=a®,b if and only if
(s Qs (a®, b)™' = m(lg,, 1g,) and or
(S ®c t)(a ®o‘ b)_l € T[(]-Glﬁ 162)'

Lemma 5.2. Let Gyand G,, be two [topological]
groups and o0:G; — G, be a [continuous]
homomorphism. Then N = {(m,n) € G; X Gy:

(m,n) p (1g,,1¢,)} is a [closed] normal subgroup
of G; X G,.

Proof: Suppose (mq,n,) € N and (m,,n,) €N,
then (mllnl) P (1G1' 1G2)s (mZ'nZ) P (1G1! 1G2) .
Since p is a congruence, (my,ny)"tp (1, 1g,)
and (my,n,)(my,n;)~" p (1G1'1G2)(1G1'162) =
(161, 1G2)- This implies that N is a subgroup of
G, X G,. Now, let (m,n) € N and (g4, 9,) € G; X
G,. Since p is a congruence on G; X Gy,

(91, 92) (M, 1) (g1, 92) ™" p

(91,92) (L6, 16,) (91, 92077

(91, 92)(m,n)(g1,92) 7" p (L, 16,) -

This implies that (g, g,)(m,n)(g;, go) "*EN. Thus
N is a normal subgroup of G; X G,. Let {(m,, ny)}
be a net in N such that (iny, n,) — (m,n). By the
definition of N, (mg, ng)p(1g,,1g,). Since p is a
closed congruence on Gy XG,, we have
(m,n)p(1g,, 1g,). Thus (m,n) € N.

Theorem 5.1. Let Gyand G,, be two [topological]
groups and o0:G; — G, be a [continuous]

homomorphism. Then G; ®, G, = Gl;GZ, where

N = {(m,n) € G; X Gp:(m,n)p(1g,,1g,)}. In
other words, G; ®, G, is an extension of G; X G,
by N.

G1XGy

Proof: Let m: Gy X G,— =G, ®, G, be the

quotient map and 7(x) = g; Q4 g2 € G; ®, G-
We show that w(x) = Nx. Let n € N, by Lemma
52, N is a subgroup of G; X G,. Now, n~1=
x(nx)"' € N. By Lemma 5.1, nx € m(x). This
implies that Nx € m(x). Conversely, let y € m(x),
so xy~1 € N. Since N is a subgroup of G; X G, so
yx = (xy )71 € N. Thus there is an n € N
such that yx~! =n and so y = nx. This implies
that m(x) € Nx. Thus m(x) = Nx (x € G; X Gy).

G1XG;
N0W7 Gl ®z7 GZ = UxEG1XG2 T[(x) = UxEG1XG2 Nx = ITZ
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