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Abstract

In this paper, we study the Nehari manifold and its application on the following Navier boundary value

problem involving the p-biharmonic

1

*

A(AU" Au) =

u=Au=0

f(x,U)+ /1|u|q_2u, inQ,

ono Q)

where € is a bounded domain in R" with smooth boundary O (2. We prove that the problem has at

least two nontrivial nonnegtive solutions when the parameter 4 belongs to a certain subset of R .
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1. Introduction

The aim of this paper is to establish the existence
and multiplicity of nontrivial non-negative
solutions to the Navier boundary value problem
involving the p-biharmonic

A(AU" Auy = 1 fxuy+ AuTu inQ (1

p

u=Au=0 onoQ,
where () RN (N >1) is a bounded domain with
smooth boundary 0 Q,f eC(QxR";R") is

positively homogeneous of degree p* -1

o PN N
= - >2 i
(p N-2p if p) , that s,

f(x,tu) =t" 'f(x,u) (=0) hold for all

(x,u)€(LR") and AeR’ . We assume that
2<q<p<p ,»>0.
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Put
F(ou) = [ FOotat )
0

for each (X,U) € Q xW*P(Q).
Through this paper we assume:

(H1) F is homogeneous of degree p* , that s,
F(x,tu)=tP E(x,u), (t>0),VxeQ,ueR";

(H2) F(x,0)=f(x,0)=0, where ueR" ;
(H3) f(x,u) is strictly increasing function respect to
u for all u>0.

In addition, using assumption (H1), we have the
so-called Euler identity

*
uf (x,u)=p F(xu), (3)
and
F(x,u) < K|u|p* , for some constant K > 0. 4)

In recent years, several authors have used the
Nehari manifold and fibering maps (i.e., maps of
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the form t+> J,(tU) where J,is the Euler

function associated with the equation) to solve
semilinear and quasilinear problems, for instance,
we cite papers [1-9]. For example, the authors in
[10] studied the following subcritical semi-linear
elliptic equation with sign-changing weight
function

{—Au(x)zk a(x) u+b()Jul u(x), inQ, )

u(x)=0, ono Q

where y>2. Also, the authors in [10] by the same
arguments considered the following semilinear
elliptic problem:

~Au=£, Ol u OOl v, i ©
u=0, ondQ

where 1<q<2<p. Exploiting the relationship
between the Nehari manifold and fibering maps,
they gave an interesting explanation of the well-
known bifurcation result. In fact, the nature of the
Nehari manifold changes as the parameter A
crosses the bifurcation value.

In this work, motivated by the above works we
are interested in studying the problem (1) by using
a variational method involving the Nehari manifold
(see [3, 8, 10]).

Our main result is Theorem 1. Under the
hypothesis of the theorem, the Nehari manifold
associated with the problem consists of two distinct
components. We shall prove that there exists at
least one solution on each component.

This paper is organized as follows. In Section 2,
we give some notations, preliminaries and
properties of the Nehari manifold and set up the
variational framework of the problem. In Section 3,
we give our main result.

2. Notations and preliminaries

Here, in the sequel, W define the Sobolev space
W =W?>P(Q) with the norm

p
Jull = Jlauf"ex|".

Q

First we give the definition of the weak solution
of problem (1).

Definition 1. We say that U€W is a weak
solution of (1) if for all V€W we have

_[|Au|p’2 AuAvdx —%J'f (x,u) vdx —ﬁv_|.|u|q*2 uvax.
Q Q Q

Thus, by (3) the corresponding energy functional
of problem (1) is defined by

1

Lyoip
J, (UW)=—|u|” -

[F(xu) dx—ifg ‘uq‘ dx,
Q do

For u eW
Now, we consider the problem on the Nehari
manifold. Define the Nehari manifold

N, = {UeW\ {0} :(J} (u),u) = 0},
where

(Jyuy=[ul® - [F(xuydx-1[g ‘uq‘ dx.
Q Q

Note that N ,contains every non-zero solution
of problem (1). Define

D, (u) = (I (U),u),

then for Ue N,

(@, (u),wy=p [u]" ~p’ l F(x,u)dx —qxig [udx (7
= (pp) Hqu—(q—p*)kig Ju?| dx ®)
= (-q) [’ - (0"~ j F(x,u) dx ©9)

= ()| F(x.u)dx ~(q-p) Afg |u] dx.
(10) ) )
We split N, into three parts:
N ={ueW \{0}:(D' u),u)> 0},
N ={UueW \{0} (@, (u),u) =0},
N, ={ueW \{0}: (D' (u),u) <0}.
We now present some important properties of

N7 ,N9and N} .

Lemma 1. There exists £ >0 such that

0<A<u ,wehave N/(l):gé.

Proof: Suppose otherwise, thus for
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g
wo| _P-d ‘“‘[ P -p }
KC’ (p —q) Cllp - ]°

where C; is the best Sobolev constant for the
embedding of Wz’p(Q) in L”(Q). There exists

0<ﬂ.<,u0 such that Ng¢¢ Then for

ue Ng , we have
0=(®} (u),u)=(p-p") [uf°
~(@-p) 1fe fu'] dx (an
Q
=(p-) o’ ~(p" ) [Few dx. (12)
Q
By the sobolev embedding theorem,

J.F(x,u) dx <K '“u|p* dx
Q Q

<K uf". (13)

and
[g ‘uq‘ dx < Cul*. (14)
Q

By using (13) (14) in (11) and (12) we get

1

||u||z[‘f—‘?}"*“i
KC! (p —q)

1

||u||s[—%<p”:q>0i‘ j
p—-p

and

This implies A > £, which is a contradiction.
Thus, we can conclude that there exists £ > ()

such that 0 < A < 1, we have Ng =¢.

By (8) and (9), It is easy to see that the following
lemma holds.

Lemma 2. We have:

@ifue N, then jg lul* dx > 0;
Q

it ue N, then [F(x,u)dx>0;
Q

iy if Ue N, then J.g\u\qu>0 and
Q

jF(x,u) dx >0.

Q

Lemma 3. The energy functional J 4 s coercive

and bounded below on N 21

Proof: 1f UeN 2> then by the Sobolev
embedding theorem

1
o

J)\(u)zéHqu - Z[F(x,u) dx—i;z[g ‘uq‘ dx

== ol (- o] e
p p qa P a

I 1 I 1
> (=) Juf" -2Ct =)
p p qQa p

ul.

Since q<p<p , we see that J 2 1s coercive and

bounded below on N 1

Lemma 4. Suppose that UO is a local minimizer

for Jﬂ on Nl and U, & Ng , then
-1

J;ﬂ (UO) =0in W (the dual space of sobolev

space W).

Proof: The proof is standard (cf. We [7]). If UO is

a local minimizer for J 4 on N 2> then UO is a
solution of the optimization problem minimizing
‘]/1 (U) subject to D, (wW=0.

Hence, by the theory of Lagrange multiplies,
there exists & € R, such that

7 (u,) =6 @ (u,) in W'(Q).
Thus

(J' (uy),uy) =0 (D! (uy),u,) in W'(Q).

Since Yo EN}\, we have (J}(u,),u,)=0.

Moreover (@} (Uy),u)#0, then 6=0. This
completes the proof.
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By Lemma 1, we let

0, ={heR\0}:0<h <p,},

q
Where ILlOZBILl. If /166)#0, we have

N, = N;{ U N . Define

0, =inf J, (u), 6, =infJ, (u).

ueN; ueN;

Then, we have the following result.

Lemma 5. There exists a positive number £{, such
thatif A € @M) , then:

(i) 8; <0;
(i) 8, > kO, for some ko =k,(p",p,q,C,)>0.

Proof: (i) for U€ N , we have

*

A uqu>p*
e

u|,
—q" "
and so

1 1 1 1
LW === -r=-=)[g |uf'dx
p p q P g

PP
pp

p -p
o - =R <o

Thus, 6’:{ <0.

(i) for U e N:{ , by Lemma 2, we have
J.F(x,u) dx > p*;q"u"p >0,
Q P —q

and by Lemma 1

P—q b
e e AT

By Lemma 3, we have

11 11
Lz == -2 =) |u[f
PP qa p

ol | BB -acr 2 |
pp pq

Thus, if 0 <A < g4, then
J,(u)y>k, forall ueN;j,

for some k,=k, (p*,p, q,C,)>0 This completes
the proof.
For each u€ W\{0} such that JF(X,H) dx >0,
Q

let

| -9 ]
(p" - @) F(x,u) dx

max

Then, we have the following lemma:

Lemmab. For each U e N/{ we have:

() if Melu' dx<0_ then there is unique
Q

t” >t suchthat tue N, and

ax

J, (tw) =supJ; (tw);

>0

@) if Kj.g lu' dx>0 then there are unique
Q
0<t"=t"(u)<t,, <t suchthat t'ue Nj,t'ueN;

and

J,(t'u)= sup J, (tu),

0<t<t

J, (tTu) =supJ, (tu).

t>0

‘max

Proof: Fix U €W with IF(X,U) dx>0. Let
Q
S(t) =t ||u||p — tp*_qu(X,u) dx.
Q

Clearly, S(0) =0, S(t) — —©0 as t — . Since

S'(t) = (-t™ ol = (p" — )t [ F(x,u) dx,
Q

we have S'(t)=0att=t .S (t)>0 for
[0t ) and S'(t)<0 for te(t,, ,+0). Then

S(t) achieves its maximum at t increasing for

max >
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te[0.t,,) and decreasing for t€ (t,,,+®)
Moreover,

o o =
(p—9q) HUH ) Hqu

S(ty) = (e =
(p" —a)[ F(x,u) dx

(p-q Juf =
— p-p , dx
® - Foow free

[l T =G

p—q

)p’*p

Jul
jF(x,u) dx
Q

_ 1 5y
> [uff E=L —— &2,
p —q KC P —q

(1) ng luf' dx <0, there is a unique T >t
Q

such that S(t") = XJ.g luf'dx  and S'®)<0. Now,
Q

-t ) [uf — (" —a)(t ) [F(xwydx =t y"'S'(1) <0,

and
(J(tu), tuy=(t7)° {S’(t) — j g [uf dx} =0.

Thus tueN,. Since for t>t,,, we have

2

(p- )t = (p" @) [F(x, twydx <0, %Jk(tu) <0
and
iJl(tu) =t® u] —t* [ F(x,tu)dx
dt 2
—tq“/l_[g uf'dx =0, fort=t.
Q
Thus, J,(tw)=sup _J, (tw).
i) Af g u[*dx=0.
Q
For 0 < A <y, < u, we have
S(0)=0 < xjg [u[* dx
Q

<AC}ulf

P9 ®
p_q. 1 )P*—p(p _p)
p —q KC’ P —q
SS(t]'m])()'

<[l ¢

There are unique t+and t such that

0<t" <t <t
S(t)=2fg |uf' dx =S(t"),
o
and
S'(t)>0>S'(t).
We have t'ue Nj,t'ue N; and

J,tu) =7, (tu)>J, (tn), te[t',t7],
and

J,(tu) <, (tu), te[0t

ot |-
Thus,

J,(t'w) < sup J, (tu), ,(t'u)<supl, (tu).
>0

0<t<t t

max

This completes the proof.

3. Main result and proof

Our main result is as follows.

Theorem 1. If the parameter A satisfies (< 4 < Lo
then problem (1) has at least two solutions

u, and u, such that uy >0 in Q and uj #0.

The proof of this theorem will be a consequence
of the next two theorems.

Theorem 2. If 0 < A < g, then the functional]J ,
has a minimizer u; in N and satisfies:

M) J,(ug)=6;;

(i1) ug is a solution of problem (1) such that

u; >0 in Q.

Proof: By Lemma 3, J, is coercive and bounded

below on N ,.Let {u,} be a minimizing sequence

for J, on N; ie.,

limJ,(u,) = inf J,(U).
n—o UENZ
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Then by Lemma 3 and the compact embedding
theorem, there exist a subsequence (we call again

{u,}) and ug €W such that ug eW is the
solution of problem (1) and

u, — u;, weakly in W,

u, —>u, , strongly in L'(Q).
This implies
XJ.g Ju,[* dx —>7»J.g \ug\“ dx as n—o.
Q Q
Since

q
dx,

1 1 1 1
L) === o' -G == A f[u,
p p q9 P a

and by Lemma 5 (i)
J,(u,)—>06;, <0 as n—o.
Letting N —> 00, we see that 7‘_[|u3| dx>0
Q

Thus ug is a nontrivial solution of problem (1).
Now, it follows that U, —> Uar strongly in
WP (Q) and J, (uy) =0;.

By ug € N, and applying Fatou’s Lemma, we get

" dx

. . 1 1 N 11 +
0, <J,(ug)=(=—=) [u, p—(*—f) 7{'. Uo
p p 9 P o

<lim inf((l—l*) u | - Af[u, [ dX}
n—m P P q p o
<lim infJ, (u,)=6;.

This implies that

J,(ug)=6; and lim |u,|’ :‘ P

N
U,

Let @i, =u, —ug,then by Brezis-Lieb lemma

[11], we have

p

o] = Jun | = Jus

Therefore, U, — Ug strongly in w*P(Q).

Moreover, we have u; e N I . In fact, if

u S eN;. by Lemma 6, there are unique t0+ and

t, such that tyu; eN; and tju; e N;.In

particular, we have '[0+ <t; =1. Since

d +..+ d2 +..+
aJh(tOuo)zo and ?Jh(touo)>0,

there exists tg <t< t, such that
T, (toug) < T, (tug) < T, (toug) = T, (uy),

which contradicts J, (Uy) =6, .

It follows from the maximum principle that u:)— isa

positive solution of problem (1).
This completes the proof.
Next, we establish the existence of a local

minimum for J, on N7.

Theorem 3. If  satisfies 0 < A < g4, thenJ , has
minimize U, in N which satisfies:

D J,(u)=0; .

(i) U, is a solution of problem (1) such that

U, 20 in Q.

Proof: Let {u,} be a minimizing sequence for J 1

on N7, ie,
limJ, (u,) = inf J, (u) .
n—oo ueN;

Then by Lemma 3 and the compact embedding
Theorem, there exist a subsequence (we call again

{u,}) and U, eW such that U(; is a solution of
problem (1) and

u, — u,, weakly in W,

u, —>u, , strongly in L'(Q).

This implies
kjg |u|q dx — ng |u0|q dx, as n— oo
Q Q
and by (4)
as n — .

jF(x,u“) dx — ij(x,uO) dx,
Q Q

Moreover, by (9) we obtain
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P

un

P—9
JF(x,un) dx > = | (16)
Q P —q
By (15) and (16) there exists a positive number 77,
such that

[F(xu,) dx>n,
Q

This implies

[Foup) dx > 7, a7
Q

Now, we prove that U, —> Ua strongly in W.
Suppose otherwise, then

|ug | < tim inf Ju, |

nN—o0

By Lemma 6, there is unique t(; such that

tyu, € N, . Since {u }eN;, J(u)27(tu,)
for all t >0, we have

J, (tyu,) <limJ, (tyu, ) <limJ, (u,)=0",

which is a contradiction.

It follows from maximum principle that LI(; isa

positive solution of problem (1). This completes the
proof.

Now, we complete the proof of Theorem 1. By
Theorem 2, we obtain that for all A >0 and

0< A< g, (1) has a positive solution ug = N:{.
On the other hand, from Theorem 3, we get the
second positive solution u, € N; for all A >0

and 0< A < y,. Since N:NN;=¢, this implies

+ - .
that u, that U, are distinct.
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