http://www.shirazu.ac.ir/en

Function spaces on tensor product of semigroups

H. Rahimi

Department of Mathematics, Faculty of Science, Islamic Azad University, Central Tehran Branch, P. O. Box 13185/768, Tehran, Iran *E-mail:* rahimi@iauctb.ac.ir

Abstract

In this paper, we characterize the function space and L^1 -space of the [topological] tensor product of [topological] semigroups. As a consequence, for arbitrary [topological] groups G_1 and G_2 , it will be shown that $G_1 \times G_2$ is an extension of $G_1 \otimes_{\sigma} G_2$ by a proper normal subgroup N i.e. $G_1 \otimes_{\sigma} G_2 = \frac{G_1 \times G_2}{N}$.

Keywords: Topological semigroup; compactification; tensor product

1. Introduction

For many algebraic and analytic structures the tensor product has been defined in many different ways. Following Howie [1], for any two nonempty sets, especially for semigroups, *X* and *Y* tensor product $X \otimes Y$ has been defined as the quotient space $\frac{X \times Y}{\tau}$, in which the equivalence relation τ is generated by the set

$$\{((xx', y), (x, x'y)): x, x' \in X, y \in Y\}.$$

Note that this structure does not necessarily inherit the algebraic structure of X and Y. In other words $X \otimes Y$, as defined previously, is just a quotient space rather than a semigroup when X and Y are two semigroups with identities. The topological tensor product of topological semigroups was introduced by Medghalchi and the author in 2004 [2, 3]. The special characteristic of this structure is completely different from the Sherier Product [4] and Semiditect Product [5]. The ideal structure of topological tensor product of topological semigroups and their results were characterized in [2]. Since compactification of semigroups and more general function spaces of semigroups play an important role in analysis on semigroups, this tool has been used by many [5-8], for example). authors (see The characterization of almost periodic compactification and weak, almost periodic compactification of topological tensor product of topological semigroups was developed in [3]. An important class of semigroups which has been studied extensively from various points of view, is

Received: 13 December 2010 / Accepted: 9 April 2011

the class of completely 0-simple and completely simple semigroups [9, 10]. By applying the topological tensor product techniques, the function spaces of 0-simple and completely simple semigroup are characterized by the author [11]. These facts led to the motivation to study function spaces of [topological] tensor product of [topological] semigroups.

This paper is organized as follows. In section two, we introduce our notation and the structure of [topological] tensor product of [topological] semigroups. Section three is devoted to discussing the concepts of \mathcal{P} -compactifications where \mathcal{P} is an arbitrary property of compactifications, and function spaces on the [topological] tensor product. In section four we characterize the l^1 -space on tensor products. Finally, in the last section we apply the results of previous sections to show that $G_1 \bigotimes_{\sigma} G_2 = \frac{G_1 \times G_2}{N}$ for an appropriate normal subgroup *N*.

2. Preliminaries

In this paper we assume that each semigroup possesses an identity. A semigroup *S* is called a right [left] topological semigroup if there is a topology on *S* such that $s \rightarrow st [s \rightarrow ts]$ is continuous for all $t \in S$. A semigroup *S* is called semitopological [topological] semigroup if $(s,t) \rightarrow st$ is separately [jointly] continuous. A topological semigroup *S* is called a topological group if the inverse mapping $s \rightarrow s^{-1}$ is continuous.

Let S be a topological semigroup. A right topological semigroup X is called a semigroup compactification of S if X is compact, Hausdorff and $\psi: S \to X$ is a continuous homomorphism such that $\overline{\psi(S)} = X, \psi(S) \subseteq \Lambda(X)$, where $\Lambda(X) = \{t \in X: s \to ts: X \to X, is continuos\}$. We say that the compactification (ψ, X) of *S* has left [right] jointly continuity property if the mapping $(s, x) \to \psi(s)x$ [$(x, s) \to x\psi(s)$] is continuous.

Let $\mathfrak{B}(S)$ be the C^* -algebra of all bounded complex valued functions on S, \mathcal{F} be a unital C^* subalgebra of $\mathcal{B}(S)$, $S^{\mathcal{F}}$ be the set of all multiplicative means on \mathcal{F} and $\varepsilon: S \longrightarrow S^{\mathcal{F}}$ be the evaluation mapping. We say that \mathcal{F} is *m*-admissible if $T_{\mu}(\mathcal{F}) \subseteq \mathcal{F}$ for all $\mu \in S^{\mathcal{F}}$, where $T_{\mu}(f)(s) =$ $\mu(L_s(f))$, $s \in S, f \in \mathcal{F}$. If we equip $S^{\mathcal{F}}$ with the Gelfand topology then $S^{\mathcal{F}}$ with multiplication $\mu\nu(f) = \mu(T_{\nu}(f), \ \mu, \nu \in S^{\mathcal{F}}$ is а compact Hausdorff right topological semigroup. Moreover, the evaluation mapping is a continuous homomorphism into a dense subsemigroup of $S^{\mathcal{F}}$ which is contained in the topological center of $S^{\mathcal{F}}$. Now, if (ψ, X) is a compactification of S, then $\psi^*(C(X))$ is an *m*-admissible subalgebra of C(S). Conversely, if \mathcal{F} is an *m*-admissible subalgebra of C(S), then there exists a unique (up to isomorphism) compactification (ψ, X) of S such that $\psi^*(\mathcal{C}(X)) = \mathcal{F}$. In other words, the compactification corresponding to the *m*admissible subalgebra \mathcal{F} is $(\varepsilon, S^{\mathcal{F}})$. Moreover, $\varepsilon^*(\mathcal{C}(S^{\mathcal{F}})) = \mathcal{F}[1].$

Let S and T be semitopological semigroups with semigroup compactifications S' and *T'*. A continuous function $\varphi': S' \to T'$ is an extension of the continuous function $\varphi: S \to T$ if $\varphi' o \varepsilon_S = \varepsilon_T o \varphi$ and φ' is uniquely determined by φ . Such an extension exists if and only if $\varphi^*(B) \subseteq A$, where A and B are the associated function spaces of the compactifications. Let S and S''he compactifications of S. Then S' is a factor of S" if the identity map on S has an extension $\varphi: S'' \to S'$. A compactification with a given property \mathcal{P} is called a \mathcal{P} -compactification. A universal \mathcal{P} compactification of S is a \mathcal{P} -compactification of which, every \mathcal{P} -compactification of S is a factor. Universal P-compactifications, if they exist, are unique (up to isomorphism). We denote the universal \mathcal{P} -compactification of S by $S^{\mathcal{P}}$. We refer the reader to [12] for more results about compactifications of semigroups.

Following Howie [1], for a relation l on a set X, we denote l^{∞} by $l^{\infty} = \{l^n: n \ge 1\}$, where $l^n = lolo \dots ol$. We recall that the equivalence generated by l is the intersection of all equivalence relations containing l [1, sec 1.4]. Following [1, Lemma 1.4.8], if l is a reflexive relation on X, then l^{∞} is the smallest transitive relation on X containing l. We denote $[l \cup l^{-1} \cup 1_X]^{\infty}$ by l^e , where $l^{-1} = \{(y, x) : (x, y) \in l\}$ and $1_X = \{(x, x) : x \in X\}$. By [1,

Proposition 1.4.9], l^e is an equivalence generated by *l*. So, if l^{∞} is an equivalence generated by *l*, then $(x, y) \in l^e$ if and only if, either x = y or, for some $n \in \mathbb{N}$, there is a sequence of translations x = $z_1 \rightarrow z_2 \rightarrow \cdots \rightarrow z_n = y$ such that, for each $1 \le i \le n - 1$, either $(z_{i,z_{i+1}}) \in l$ or, $(z_{i+1}, z_i) \in l$ [1, Proposition 1.4.10].

An equivalence τ on a semigroup *S* is called a left [right] *S*-congruence if $(x, y) \in \tau$ and $s \in S$, then $(sx, sy) \in \tau [(xs, ys) \in \tau]$, and is called an *S*-congruence if it is both a right and a left *S*-congruence.

Let S, T be two [topological] semigroups with identities and X be a non-empty [topological] space. Then X is called a [topological] left S-system if there is an action $(s, x) \rightarrow sx$ of $S \times X$ into Xwhich [is jointly continuous and] $s_1(s_2x) =$ $(s_1s_2)x, 1_Sx = x (s_1, s_2 \in S, x \in X)$. A [topological] right S-system is defined similarly. A [topological] left S-system which is also a [topological] right Tsystem is called a [topological] (S, T)-bisystem if $(sx)t = s(xt) (s \in S, t \in T, x \in X)$.

Let *X*, *Y* be two [topological] left *S*-systems and $\varphi: X \to Y$ be a [continuous] map. We say that φ is a [topological] left *S*-map if $\varphi(sx) = s\varphi(x)(x \in X, s \in S)$. Similarly, we can define a [topological] right *T*-map.

Now, let X be a [topological] (S, U)-bisystem, Y be a [topological] (U, T)-bisystem and Z be a [topological] (S, T)-bisystem. Then $X \times Y$ has the structure of a [topological](S, T)-bisystem (*i.e.*, $s_1s_2(x, y) = s_1(s_2x, y)$, $1_S(x, y) = (x, y)$, $(x, y)t_1t_2 = (x, yt_1)t_2$,

 $(x, y)1_T = (x, y)$, for all $s_1, s_2 \in S$ and $t_1, t_2 \in T$).

Let $[X \times Y]$ be equipped with the product topology and] $\beta: X \times Y \longrightarrow Z$ be a [topological] (S, T)-map (i.e., β is a [topological] left S-map and a [topological] right T-map). We say that β is a if further [topological] bimap $\beta(xu, y) =$ $\beta(x, uy)$ ($u \in U$). Let *S* and *T* be two [topological] semigroups with identities 1_S , 1_T , respectively. Let $\sigma: S \to T$ be a continuous homomorphism. Then T can obviously be regarded as a [topological] (S, T)bisystem by s * t = st ($s \in S, t \in T$), and S can be regarded as a [topological] (S, S)-bisystem where the action of S on S is just its multiplication. Let C be a [topological] (S,T)-bisystem and $\beta: S \times T \rightarrow$ C be a [topological] (S, T)-map. We say that β is a [topological] σ -bimap if $\beta(ss',t) = \beta(s,\sigma(s')t)(s,s \in$ $S, t \in T$).

By a [topological] tensor product we mean a pair (P, φ) where *P* is a [topological] (S, T)-bisystem and $\varphi: S \times T \longrightarrow P$ is a [topological] σ -bimap such that for every [topological] (S, T)-bisystem *C* and every [topological] σ -bimap $\beta: S \times T \longrightarrow P$ there exists a unique [topological] (S, T)-map $\overline{\beta}: P \longrightarrow C$ such that the diagram

$$\begin{array}{c} S \times T \xrightarrow{\varphi} P \\ \beta \downarrow \swarrow \overline{\beta} \\ C \end{array}$$

commutes [2, 3].

In the following theorem the existence of the [topological] tensor product of *S* and *T* with respect to σ , which is denoted by $S \otimes_{\sigma} T$, was proved.

Theorem 2.1. [3, Theorem 3.3] Let S and T be two [topological] semigroups with identities, and $\sigma: S \rightarrow T$ be a [continuous] homomorphism. Then there is a unique [topological] tensor product of S and T.

proof: (sketch) We regard $S \times T$ [with the product topology] as a [topological] (S, T)-bisystem. Let τ be the equivalence relation on $S \times T$ generated by $\{(ss', t), (s, \sigma(s')t)\}$: $s, s' \in S, t \in T\}$. Let

$$\rho = \{(a, b) \in (S \times T) \times (S \times T) : u, v \in S \times T, (uav, ubv) \in \tau\}.$$

By [1, Proposition 1.5.10], ρ is the largest congruence on $S \times T$ contained in τ . Now, we denote $\frac{S \times T}{\rho}$ by $S \bigotimes_{\sigma} T$ and the elements of $\frac{S \times T}{\rho}$ by $s \bigotimes_{\sigma} t$. We use the techniques of [1, Proposition 8.1.8] to show that if $s_1 \bigotimes_{\sigma} t_1 = s_2 \bigotimes_{\sigma} t_2$ then $s_1 = s_2$ and $t_1 = t_2$, or there exist $a_1, a_2, \dots, a_{n-1} \in S, b_1, \dots, b_{n-1} \in T, u_1, \dots, u_n, v_1, \dots, v_n \in S$ (see the introduction) such that

 $s_1 = a_1 u_1,$ $\sigma(u_1) t_1 = \sigma(v_1) b_{1,}$ $a_1 v_1 = a_2 u_2,$ $\sigma(u_2) b_1 = \sigma(v_2) b_{2,}$:

 $a_i v_i = a_{i+1} u_{i+1}, \quad \sigma(u_{i+1}) b_i = \sigma(v_{i+1}) b_{i+1} \quad (i=2,..., n-2), (*)$

÷

$$a_{n-1}v_{n-1} = s_2 u_n, \quad \sigma(u_n)b_{n-1} = t_2.$$

Let $\varphi: S \times T \longrightarrow S \otimes_{\sigma} T$ be defined by $\varphi(s, t) = s \otimes_{\sigma} t$. φ is a [topological] σ -bimap and $(S \otimes_{\sigma} T, \varphi)$ is a unique (up to isomorphism) [topological] tensor product of *S* and *T*.

3. Function spaces on topological tensor product of topological semigroups

Let *S* and *T* be two topological semigroups and $S \bigotimes_{\sigma} T$ be their topological tensor product. Let \mathcal{P} be the property of compactifications. In this setting it is natural to ask whether universal \mathcal{P} -compactification of $(S \bigotimes_{\sigma} T)^{\mathcal{P}}$ of $S \bigotimes_{\sigma} T$ is canonically isomorphic to $S^{\mathcal{P}} \bigotimes_{\sigma} T^{\mathcal{P}}$. Results of this type are known for *ap*-compactification and

sap-compactification in [5]. In this chapter we generalize these results, obtaining compactification theorem of the form $(S \otimes_{\sigma} T)^{\mathcal{P}} \simeq S^{\mathcal{P}} \otimes_{\sigma} T^{\mathcal{P}}$. Remember that the following results were proved in [3].

Theorem3.1. [3, Theorem 3.6] Let (ψ_1, X_1) and (ψ_2, X_2) be two topological semigroup compactifications of topological semigroups S and T, respectively. Let $\sigma: S \to T, \eta: X_1 \to X_2$ be two continuous homomorphisms such that $\eta o \psi_1 = \psi_2 o \sigma$. Then $X_1 \otimes_{\sigma} X_2$ is a topological semigroup compactification of S $\otimes_{\sigma} T$.

Theorem3.2. [3, Corollary 3.7] Let $(\varepsilon_i, S_i^{\mathcal{F}_i})(i = 1,2)$ be two canonical compacitifications of topological semigroups S_i such that $S_i^{\mathcal{F}_i}$ is a topological semigroup. Let $\sigma: S \to T$ be a continuous homomorphism such that $\sigma^*(\mathcal{F}_2) \subseteq \mathcal{F}_1$. Then $S_1^{\mathcal{F}_1} \otimes_{\sigma} S_2^{\mathcal{F}_2}$ exists and is a compactification of $S \otimes_{\sigma} T$.

Theorem 3.3. Let *S* and *T* be two topological semigroups with identities, and σ be a continuous homomorphism of *S* into *T*. Let $S^{\mathcal{P}}.T^{\mathcal{P}}$ and $(S \otimes_{\sigma} T)^{\mathcal{P}}$ be the universal topological semigroup \mathcal{P} -compactifications of *S*, *T* and $S \otimes_{\sigma} T$, respectively where \mathcal{P} has joint continuity property and is invariant under multiplication. Then $(S \otimes_{\sigma} T)^{\mathcal{P}} \simeq S^{\mathcal{P}} \otimes_{\sigma} T^{\mathcal{P}}$.

Proof: Let $(\varepsilon_{S\otimes_{\sigma}T}, (S\otimes_{\sigma}T)^{\mathcal{P}})$, $(\varepsilon_{S}, S^{\mathcal{P}})$, $(\varepsilon_{T}, T^{\mathcal{P}})$ be universal topological semigroup \mathcal{P} -compactifications of $S \otimes_{\sigma} T$, S and T respectively. By Theorem 3.2, $(\delta_{S\otimes_{\sigma}T}, S^{\mathcal{P}} \otimes_{\eta} T^{\mathcal{P}})$ is a topological semigroup compactification of $S \otimes_{\sigma} T$. The universal property of \mathcal{P} -compactification $(\varepsilon_{S\otimes_{\sigma}T}, (S \otimes_{\sigma}T)^{\mathcal{P}})$ gives a continuous homomorphism $\phi: (S \otimes_{\sigma}T)^{\mathcal{P}} \to S^{\mathcal{P}} \otimes_{\eta} T^{\mathcal{P}}$ such that the following diagram commutes.

$$S \bigotimes_{\sigma} T \xrightarrow{\varepsilon_{S \bigotimes_{\sigma} T}} (S \bigotimes_{\sigma} T)^{\mathcal{P}}$$
$$\delta_{S \bigotimes_{\sigma} T} \downarrow \qquad \checkmark \phi$$
$$S^{\mathcal{P}} \bigotimes_{n} T^{\mathcal{P}}.$$

Also, since $(\varepsilon_S \times \varepsilon_T, (S \times T)^{\mathcal{P}}$ is a topological semigroup compactification of $S \times T$, via the homomorphism $\theta: S \times T \xrightarrow{\pi} S \otimes_{\sigma} T \xrightarrow{\varepsilon_{S \otimes_{\sigma} T}} (S \otimes_{\sigma} T)^{\mathcal{P}}$, there is a continuous homomorphism $\phi_1: (S \times T)^{\mathcal{P}} \to (S \otimes_{\sigma} T)^{\mathcal{P}}$ such that the following diagram commutes.

$$S \times T \xrightarrow{\theta} (S \otimes_{\sigma} T)^{\mathcal{P}}$$
$$\varepsilon_{S} \times \varepsilon_{T} \downarrow \qquad \checkmark \phi_{1}$$
$$(S \times T)^{\mathcal{P}}.$$

On the other hand, $(S \times T)^{\mathcal{P}} = S^{\mathcal{P}} \times T^{\mathcal{P}}$, thus we can assume that $\phi_1: S^{\mathcal{P}} \times T^{\mathcal{P}} \longrightarrow (S \otimes_{\sigma} T)^{\mathcal{P}}$. Observe that ϕ_1 preserves congruence, because, if $vv' \otimes_{\eta} \mu = v \otimes_{\eta} \eta(v')\mu$, where $v, v' \in S^{\mathcal{P}}, \mu \in T^{\mathcal{P}}$, we can get the nets $\{s_{\alpha}\}, \{s'_{\beta}\}$ in S and $\{t_{\gamma}\}$ in Tsuch that $\lim_{\alpha} \varepsilon_S(s_{\alpha}) = v$, $\lim_{\beta} \varepsilon_S(s'_{\beta}) = v'$ and $\lim_{\gamma} \varepsilon_T(t_{\gamma}) = \mu$. Therefore,

$$\begin{split} \phi_1(vv'\otimes_{\eta}\mu) &= \phi_1(\lim_{\alpha,\beta,\gamma}\varepsilon_S \times \varepsilon_T(s_\alpha s'_\beta,t_\gamma)) \\ &= \lim_{\alpha,\beta,\gamma}\phi_1(\varepsilon_S \times \varepsilon_T(s_\alpha s'_\beta,t_\gamma)) \\ &= \lim_{\alpha,\beta,\gamma}\varepsilon_{S\otimes_{\sigma}T}(\pi_1(s_\alpha s'_\beta,t_\gamma)) \\ &= \lim_{\alpha,\beta,\gamma}\varepsilon_{S\otimes_{\sigma}T}(\pi_1(s_\alpha,\sigma(s'_\beta)t_\gamma)). \end{split}$$

For the reverse calculations we have

$$\phi_{1}(v \otimes_{\eta} \eta(v')\mu) = \phi_{1}(\lim_{\alpha,\beta,\gamma} \varepsilon_{S} \times \varepsilon_{T}(s_{\alpha},\sigma(s'_{\beta})t_{\gamma}))$$
$$= \lim_{\alpha,\beta,\gamma} \varepsilon_{S \otimes_{\sigma} T}(\pi_{1}(s_{\alpha},\sigma(s'_{\beta}),t_{\gamma})).$$

Now, by an argument similar to equations (*) of Theorem 2.1, ϕ_1 preserves congruence. Thus there exists a continuous homomorphism ϕ_2 : $S^{\mathcal{P}} \otimes_{\eta} T^{\mathcal{P}} \longrightarrow (S \otimes_{\sigma} T)^{\mathcal{P}}$ such that the following diagram commutes.

$$S^{\mathcal{P}} \times T^{\mathcal{P}} \xrightarrow{\phi_1} (S \otimes_{\sigma} T)^{\mathcal{P}}$$
$$\pi_2 \downarrow \qquad \nearrow \phi_2$$
$$S^{\mathcal{P}} \otimes_n T^{\mathcal{P}}.$$

Now, $\phi o \phi_2$ is an identity map on $S^{\mathcal{P}} \otimes_{\eta} T^{\mathcal{P}}$, because if $v \otimes_{\eta} \mu \in S^{\mathcal{P}} \otimes_{\eta} T^{\mathcal{P}}$, then we can find a net $\{s_{\alpha}\}$ in S and $\{t_{\beta}\}$ in T such that $\lim_{\alpha} \varepsilon_{S}(s_{\alpha}) = v$, and $\lim_{\beta} \varepsilon_{T}(t_{\beta}) = \mu$. Thus

$$\begin{aligned}
o\phi_2(v \otimes_{\eta} \mu) &= \phi o\phi_2(\pi_2(v,\mu)) \\
&= \lim_{\alpha,\beta} \phi(\phi_1(\varepsilon_S \times \varepsilon_T(s_\alpha, t_\beta))) \\
&= \lim_{\alpha,\beta} \phi(\theta(s_\alpha, t_\beta)) \\
&= \lim_{\alpha,\beta} \phi(\pi_1(\varepsilon_{S \otimes_{\sigma} T}(s_\alpha \otimes_{\sigma} t_\beta))) \\
&= \lim_{\alpha,\beta} \delta_{S \otimes_{\sigma} T}(s_\alpha \otimes_{\sigma} t_\beta) = v \otimes_{\eta} \mu
\end{aligned}$$

Therefore $(S \otimes_{\sigma} T)^{\mathcal{P}} \simeq S^{\mathcal{P}} \otimes_{\sigma} T^{\mathcal{P}}$.

Corollary 3.4. Let *S* and *T* be two topological semigroups with identities, and $\sigma: S \to T$ be a continuous homomorphism. Then $(S \otimes_{\sigma} T)^{ap} \simeq S^{ap} \otimes_{\sigma} T^{ap}$.

Corollary 3.5. Let *S* and *T* be two topological semigroups with identities, and $\sigma: S \to T$ be a continuous homomorphism. Then $(S \otimes_{\sigma} T)^{sap} \simeq S^{sap} \otimes_{\sigma} T^{sap}$.

4. L¹-Spaces on tensor products of semigroups

We recall that for semigroup *S*,

$$l^1(S) = \{ f : f : S \longrightarrow \mathbb{C}, \sum_{s \in S} |f(s)| < \infty \}.$$

With pointwise addition and scalar multiplication, with convolution

$$(f * g)(s) = \sum_{s=uv} f(u)g(v)$$

as product ((f * g)(s) = 0 if s = uv has no solutions) and with the norm

$$\|\mathbf{f}\|_1 = \sum_{s \in S} |f(s)|$$

is a Banach algebra that we call it Discrete semigroup algebra.

Theorem 4.1. Let S and T be two semigroups with identities, and $\sigma: S \to T$ be a continuous homomorphism. Then $l^1(S \otimes_{\sigma} T) \simeq \frac{l^1(S \times T)}{k}$, where k is a closed subspace of $l^1(S \times T)$.

Proof: For every $f \in l^1(S \times T)$, consider the function

$$(s,t) \to \sum_{u \otimes_{\sigma} v = s \otimes_{\sigma} t} f(u,v).$$

Since this function is constant on each congruence class, it is of the form $\overline{f} \circ \pi_{S \otimes_{\sigma} T}$, where \overline{f} is a function on the quotient space $l^1(S \otimes_{\sigma} T)$. Now put

$$\psi: l^1(S \times T) \longrightarrow l^1(S \otimes_{\sigma} T)$$
$$\psi(f) = \bar{f}$$

In fact,

$$\psi(f)(s \otimes_{\sigma} t) = \bar{f}(s \otimes_{\sigma} t) = \sum_{u \otimes_{\sigma} v = s \otimes_{\sigma} t} f(u, v).$$

We have $\psi(f * g) = \psi(f) * \psi(g)$, for

$$\begin{split} \psi(f * g)(s \otimes_{\sigma} t) &= f * g(s \otimes_{\sigma} t) \\ &= \sum_{u \otimes_{\sigma} v = s \otimes_{\sigma} t} f * g(u, v) \\ &= \sum_{u \otimes_{\sigma} v = s \otimes_{\sigma} t} [\sum_{(u,v)=(p,q)(n,m)} f(p,q)g(n,m)] \\ &= \sum_{u \otimes_{\sigma} v = s \otimes_{\sigma} t} [\sum_{u=pn, v=qm} f(p,q)g(n,m)] \\ &= \sum_{s \otimes_{\sigma} t=pn \otimes_{\sigma} qm} [\sum_{p \otimes_{\sigma} q=p' \otimes_{\sigma} q', n \otimes_{\sigma} m=m' \otimes_{\sigma} n'} f(p',q')g(n',m')] \\ &= \sum_{s \otimes_{\sigma} t=pn \otimes_{\sigma} qm} [\sum_{p \otimes_{\sigma} q=p' \otimes_{\sigma} q', f(p',q')}]\sum_{n \otimes_{\sigma} m=n' \otimes_{\sigma} m'} g(n',m')] \\ &= \sum_{s \otimes_{\sigma} t=(p \otimes_{\sigma} q)(n \otimes_{\sigma} m)} \bar{f}(p,q) \bar{g}(n,m) \\ &= \psi(f) * \psi(g)(s \otimes_{\sigma} t). \end{split}$$

Also, we assert that ψ maps $l^1(S \times T)$ onto $l^1(S \otimes_{\sigma} T)$. Indeed, let any $\overline{f} \in l^1(S \otimes_{\sigma} T)$ be given; then we can obtain an $f \in l^1(S \times T)$ such that $\psi(f) = \overline{f}$ as follows. Put

$$N = \{ s \bigotimes_{\sigma} t : \overline{f}(s \bigotimes_{\sigma} t) \neq 0 \}$$

and

$$M = \pi_{s \otimes_{\sigma} t}^{-1}(\mathbf{N}).$$

Now define for $(s, t) \in S \times T$,

$$f(s,t) = \begin{cases} fo\pi_{S\otimes_{\sigma}T}(s,t), & \pi_{S\otimes_{\sigma}T}(s,t) \in N\\ 0 & , othewise \end{cases}$$

Then $f \in l^1(S \times T)$, for

$$\sum_{(s,t)\in S\times T} |f(s,t)| = \sum_{\pi_{S\otimes_{\sigma}T}(s,t)\in N} \left|\bar{f}\sigma\pi_{S\otimes_{\sigma}T}(s,t)\right|$$
$$= \sum_{\pi_{S\otimes_{\sigma}T}(s,t)\in N} \left|\bar{f}(s\otimes_{\sigma}t)\right| < \infty$$

and

$$\psi(f) = \overline{f}.$$

Let

 $k = \ker (\psi) = \{ f \in l^1(S \times T) \colon \psi(f) = 0 \}.$

It is clear ψ is a linear operator from $l^1(S \times T)$ onto $l^1(S \otimes_{\sigma} T)$. Then

$$l^1(S \otimes_{\sigma} T) \simeq \frac{l^1(S \times T)}{k}$$

5. Topological tensor products and extension group

In this section we study some properties of [topological] tensor products. We will show for arbitrary [topological] groups G_1 and G_2 , $G_1 \times G_2$ is an extension of $G_1 \otimes_{\sigma} G_2$ by a proper [closed] normal subgroup *N* i.e. $G_1 \otimes_{\sigma} G_2 = \frac{G_1 \times G_2}{N}$. Also, by extension argument we get a number of interesting results on tensor product.

Lemma 5.1. Let G_1 and G_2 , be two [topological] groups and $\sigma: G_1 \to G_2$ be a [continuous] homomorphism. Let $G_1 \otimes_{\sigma} G_2 = \frac{G_1 \times G_2}{\rho}$, $\pi: G_1 \times G_2 \to \frac{G_1 \times G_2}{\rho}$ be the quotient map. Then $s \otimes_{\sigma} t = a \otimes_{\sigma} b$ if and only if $(s \otimes_{\sigma} t)(a \otimes_{\sigma} b)^{-1} \in \pi(1_{G_1}, 1_{G_2})$

Proof: Since $G_1 \otimes_{\sigma} G_2$ is a group, [3, Theorem 2.5], we have $s \otimes_{\sigma} t = a \otimes_{\sigma} b$ if and only if $(s \otimes_{\sigma} t)(a \otimes_{\sigma} b)^{-1} = \pi(1_{G_1}, 1_{G_2})$ and or $(s \otimes_{\sigma} t)(a \otimes_{\sigma} b)^{-1} \in \pi(1_{G_1}, 1_{G_2})$.

Lemma 5.2. Let G_1 and G_2 , be two [topological] groups and $\sigma: G_1 \rightarrow G_2$ be a [continuous] homomorphism. Then $N = \{(m, n) \in G_1 \times G_2:$

(m,n) ρ (1_{G1}, 1_{G2})} is a [closed] normal subgroup of G₁ × G₂.

Proof: Suppose $(m_1, n_1) \in N$ and $(m_2, n_2) \in N$, then $(m_1, n_1) \rho (1_{G_1}, 1_{G_2}), (m_2, n_2) \rho (1_{G_1}, 1_{G_2}).$ Since ρ is a congruence, $(m_2, n_2)^{-1} \rho (1_{G_1}, 1_{G_2})$ and $(m_1, n_1)(m_2, n_2)^{-1} \rho \ (1_{G_1}, 1_{G_2})(1_{G_1}, 1_{G_2}) =$ $(1_{G_1}, 1_{G_2})$. This implies that N is a subgroup of $G_1 \times G_2$. Now, let $(m, n) \in N$ and $(g_1, g_2) \in G_1 \times$ G_2 . Since ρ is a congruence on $G_1 \times G_2$, $(g_1, g_2)(m, n)(g_1, g_2)^{-1} \rho$ $(g_1, g_2)(1_{G_1}, 1_{G_2})(g_1, g_2)^{-1},$ $(g_1, g_2)(m, n)(g_1, g_2)^{-1} \rho(1_{G_1}, 1_{G_2}).$ This implies that $(g_1, g_2)(m, n)(g_1, g_2)^{-1} \in \mathbb{N}$. Thus *N* is a normal subgroup of $G_1 \times G_2$. Let $\{(m_\alpha, n_\alpha)\}$ be a net in N such that $(m_{\alpha}, n_{\alpha}) \rightarrow (m, n)$. By the definition of N, $(m_{\alpha}, n_{\alpha})\rho(1_{G_1}, 1_{G_2})$. Since ρ is a closed congruence on $G_1 \times G_2$, we have $(m, n)\rho(1_{G_1}, 1_{G_2})$. Thus $(m, n) \in N$.

Theorem 5.1. Let G_1 and G_2 , be two [topological] groups and $\sigma: G_1 \rightarrow G_2$ be a [continuous] homomorphism. Then $G_1 \otimes_{\sigma} G_2 = \frac{G_1 \times G_2}{N}$, where $N = \{(m, n) \in G_1 \times G_2: (m, n)\rho(1_{G_1}, 1_{G_2})\}$. In other words, $G_1 \otimes_{\sigma} G_2$ is an extension of $G_1 \times G_2$ by *N*.

Proof: Let $\pi: G_1 \times G_2 \to \frac{G_1 \times G_2}{\rho} = G_1 \otimes_{\sigma} G_2$ be the quotient map and $\pi(x) = g_1 \otimes_{\sigma} g_2 \in G_1 \otimes_{\sigma} G_2$. We show that $\pi(x) = Nx$. Let $n \in N$, by Lemma 5.2, N is a subgroup of $G_1 \times G_2$. Now, $n^{-1} = x(nx)^{-1} \in N$. By Lemma 5.1, $nx \in \pi(x)$. This implies that $Nx \subseteq \pi(x)$. Conversely, let $y \in \pi(x)$, so $xy^{-1} \in N$. Since N is a subgroup of $G_1 \times G_2$, so $yx^{-1} = (xy^{-1})^{-1} \in N$. Thus there is an $n \in N$ such that $yx^{-1} = n$ and so y = nx. This implies that $\pi(x) \subseteq Nx$. Thus $\pi(x) = Nx (x \in G_1 \times G_2)$. Now, $G_1 \otimes_{\sigma} G_2 = \bigcup_{x \in G_1 \times G_2} \pi(x) = \bigcup_{x \in G_1 \times G_2} Nx = \frac{G_1 \times G_2}{N}$.

References

- [1] Howie, J. M. (1995). *Fundamentals of semigroup theory*. Oxford, Clarendon Press.
- [2] Medghalchi, A. R. & Rahimi, H. R. (2004). The ideal structure on the topological tensor product of topological semigroups. *Int. J. App. Math. Vol*, 15(2), 165-177.
- [3] Medghalchi, A. R. & Rahimi, H. R. (2005). Topological tensor products of topological semigroups and its compactifications. *Scientiae Mathematicae Japonicae*. 62(1), 57-64.
- [4] Scott, W. R. (1964). Group Theory. New Jersey, Englewood Cliffs.
- [5] Junghenn, H. D. & Lerner, B. T. (1981). Semigroup Compactifications of semidirect products, *Trans. Amer. Math Soc*, 256, 393-404.

- [6] Ebrahimi Vishki, H. R. (2001). Some algebraic universal semigroup compactifications. *Int. J. Math Sci.* 26, 353-357.
- [7] Lau, A. T. (2003). Compactifications and fixed point properties. Fixed point theory and applications, *Nova Sci. Publ.*, 5, 53-58.
- [8] Tootkaboni, M. & Akbari V. (2009). Filters and semigroup compactification properties. *Semigroup Forum*, 78(2), 349-359
- [9] Clifford, A. H. & Preston, J. B. (1961). The Algebraic Theory of Semigroups I, *American Mathmatical Society Surveys 7*.
- [10] Esslamzadeh, G. H. (1999). Banach algebra structure and amenability of a class of matrix algebras with applications. *Journal of Functional Analysis*, 161, 364-383.
- [11] Rahimi, H. R. (To appear). Function spaces of Ress matrix semigroups. Bulletin of the Iranian Mathematical Society.
- [12] Berglund, J. F., Junhenn, H. D. & Milnes, P. (1989). Analysis on Semigroups: Functions spaces, Compactifications, Representations. New York, John Wiley & Sons.