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Abstract

In this research, both resource allocation and reactive resource allocation problems in multi-server dynamic PERT
networks are analytically modeled, where new projects are expected to arrive according to a Poisson process, and
activity durations are also known as independent random variables with exponential distributions. Such system is
represented as a queuing network, where multi servers at each service station are allocated, and also each activity
of aproject is operated at a devoted service station with only one server located at a node of the network based on
First Come First Serve (FCFS) policy. In order to propose a novel approach for modeling of multi-server dynamic
PERT network, initially the network of queues is transformed into a stochastic network. Then, a differential
equations system is organized to solve and obtain approximate completion time distribution for any particular
project by applying an appropriate finite-state continuous-time Markov model. Finally, a multi-objective model
including four conflicted objectivesis presented to optimally control the resources allocated to the service stations
in amulti-server dynamic PERT network, and the goal attainment method is further employed to solve a discrete-
time approximation of the primary multi-objective problem.
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1. Introduction

Some organizations are project-oriented based and
operate their activities depending on projects. In
such situations, the organizations may carry out the
multi project concurrently, whereas, Payne [1]
revealed that up to 90% organizations execute the
projects in a multi-project  environment.
Commonly, the limited resources are shared and
competed among multiple projects for achieving
their own goals.

Therefore, multi-project management system is a
vital approach in project scheduling and
management, whereas traditional project scheduling
has been concerned mostly with single project
optimization. Multi-project resource constrained
scheduling problem (MPRCSP) is the main topic of
most investigations on multi-project scheduling
considering static and deterministic environments.
Pritsker et a. [2] by using a zero-one integer
programming approach and Wiest [3] by presenting
an heuristic model, analyzed the MPRCSP. Then,
Kurtulus and Davis [4] and Kurtulus and Narula [5]
by applying priority rules and defining measures
such as the rate of utilization of each resource type
and the peak of total resource requirements, studied
the MPRCSP.
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Also, multi criteria and multi objective modeling
is then used in MPRCSP. For example, a 0-1 goal
programming is applied by Chen [6] in multi-
project resource-constrained scheduling for the
maintenance of mineral processes, and a
lexicographicly two criteriais presented by Lova et
a. [7]. Recently, scheduling rules in the static
MPRCSP environment were presented by
Kanagasabapathi et a. [8] considering performance
measures involving mean tardiness and the
maximum tardiness of projects involved.

Moreover, heuristic & meta-heuristic algorithms
for analyzing MPRCSP were applied [9-14].
Recently, MPRCSP was extended by considering
transfer times and its relevant costs by Kruger and
Scholl [15].

In the literature, MPRCSP was mostly analyzed
on static and deterministic environments and a few
investigations have been focused on multi-project
scheduling under uncertainty and dynamic
conditions. A simulation model for multi-project
resource alocation with stochastic activity, as a
multi-channel queuing, was presented by Fatemi-
Ghomi and Ashjari [16]. Also, a nonlinear mixed-
integer programming model for optimizing the
multi project resource allocation was proposed by
Nozick et a. [17], whereas changing resource
allocations affects the probability distribution of
activity duration. An event-driven approach was
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represented by Kao et a. [18], and also, using
Criticl Chain Project Management (CCPM)
approach, the uncertainty in multi project system
was studied by Byali and Kannan [19]. MPRCSP is
commonly analysed by either connecting them
together into a large single project by the addition
of dummy start and end activities or considering the
projects as independent and linking them by using
an objective function which contains each project
individually (probably with appropriate weigh
factors) and the corresponding resource constraints.

In many organizations, not only are the activity
durations uncertain, but also, new projects
dynamically arrive to the project based
organizations over the time horizon. Clearly, in this
condition, project scheduling procedure would be
more difficult and more complex than before. This
problem, considered in project-oriented
organizations, was studied by Adler et al. [20] by
applying simulation. In this investigation, the
organization was presented as a “stochastic
processing network” with a collection of service
stations (work stations) or resources, where one or
more identical “servers’ for serving projects under
a pre-specified discipline, has been settled at each
station. The represented organization can be
expressed as a queuing network (dynamic PERT
network), where each activity is getting the required
services, queuing up for access to a resource, or
waiting to join a predecessor activity. Such problem
is attractive for organizations with similar projects,
for example, maintenance projects in which a
typical project will be repeated.

Also, the concept of CONWIP (constant work-in-
process) is employed by Anavi-lsakow and Golany
[21] in dynamic PERT network for controlling
projects using simulation study. Authors presented
two control mechanisms. CONPIP (COnstant
Number of Projects In Process) that limits the
number of projects, and CONTIP (CONstant Time
of projects In Process), that restricted the total
processing time of all active projects. A risk
element was considered in dynamic PERT network
by Li and Wang [22] and a multi-objective risk-
time-cost trade-off problem was proposed based on
general project risk element transmission theory.

Through resource allocation problem in dynamic
PERT network, two commonly used approaches
exist. The first approach was propounded by Cohen
et a. [23, 24], where the resources may work in
parald, i.e., the number of servers and resources
alocated in every service station are equal (e.g.,
electrical work station with electricians, mechanical
work station with mechanics, etc.) and the amount
of resources available to be allocated to all service
stations is constant. They presented near optimal
resource alocated to the entities that perform the
projects in CONPIP system by using Cross Entropy

(CE) based on simulation. We denominate this
approach as “resources as servers’ and in this
article, based on this approach a multi-objective
model will be proposed.

In the second approach, investigated by Azaron
and Tavakkoli-Moghaddam [25], the number of
servers in every service station is fixed and
resources allocated affect the mean of service times.

Authors presented an analytical multi-objective
model for the resource allocation problem in a
dynamic PERT network and assumed the activity
durations are exponentialy distributed random
variables, the new projects are generated according
to a Poisson process, the number of serversin every
service station is either one or infinity and the
capacity of the system is infinite. Recently,
Yaghoubi et a. [26] modeled the resource
alocation problem in dynamic PERT networks,
where the capacity of system is finite and projects
are generated according to a Poisson process. We
denominate this approach as “resources affecting
servers’ and in this article, based on this approach
amulti-objective model is proposed.

In both approaches, the uncertainty is considered
in the entrance of projects and also in the duration
of service stations, whereas other uncertainty such
as project network disruption may happen. In this
research, for avoiding project network disruption,
“reactive resource allocation” is suggested. Along
with the project execution, a project may be
disposed by considerable unforeseen disruptions,
therefore, reactive scheduling (rescheduling), with
revising or re-optimizing the initial baseline
schedule, aims to adjust the baseline schedule and
consequently, overcome the disruptions.

Firstly, reactive scheduling was propounded in
manufacturing environments and then it was
applied through project scheduling approaches.
Comprehensive investigations about reactive
scheduling in manufacturing environments have
been studied [27-32]. Vieira et a. [29], based on
wide variety of experimental and practical
investigations, introduced a framework of
strategies, policies and methods for reactive
scheduling and Aytug et a. [30] by defining
different types of uncertainties, proposed a review
of rescheduling based approaches. Herroelen and
Leus [31] represented the basic aspects for
scheduling under uncertain conditions: reactive
scheduling, stochastic project scheduling, fuzzy
project scheduling, robust (proactive) scheduling
and sengitivity analysis. Also, Van de Vonder et al.
[32], based on practical design, analysed several
predictive-reactive resource-constrained project
scheduling procedures.

Various approaches exist in the literature of the
reactive scheduling problems. A simple and initial
approach is a right shift rule that is removed ahead
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in time of al the affected activities [33]. Full
rescheduling, the other approach, considers the
remainder of activities that are to be completed.
The other important approach is minimum
perturbation strategy which applies the exact and
suboptimal method for minimizing the difference
between the revised schedule and the primary
schedule [34-36]. Recently, Liu and Shih [37],
based on a primary schedule and actual progress,
studied resource-constrained construction
rescheduling and suggested a new rescheduling
optimization model using constraint programming,
also, Novas and Henning [38] introduced the repair-
based reactive scheduling of industrial batch plants.

Reviewing the above mentioned researches
indicated no closely related work was found to
anaytically analyze multi-server dynamic PERT
networks. As the main contribution of this research,
we develop a novel approach for the resource
alocation problem (or time-cost trade off problem)
and also reactive resource alocation problem in
multi-server dynamic PERT networks by means of
multi- objective programming and Markov process.

Through this investigation, we consider a
multiple environment and concurrent projects
including new projects, containing al the activities
that arrive a the system according to an
independent Poisson process. It is also assumed
each activity of the projects is performed at a
devoted service station located at a node of the
network with FCFS policy. It is further assumed
different servers are allocated in each service
station, while the services processing times (or
activity durations) are followed as independently
random variables with exponential distributions.

For modeling a multi-server dynamic PERT
network, firstly, for obtaining the states of a system,
the network of queues is transformed into a
stochastic network. Then, a system of differential
equations is organized to solve and obtain the
approximate completion time distribution for any
particular project by creating an appropriate finite-
state continuous-time Markov model. Findly, a
multi-objective  model with four conflicted
objectives is presented to optimally control the
resources allocated to service stations in a multi-
server dynamic PERT network, and the goal
attainment method is finally employed to solve a
discrete-time approximation of the primary multi-
objective problem.

This paper is comprised of five sections. The
remainder is organized as follows. In Section 2, we
model the multi-server dynamic PERT network by
employing a finite-state continuous-time Markov
process and propose a multi-objective model to
optimally control the resources alocated to service
stations in a multi-server dynamic PERT network.
In Section 3, reactive resource allocation in the

multi-server dynamic PERT network is discussed.
We solve an illustrative case in Section 4, and the
conclusion isgiven in Section 5.

2. Multi-server dynamic PERT network

In this section, the multi-server dynamic PERT
network is modeled to optimaly control the
resources allocated to the corresponding activities.
Also, an analytica method to compute the
approximate distribution function of project
completion and a multi-objective model in a multi-
server dynamic PERT network are presented.

2.1. Continuous-time Markov process

For modeling the multi-server dynamic PERT
network, we use the method presented by Kulkarni
and Adlakha [39]. This is the reason this method is
an analytical approach, simple, easy to implement
through a computer, and is computationally stable.
It is assumed that a project is represented as an
Activity-on-Node (AoN) structure, also new
projects, containing all the activities, arrive at the
multi project system according to a Poisson process
at the rate of 1. Furthermore, each activity of the
project is executed at a devoted service station
settled in a node of the network based on FCFS
policy, where the service time (activity duration) is
exponentially distributed.

Such system can be considered as a network of
gueues, where the arrival stream of projects to each
service station is followed according to a Poisson
process with the rate of 4, and the service times
are the durations of the corresponding activities. It
is assumed that service processing times in service
station a are exponentially distributed at a rate of

4, and the number of serversin node a is m,. So
the node a istreated asan M /M /m, model.

The flow chart of our proposed method for multi-
server dynamic PERT network is presented in Fig.
1. To continue the steps of our proposed method for
multi-server dynamic PERT network as continuous-
time Markov processis extensively explained:

Step 1. Compute the density function of the sojourn
time (waiting time plus activity duration) in each
service station. (see appendix A)

Step 1.1. If m =1, then the queueing System

would be an M/M /1 queue, and the density
function of time spent a the service
stationa (w, (t)) would be exponentially expressed
with parameter g, —A, therefore, w, (t) is
calculated asfollows:

w, ()= (g, - e t=0,if m =1 (1)
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Step 1.2. If m, =0, then the queueing system is

M /M /e, and the density function of time spent
in the service station a would be exponentially
expressed with parameter ., , therefore, w,(t) is
calculated asfollows:

w,(t)=w e t=0,if m =0 (2)

Step 1.3. If 1< m, < o, then the queueing system
is M/M/m_, and the density function of time

spent in the service dstation a would be
approximately two series exponential  with

parameters (m""#—a_l) and ((efay  \where
a m, -1
A . .
Py = . Therefore, w_(t) is approximately
maﬂa

calculated asfollows:

(mallla
m -1 mou — A, (e
W)~ () (e De
( atua)_(ma:ua ) Pa
ma_l Pa (3)
mu —A
(=5 e,
_( p pam i )( aﬂal)e my -1 t>0
ata aMa m, —
(7“)_(“7) A

m, -1 a
Step 2. Convert the dynamic PERT network as an
Activity-on-Node (AoN) structure into a substitute
classical PERT network represented as an Activity-
on-Arc (AoA) graph.

Step 2.1. By considering the AoN graph, substitute
each node with a stochastic arc (activity) whose
length is egua to the sojourn time in the
corresponding service station.

For this purpose, node a in the AoN graph
should be replaced with a stochastic activity.
Assume b,,b,,...,b, are the incoming arcs to node

a and d,,d,,....d,, are the outgoing arcs from it.
Then, node a is substituted by activity (v,w),
whose length is equal to the sojourn time in the
service station a. Furthermore, al arcs b,,b,,....b,
terminate with node v while dl arcs d,,d,,...,d,
begin from node w . (for more details, see [40])

Step 2.2. Transform the PERT network, obtained in
step 2.1, into a new PERT network with
exponentialy distributed arc length.

Resources as servers approach: in this approach
in which the number of servers and resources
dlocated in every service station are equd, every
arc would be substituted with two series of

134

exponential arc with the parameters (mﬂ—H)
Pa

and (:]1“—”&1). After replacing al arcs with the

proper exponential two series arc, the PERT
network obtained in step 2.1, is transformed into a
new PERT network.

Resources affecting servers approach: in this
approach, the number of servers in every service
station is fixed and resources alocated affect the
mean of service times. As mentioned in steps 1.1
and 1.2, If one or infinite severs be in the work
station, then the length of arc would be exponential
with parameters y, — A4 and p,, respectively, and
the corresponding arc would not be changed. But, if
severa servers (1< m, <o) bein the work station,
then the corresponding arc would be substituted
with two series of exponentiad arc with the

parameters (maﬂ—a_/l) and (ma—ﬂal). After

Pa a
replacing all such arcs with the proper exponential
two series arc, the PERT network obtained in step
2.1, istransformed into anew PERT network.

Step 3. Determine a continuous-time Markov
process with finite states.

Step 3.1. Determine the states space of system.

For this purpose, let G'=(V',A’) be the PERT
network, obtained in step 2.1, with a single source
and asingle sink, in which V' represents the set of
nodes and A’ represents the set of arcs of the
network in the AoA network. Also, let G=(V, A)
be a new PERT network, obtained in step 2.2, in
which V  represents the set of nodes and A
represents the set of arcs of the network in a new
AOA graph. Let s and t be the source and sink
nodes in the new PERT network, respectively, and
the length of arc a< A be arandom variable that is
exponentially distributed with parameter y,. For
ac A, the starting node and the ending node of arc
a, are denoted as a(a) and p(a), respectively.

Henceforth in this section, we analyze the new
PERT network to determine a continuous-time
Markov process with finite state space.

Definition 1. Let 1(v) be the set of arcs ending at
node V and O(V) be the set of arcs starting at node

V in the new PERT network, which are defined as
follows: (see[39])

I(v) ={acA: () =v} VeV),

(4)
O(v) ={acA: a(d =v} v eV).
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Fig. 1. Structure of the proposed method

ENF=¢, and aso
anyaeF.

Definition2. For X <V such that seX and and
teX =V —X ,an (st) cutisdefined asfollows:

I(p(a) z F for

(X,)(_)z{aeA:a(a)eX,,B(a)eX_}. (5)

An (st) cut (X,X)is denominated a uniformly
directed cut (UDC), if (X ,X) =, i.e. no two
arcs in the cut belong to the same path in the project
network. Each UDC is clearly a set of arcs, in
which the starting node of each arc belongs to X
and the ending node of each arc belongsto X .

Example 1. Consider the network shown in Fig. 2

Fig. 2. The example network

Again consider Example 1. As mentioned (1, 4,
6) is a UDC. For example, this cut can be

taken from [25]. According to the definition, the
UDCs of this network are (1, 2), (2, 3), (1, 4, 6), (3,
4, 6) and (5, 6).

Definition 3. An (E,F), subsets of A, is defined
asadmissible 2-partitionof aUDCD if D=EUF

decomposed intoE ={1,6] and F ={4}. In this
case, the cut is an admissible 2-partition, because
I((4)) = {34} < F . Furthermore, if E={6} and
F ={L4}, then the cut is not an admissible 2-
partition, because 1( A(1)) = {1} c F = {1,4}.
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Definition 4. Along with the project execution at
time t, each activity (arc) can be in one and only
one of the active, dormant or idle states, which are
defined asfollows:
(i) Active: an activity a isactiveat time t if it
isbeing performed at time t .
(i) Dormant: an activity a is called dormant at
time t if it has completed but thereis at |east one
unfinished activity in 1(S(a)) attime t.
(iii) Idle: an activity a is denominated idle at
time t if it is neither active nor dormant at time
t.
Also, Y(t) and Z(t) are defined asfollow:

Y (t) ={acA:aisactiveat timet},

6
Z(t) ={acA:aisdormant at timet}, ©

and X(t) = (Y(1).2(1) -

All admissible 2-partition cuts of the network of
Fig. 2 are presented in Table 1. A superscript star is
applied to denote a dormant activity and all others
are active. E and F contain all active and all
dormant activities, respectively.

The set of all admissible 2-partition cuts for the
network are defined as S and dso S = SU{(¢,4)}.
Note that X(t)=(g4,¢) presents that the all
activitiesareidle at time t and therefore the project
is finished by time t. It is demonstrated that
{X(t),t >0} is a finite-state absorbing continuous-
time Markov process. (for more detail, see [38])

Step 3.2. Obtain the system of differentia
equations.

As previously mentioned, a UDC is divided into
E and F that contain active and dormant
activities, respectively. If activity a terminates
(with therate of 7,), and 1(f(a)) « F U {a}, there

is at least one unfinished activity in | (8(a)), then
E'=E-{a},F'=Fu{a}. Furthermore, if by
completing activity a, al activities in | (£(a))
become  idle (I (B@) < F uia)), then

E'=(E -{a})uO(@)), F'=F-1(5@)).
Namely, al activitiesin |(4(a)) will become idle

and also the successor activities of this activity,
O(p(a)), will become active. Therefore, the

components of the infinitessmal generator matrix
Q=[q{(E.F).(E.F)}], (E,F)and (E,F’)eSare
obtained as follows:

7a

al(E.F).(E',F)} = _g @

acE

0
if :acE,I(f(a)zFufa,E'=E-{a},F' =Fu{a}
if :acE,l (5@)=Fula),

E'=(E -{a)) LO(S@).F'=F -1 (4@)
if :E'=E,F'=F
otherwise

{X(t),t >0} is a continuous-time Markov process

with finite state space S and since
a{(¢.4)(¢.4)}=0, the project is completed. In
this Markov process al of the states except
X(t)=(g,¢) which is an absorbing state, are
transient. Furthermore, the states in S should be
numbered such that this Q matrix be an upper
triangular one. It is assumed that the states are
numbered as 12...,N =[S| sothat X (t) = (O(s),¢)
and X(t) =(¢,¢9) are state 1 (initial state) and state
N (absorbing state), respectively.

Let T be the length of the longest path or the

project completion time in the new PERT network,
obtained in step 2.2, Obvioudly,

T =minft >0: X(®) =N [X(0) =1}.

Chapman—Kolmogorov backward equations can
be used to calculate F(t) = P(T <t) . If itisdefined

P(t)=P(X®)=N|[X(©0 =i) i=12..,N, (8

then F(t)=P,(t).
The system of linear differential equations for the
vector P(t)=[P,(t) P,(t) P, (t)] is presented

asfollows:

, dP(t)

P't)=—2=0Q.P

t) @ Q.P() ©

PO =[0 0 .. 1],

where P'(t) and Q represent the derivation of the
state vector P(t) and the infinitesimal generator
matrix of the stochastic process {X(t) 't 20},
respectively.

2.2. Multi-objective resource allocation

In this paper, following the research presented by
Azaron and Tavakkoli-Moghaddam [25], we
propose a multi-objective model to optimally
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control the resources allocated to the service
stations in a dynamic PERT network based on the
mentioned two approaches.

2.2.1. Resources as servers

We propose a multi-objective model to optimally
control the servers alocated (as resources) to the
service stations in a dynamic PERT network,
represented as a network of queues, where we
allocate more servers to the service station, the
mean time spent (sojourn time) in the service
station will be decreased and direct cost will be
increased, whereas the direct cost of each activity is
a non-decreasing function of the amount of the
dlocated server. Note that the mean of activity
duration x, isaconstant value.

If we decrease the amount of resource alocated
(servers) to the service stations, the project direct
cost will therefore be decreased. Conversely, the
mean project completion time will then be
increased, because these objectives are in conflict
with each other. Therefore, the total direct costs and
the mean project completion time are dependent on
each other and an appropriate trade-off between
them is required. Another effective objective that
should also be included in the model, is the
variance of the project completion time, because the
mean and the variance are two complementary
concepts. The last objective that should aso be
considered is the probability that the project
completion time does not exceed a certain threshold
for on-time delivery performance. Let d_(m,) be

the direct cost of activity ae A" in the PERT
network, obtained in section 2.1 step 2.1, in which
the amount of servers m, was allocated to it and it

is assumed to be a non-decreasing function.
Therefore, the project direct cost (PDC) would be

equal to PDC=) d,(m). Let U, be the
maximum amount of server (resource) available to
be alocated to the activity a (ae A’), L, be the
minimum amount of server needed to execute the
activity a, m=[m,:ae A and M represent the
amount of servers available to be allocated to al
activities. Moreover, we define u as a threshold

value in which project completion time does not
exceed the value.

Table 1. All admissible 2-partition cuts for the example network

Therefore, this is a multi-objective stochastic
programming problem. The objective functions are
given asfollows:

1. Minimizing the project direct cost

Min fl(m)zzaEAfda(ma) (10)

2. Minimizing the mean of project completion time
(P/(t)is the derivation of density function of

project completion time.)
Min f,(m)=E(T)=

11
[ @-P o)t = [ tP(t))clt D

3. Minimizing the variance of project completion
time

Min f,(m)=Var(T) =

. . 2 (12)
[KGOL —[ [REC ))dt:i

4. Maximizing the probability that the project
completion time does not exceed a certain threshold

Max f,(m)=P,(u)=P(T <u) (13)

The infinitessimal generator matrix Q would be a

function of the control vector m=[m,:ac A .
Therefore, the non-linear dynamic model is

P'(t)=Q(m).P(t)
P(0)=0 Vi=12.,N-1 (14)
P, (t) =1

The next constraint should be regarded to
guarantee having aresponse in the steady-state.

03<p, ——+— <1
ma/ua (15)
A

Z<m, <

Hy 0.3y,

VaeA'

In the mathematical programming, we do not use
such constraints. Hence, 3¢  following the
establishment of constraint

m.u,—-A2e VaeA

(16)
A-03m.u, >0 VaeA

112 5. (14',6)
2. (23 6. (1L4,6")
3. (23) 7.4 ,6)
4. (1,4,6) 8. (34,6

9. (3,4,6)

10. (3,4°,6)
11. (34,6)
12. (3 ,46)

13. (3,4*,6%) 17. (¢.9)
14. (5,6)
15. (5,6)

16. (5,6°)
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Consequently, the appropriate multi-objective
optimal control problem is expressed as below:

Min fl(m) = Zda(ma)

acA’

Min f,(m) = j:tpl'(t )dt

2
Min f,(m) = [ t2R,(0))ct —[ [P ))dt}
Max f,(m)=P,u)
P'(t) =Q(m).P(t)
P(0)=0 Vi=12.,N-1
PN (t)=1
muu,—-A2e VaeA'
A-03m,.u, 20 VaeA'
m,>L, VaeA’
m,<U, VaeA’

> m, <M

acA’

m, is integer vaeA’

(17)

This continuous-time stochastic programming is
impossible to solve (for more details see [25]),
therefore, based on the definition of integral
thinking, we divide the time interval into R equal
portions with the length of At. Indeed, we
transform the differential equations into difference
equations. Thus, the corresponding discrete state
model can be given as follows:

Min f,(m) = > d,(m,)

achA

Min f,(m) = irAt(Pl(r +1) - P.(r))
Min f,(m) = il(rAt)z(Pl(r +)-P,(r))

—rirAt(Pl(r +1) - Pl(r))}

u
(1)

St:Pr+D)=P(r)+ Q(mP(r)At r=012,..,R-1
PO)=0 Vvi=12..,N-1
P,(r)=1 r=01..R (18)
P(r)<1 i=01..,N-1 r=12..R
m.u —A2e VaeA
A-03m.u, >0 VaeA
m >L, VaeA
m <U, VaeA

> m<Mm

ach

m, isinteger Vae A

2.2.2. Resources affecting servers

In this section, we propose a multi-objective to
optimally control the resources allocated to the
service stations based on resources affecting servers
approach in a multi-server dynamic PERT network,
represented as a network of queues. The direct cost
of each activity is a non-decreasing function and the
mean service time in each service station is a non-
increasing function of the amount of resource
allocated to it.

Let x, betheresource alocated in service station

a (aeA), dso d.(x,) be the direct cost of
activity ae A’ in the PERT network, obtained in

section 2.1 step 2.1, while it is assumed to be a non-
decreasing function of amount of resources x,

alocated to it. Thus, the project direct cost (PDC)
would be PDC=)"  d,(x,). Also, the mean

service time in the service station ae A', g,(x,)

is assumed to be a non-increasing function of the
amount of resource x, alocated to it that would be

equal to

0,(x,) =— VaecA’ (19)

a

Let U, be the maximum amount of resource
available to be alocated to the activity a (ac A'),

L, be the minimum amount of resource needed to
execute the activity a, x=[x ,:aeA] and J
represent the amount of resource available to be
allocated to all of activities. Moreover, we define u
as a threshold time that project completion time
does not exceed. Let B be the set of arcs in the
PERT network, obtained in section 2.1 step 2.1,
where there are infinite servers settled on the
corresponding service station. The next constraint
should be satisfied to keep the response in the
steady-state.

myu,-A2e VYaeA'-B
A-03m,.u, 20 VaeA'-B (20)
H,2& VaeB

In practice, d_(x,) and g,(x,) can be obtained
by employing linear regression based on the
previous similar activities or applying the
judgments of expertsin thisarea.

Consequently, the appropriate multi-objective
optimal control problemis:
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Min f,0¢) = 3 d, (x,)

acA’

Min f,(x) = jo”tpl'(t))dt

Min £,00) = [ P()dt —U:tPl’(t ))dtT
Max f,(x) = Py(u)
st: P'(1)=Q(X)P()

P©0)=0 Vi=12..,N-1

P (t) =1

0,(x,) =— VacA 2
mu.u,—-A2¢ VaeA'-B
A-03m,.u, 20 VaeA'-B

,2€ VaeB

X, 2L, VaeA’

X, <U, VaeA’

D%, <

acA’

We divide thetimeinterval into R equal portions
with the length of At. The corresponding discrete
state model as follows

Min fl(x) = zda(xa)

acA’

Min f,(x) :iert(Pl(r +D-P(r))

r=0

Min f,(x) = FeZﬁl(rAt)z(Pl(r +1) =R (r)
{RZfrAt(Pl(r +1) - Pl(r))}

u
Max f,(x) = RGED (22)

st:P(r+2)=P(r)+Q(X)P(r)Aat r=012,...,R-1
P0)=0 Vvi=12..,N-1
Pi(r)=1 r=01..,R
P(r)<1l i=01..,N-1 r=12.,R

@Ja(xa):i VaeA’
mu.u,—-A2¢ VaeA'-B
A-03m,.u, 20 VaeA'-B
M, 2& VaeB

X, 2L, VaeA’

X, <U, VaeA’

> x,<J

acA’

2.3. Goal attainment method

We now need to apply a multi-objective method
to solve the proposed models, and we actually
apply goal attainment technique for this purpose.
Assume there is a multi-objective programming
with n objectives, see (23), where f (x) and X

are jth objective and feasible region of the
problem, respectively.

Min  f,(X),f, (X)), (X)

23
st: xeX 23)

The goal attainment method requires determining
agod, b, and a weight, c,, for every objective.

¢, 'sreflect the importance of objectives, whereas if
an objective has the smallest ¢, , then it will be the
most important objective. c;’s (j=12,..,n) are

commonly normalized such that ch =1.
j=1
Therefore, the appropriate goal attainment
formulation of the multi-objective problem is given

by

Min z

st: f,(x)-c;z<b;, j=12..,n (24)
xeX

For solving the multi-objective models proposed
in section 2.2 with the goal attainment method, the
goals, b,’'s, and weights, c¢,’s (j =12,34), should

be determined for every objective, namely, the
project direct costs, the mean of project completion
time, the variance of project completion time and
the probability that the project completion time
does not exceed a certain threshold. Then, by
applying (24) the appropriate goa attainment
formulation of the multi-objective problem should
be formed.

3. Reactive resource allocation in multi-server
dynamic PERT networks

In the previous section, a multi-objective model for
the resource allocation in multi-server dynamic
PERT network was proposed. In the presented
model, the uncertainty was considered in the
entrance of projects and also in the duration of
service stations, whereas, other uncertainty as
project network disruption can occur. In this
section, project network disruption such as
inserting a new activity (service station), deleting
an activity and changes in precedence relations of
project are considered. For coping with project
network disruption, “ reactive resource allocation”
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is also suggested. Along with the project execution,
a project may be disposed the considerable
unforeseen  disruptions,  therefore, reactive
scheduling (rescheduling), with revising or re-
optimizing the baseline schedule, aims to repair the
baseline schedule and consequently, overcome
disruptions.

For overcoming these disruptions, firstly the
revised PERT network is obtained by considering
the changes in the project network. Then, by using
section 2.1, the changed PERT network is
transformed into a new PERT network with an
exponentially distributed arc length. Finaly, by
adding the new objective, namely, minimizing the
summation of cost of changes, and applying the
models represented in sections 2.2.1 and 2.2.2,
respectively, for resources as servers approach and
resources affecting servers approach, the recovery
model is constructed.

3.1. Resources as servers

Let m=[m,:aeA] and m'=[m :acA be
the resource allocated to service stations in primary
and reactive resource allocation, respectively. Also,
let c=|c,:ae A be the change cost of resource
alocated per every unit in service stations. The
main steps of our proposed method for the reactive

resource allocation in resources as servers approach
areasfollows:

Step 1. Create revised PERT network by
considering the required changes in the project
network.

Step 2. Transform the changed PERT network into
anew PERT network with exponentially distributed
arc length by using section 2.1.

Step 3. Apply the model represented in section
2.2.1 for the network obtained in step 2, by adding

a new objective as Min ) |, —m,|c,, where A

aehA
represents the set of arcs of the network in AoA
network, obtained in step 1.

3.2. Resources affecting servers

Let x=[x :acA] and xX=[x:acA] be
the resource allocated to service stations in primary
and reactive resource allocation, respectively. Also,
let c=|[c,:ae A'| be the change cost of resource

alocated per every unit in service stations. The
main steps of our suggested method for the reactive

resource alocation in resources affecting servers
approach are as follows:

Step 1. Create revised PERT network by
considering the required changes in the project
network.

Step 2. Transform the changed PERT network into
anew PERT network with exponentialy distributed
arc length by using section 2.1.

Step 3. Apply the model represented in section

2.2.2 for the network obtained in step 2, by adding
a new objective as Min »’|x. - x,|c, , where A’

acA

represents the set of arcs of the network in AcA
network, obtained in step 1.

4, An illustrative case

To illustrate the analytical proposed method, we
solve a numerical example to present the resource
allocation in multi-server dynamic PERT networks,
which is presented as the network of queue. It is
assumed we have a system with the six service
stations depicted as the AoN graph in Fig. 3. We
want to determine the optimal resource allocation in
multi-server dynamic PERT network for both
approaches, namely, resources affecting servers
approach and resources as servers approach. For
solving this example, we also apply the goa
attainment method.

Fig. 3. The AON network of the project under study

4.1. Resour ces affecting servers

The assumptions of this example for the resources
affecting servers approach are:

e The new projects, containing all their activities,
arrived at the system according to a Poisson process
with therateof 4 =5 per year.
e The activity durations (service processing times)
are independent random variables with exponential
distributions.
e The threshold time, u, that project completion
time does not exceed is 3 years.
e The amount of resources available to be
allocated to all service stationsis 12.

e In all experiments, the value of ¢ is equa to
0.01.
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Table 2. Characteristics of the activities

Acivity (a)  d,(x,) 9,(x,) m, L, u,
1 2x +1 0.6 -0.08x, 4 1 5
2 1.4x, 0.15-0.01x, 1 1 4
3 15x,+2 0.16-0.01x, 1 1 4
4 16x,+1 0.45-0.05x, 3 1 5
5 2x, 0.8-0.09x, 5 1 6
6 1.8x, +2 0.7 -0.07x, 4 1 5
Table 2 shows the characteristics of the activities, where 7, = M . V= Maba for
where the time unit and the cost unit are, A m, -1

respectively, in year and in thousand dollars.

Now, we substitute the nodes of 1, 4, 5, 6 in Fig.
3 with two series of exponential node, see Fig. 4,
and then we determine the system states and
transition rates, depicted in Table 3 and Fig. 5,

Table 3. All admissible 2-partition cuts of the project

a=14,56 and y, = u, -4 for a=2,3.
We organize the infinitesimal generator matrix
Q(u) according to (7). Table 4 presents the

infinitesimal generator matrix Q(ux) (diagonal

components are equal to minus sum of the other
components at the same row).

1 (12 5. (1,4) 9. 1.4) 13. (1,47) 17. (5)
2. (1,2 6. (1L4) 10. (1L47) 14. (3 ,4) 18. (6)
3. (14 7.(23) 11. (3.,4) 15 (34") 19. (6)
4. (23 8. (34) 12. (34") 16. (5) 20. (4, 9)
Table 4. Matrix Q(u)
statef 1 2 3 4 & &6 7 8§ 9 10 11 12 13 14 15 16 17 18 19 20
1 Yy, 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|0 o ¥ ¥y 0 0o 0 0 0 0 ¢ 0 0 0 0 0 0 0 0
3o o0 oy, ¥, 0 0 0 0 0 0 ¢ 0 0 0 0 0 0 ¢
4o 0 0 o 0 ¥ ¥, 0 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 o o ¥ ¥, 0 0o 0 0 0 0 0 0 0 0 0
610 o 0 0 0 o o ¥y o0 0 0 0 0 0 0 0 0 0
700 0 0 0 0 0 o 0o o ¥ 0 0 0 0 0 0 0 0 ¢
glo o 0 0 0 0 0 0 0 Y ¥y 0 0 0 0 0 0 0 0
9o o o 0o 0 0 0 0 o o0y ¥, 0 0 0 0 0 0 0
00 o o 0 0 0 0 0 0 0 0 y 0 0 0 0 0 0 0
M0 0 o0 0 0 0 0 0 0 0 o o0 ¥y, 0 0 0 0 0 0
2200 0 o0 0 0 0 0 0 0 0 0 0 ¥, ¥ 0 0 0 0 0
30 0 o0 0 0 0o ¢ 0 0 0 0 0 o ¥ 0 0 0o 0 o0
410 o o 0o 0 0 0 0 ¢ 0 0 0 0 o ¥ 0 0 0 0
1500 o0 o0 0 0 0o ¢ @ 0 0 0 0 0 0 Fo 0 0 0 0
%0 o0 o0 0 0o 0o ¢ 0 0 0 0 0 ¢ 0 ¢ ¥io0 0 0
7/0 ¢ ¢ o 0 0o ¢ 0 0 0 0 0 0 0 0 ¢ ye o 00
%80 o0 ¢ o 0 0 ¢ ¢ 0 0 0 0 0 0 0 0 ¢ ¥, 0
990 ¢ ¢ o 0 o ¢ 0 0 0 0 0 0 O 0 0 0 0 .,
2000 o o ¢ o ¢ o 0 0 ¢ 0 0 0 0 0 0 0 0 0
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Table 5. The computational results

R At X X, X, X, X, X z f, f, f, f, CT
50 0.1 1.189 1 1.335 1 3312 4036 11.343 27269 2334 0.49 0.82 00":03"
80  0.0625 1.198 1 1.279 1 3.315 4.06 11263 27.253 2326 0572 0.809 00:07"
100 0.05 1.201 1 1.259 1 3316 4068 11.233 27.247 2323 0.6 0.806 00:22"
125 0.04 1.203 1 1.243 1 3317 4075 11206 27241 2321 0621 0803 00:34”
200 0.025 1.207 1 1.219 1 3319 408 11164 27233 2316 0.653 0.8 01":38"
250 0.02 1.209 1 1211 1002 3318 4.087 11.15 27.23 2315 0664 0799 02:28"
500 0.01 1211 1 1194 1006 3318 4.092 11119 27224 2312 068 0.797 21:30"

Fig. 5. Rate diagram for the continuous-time Markov chain in the project under study

The objective is to obtain the optimal resources
alocated to the different activities by solving (19).
For this purpose, we consider the goals, b, = 25,
b,=12, b,=025, b,=09and the weight,
¢, =02, ¢c,=01, ¢,=035, c,=0.35, for the
four objectives, and also the various combinations
of R and At for time interval 5 years. To do so,
we employ LINGO 8 on a PC Pentium 4, CPU 3
GHz.

The optimal  alocated resources, the
computational times, CT (mm:ss), and aso the
values of all objectives for the different
combinations of R and At are shown in Table 5.
So, the optimal allocated resources are: x, =1.211,
x, =1, x,=1194, x,=1006, x,=3.318,
X, =4.092, and the objective function values are:
f,=27.224, f,=2312, f,=0.685, f, =0.797
(z=11.119). Based on Table 5, if the length of At
is decreased, the accuracy of the solution is
increased i.e. the value of zis decreased and the

computational time, CT, is also increased (for more
details, see [25]). Note that the simulation results

ae  x"=1326, xi"=1124, x;"=1.238,
x;" =1.097, x"=3.413, x;"=3.736, while the
simulated mean of project completion timeis 2.226.

4.2. Resources as servers

The assumptions of this example for the resources
as servers approach are:

e The new projects, containing al their activities,
arrived at the system according to a Poisson process
with therate of 4 =10 per year.
e The activity durations (service times) are
independent random variables with exponential
distributions.
e The amount of resource (server) available to be
allocated to all service stationsis 20.
e The threshold time, u, that project completion
time does not exceed is 4 years.
e |n all experiments, the value of ¢ is equa to
0.01.

Table 6 shows the characteristics of the activities,
where the time unit and the cost unit are,
respectively, in year and in thousand dollars.
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Table 6. Characteristics of the activities

Activity (@) d,(m) M, L, u,
1 2m +1 5 1 8
2 1.4m, 3 1 7
3 18m, +4 4 1 7
4 2.2m, +3 45 1 8
5 1.6m, 25 1 9
6 14m +2 55 1 7

Now, we substitute every node in Fig. 3 with two
series of exponential node, see Fig. 6, and as noted
in section 4.1., we determine the system states,
transition rates and the infinitesmal generator
matrix Q(g) .

The objective is to obtain the optima servers
allocated to the different service stations by solving
(18). For this purpose, we consider the goals,
b =43, b,=1, b, =05, b, =0.9and the weight,
¢, =02, ¢c,=01, ¢,=035, ¢, =035, for the
four objectives, and also the various combinations
of R and At for time interval 5 years. To do so,
we employ LINGO 8 on a PC Pentium 4, CPU 3
GHz. The optima alocated resources, the
computational times, CT (mm:ss), and aso the
values of al objectives for the different
combinations of R and At are shown in Table 7.
So, the optimal alocated servers ares m =3,

m=4, m=3, m=3, m=5, m=2, and the
objective function values ae: f, =444,
f,=2568, f,=1116, f, =0.854 (z=15.682).
Note that the simulation results are m™ =3,
m"=4, m"=3, m"=3, m"=5, m"=2,
while the simulated mean of project completion
timeis 2.438.

5. Conclusion

In this article, we proposed a multi-objective model
to optimally control the resources allocated to the
service stations in a multi-server dynamic PERT
network for both approaches, namely resources as
servers and resources affecting servers, using
Markov process and multi objective programming.
This dynamic PERT network was represented as a
network of queues, where severa servers are in
each service station and the capacity of the system
isinfinite.

In both approaches, for modeling a multi-server
dynamic PERT network, firstly the network of
gueues was transformed into a stochastic network
and then, the states of the system were defined.
Note that the number of system states grows
combinatorially with the number of UDCs. Next, a
system of differential equations was formed to
solve and obtain the approximate completion time
distribution for any particular project by creating an
appropriate finite-state continuous-time Markov
model. A multi-objective model with four
conflicted objectives was presented to optimally
control the resources allocated to service stations in
amulti-server dynamic PERT network.

Fig. 6. The substituted AON network of the project

Table 7. The computational results

R At rT]l mZ rnB m4 rr'S mB z fl f 2 f3 f 4 CT
80 0.0625 3 4 3 3 5 2 16.118 444 2612 1007 0862 00:02°
100 0.05 3 4 3 3 5 2 16.016 444 2602 1034 086 00:03"
125 0.04 3 4 3 3 5 2 15934 444 2593 1055 0858 00:03"
200 0.025 3 4 3 3 5 2 15809 444 2581 108 0856 00:03"
250 0.02 3 4 3 3 5 2 15767 444 2577 1.09% 0855 00:04"
500 0.01 3 4 3 3 5 2 15682 444 2568 1116 0854 00:06”
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In our model, the total project direct cost was
considered as an objective to be minimized and the
mean project completion time as another effective
objective, should aso be accounted to be
minimized. The variance of the project completion
time was another effective objective in the model,
because the mean and the variance are two
complementary concepts. The probability that the
project completion time does not exceed a certain
threshold was considered as the last objective.
Finally, the goal attainment method was employed
to solve a discrete-time approximation of the
primary multi-objective problem.

For obtaining the best optimal allocated resource,
we considered the various combinations of portions
for a specific time interval. Based on the presented
example, if the length of every portion, is
decreased, the accuracy of the solution is increased
i.e., the value of the objective is decreased and the
computational time, CT, isalso increased.

Appendix A:

If thereis m, server in the service station settled
in the ath node, then the queueing system is
M /M /m,and therefore, the density function of
sojourn time (activity duration plus waiting time in
queue) is calculated as follow [41]:

_ q
j’ malua + luaWa (0) )‘uae*/la[
- (m, ~Dp, (A-1)
_ A- My + ﬂan (O)
A= (ma - 1)/ua

W, (t)=¢(

+1 WM, —A)e ™4 t-0
Where 4 and g, are, respectively, the arriva
rate of new project and the service rate of service
station a. Also, w!(0), the probability of being
zero queue length, and P, are obtained as follow:

A \m
ma(i) °
wi()=1-—*2 _ »p (A-2)
m,!(m, ——)

a

and:

P, :[i ENEaUN SR (ma—”al)j

Nt m,! m, s, —

a a a al~a

1

(A3

Asis observed, obtaining w_(t)inan M /M /m,
is very hard. We can rewrite the w,(t) as follow,

which is similar to two series of exponentia
distribution with parameters (m_z, — A1) and x,:

1w (O)(—Fa _ 7\ e (Mase -2t
w,t)=0@ Wa(O))(ﬂ —(ma#a—i))(maﬂa Ae (A-4)

_(1_ /uaW; (O) ) ma:ua -
Mty = A" pp = (M pt, = 2)

a

me’t t=0

It seems that we can approximate density function
of time spent in service station a with two series
exponential. Therefore, our approximate for density
function of time spent in service station a would
be two series exponential with parameters

-1
(Mete =2y g (— o~ Matay \here
,Da 1_ (1_ pa)/ua ma _1
ma/ua -4
P, = . This approximation is quite simple

and easy and there is no need to calculate P, and
w ] (0) which is boring, especially when m, is
large. Moreover, our approximation can be used in
mathematic programming problem and Markov
chain, conveniently. We want to evaluate the mean
of sojourn time, and therefore, the expected number
of projects, and also the cumulative distribution
function of sojourn time. In Fig. A-1, the mean
number of projects in node a as p, changes, is
presented. In the literature, some approximations
for the sojourn time in M /M /m, have been
introduced. Sakasegawa [42] proposed closed-form
approximation for the expected waiting time in
gueue, and therefore, the approximation of expected
sojourn time W in work station a was calculated
asfollows:

1 P 2(m, +1) -1
Wr—|1+5 (A-5)
ya ma(l_pa)

Also, Halfin and Whitt [43] developed a closed-
form approximation for the wZ(0), and therefore,

the approximation of expected sojourn time in work
station a was obtained as follows:

w et 1y 1 (A-6)

Ha ma(l—/?a)[lﬂ/zﬂ-@(ﬂ)eﬁ% j

Where pB=(Q1-p,)4ym, and @) is the
cumulative distribution function of standard normal
distribution having mean 0 and variance 1. On the
other hand, our approximation for the expected
sojourn time in work station a would be:
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m, -1
P yi(22) (A-7)
ma/ua_/l m/'l

a/i~a

W =~ (

Table A-1. Numerical value of exact and approximation expected number of projectsin work station

m, P L, Our app.  Error(%) m, Y L, Our app.  Error(%)
0.1 0.30 0.21 29.73 0.1 1.50 141 5.93
0.3 0.93 0.73 21.66 0.3 4.50 4.33 3.81
0.5 174 1.50 13.63 0.5 7.51 7.50 0.15
3 0.7 3.25 3.03 6.63 15 0.7 10.83 11.43 5.58
0.8 4.99 4.80 3.78 0.8 13.28 14.40 8.46
0.9 10.05 9.90 153 0.9 18.92 20.70 9.39
0.98 50.10 49.98 0.24 0.98 59.36 61.74 4.02
0.1 0.50 041 17.78 0.1 2.00 191 4.45
0.3 151 133 11.94 0.3 6.00 5.83 2.86
0.5 2.63 2.50 4.96 0.5 10.00 10.00 0.04
5 0.7 4.38 4.43 1.18 20 0.7 14.22 14.93 5.03
0.8 6.22 6.40 2.95 0.8 17.02 18.40 8.08
0.9 11.36 11.70 2.97 0.9 22.96 25.20 9.77
0.98 51.47 51.94 0.92 0.98 63.57 66.64 4.83
0.1 1.00 0.91 8.89 0.1 2.50 241 3.56
0.3 3.00 2.83 5.73 0.3 7.50 7.33 2.29
0.5 5.04 5.00 0.72 0.5 12.50 12.50 0.01
10 0.7 7.52 7.93 553 25 0.7 17.65 18.43 4.45
0.8 9.64 10.40 7.92 0.8 20.84 22.40 7.5
0.9 15.02 16.20 7.87 0.9 27.07 29.70 9.71
0.98 55.28 56.84 2.82 0.98 67.87 7154 541
am = b) m =5 c)m =10 dm =20

Fig. A-1. The exact and our approximation of expected number of projects

Obviously, our approximation is very simple and
its components easily, without boring
computations, are controllable, i.e., the complexity
of our approximation is less than other
approximations. Furthermore, as mentioned before,
our approximation can be used in mathematic
programming problem and Markov chain,
conveniently.

In Table A-1, the expected number of projectsin
work station a (L,) and the error of our
approximation are represented.

As m, <5 and p, <0.3, our approximation for
expected number of projects in work stations is
very poor, therefore, for coping with this shortage,
we consider 0.3< p, <1. Also, in Fig. A-2, the
exact cumulative distribution function and our
approximate cumulative distribution function for
m,=5 and m,=10 with various utilization

factors, is shown.

Moreover, in Table A-2, the maximum difference
(MD) between the exact cumulative distribution
function and our approximate cumulative
distribution function for various number of server
and utilization factors, is shown.

Consequently, we have:

1. If m =1, then the queueing system would be
an M/M /1 queue, and the density function of
time spent in the service station a, w,(t), would
be exponentially with parameter x, — 1, therefore,

w, (t) iscalculated as follows:
w, (t)=(g, e t=0,if m =1 (A-8)

2. If m =, then the queueing system is
M /M /oo, and the density function of time spent
in the service station a would be exponentially
expressed with parameter ., therefore, w,(t) is
calculated asfollows:
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W, (t) = e t=0,if m, =oo (A-9)

Table A-2. Maximum difference (MD) between the exact and our approximate distribution function

m, Pa MD m, Pa MD m, Pa MD m, Pa MD
0.1 0.132 0.1 0.034 0.1 0.016 0.1 0.011
0.3 0.105 0.3 0.030 0.3 0.017 0.3 0.012
0.5 0.082 0.5 0.061 0.5 0.038 0.5 0.027

3 0.7 0.087 10 0.7 0.093 20 0.7 0.070 30 0.7 0.055
0.8 0.079 0.8 0.099 0.8 0.086 0.8 0.073
0.9 0.055 0.9 0.087 0.9 0.088 0.9 0.083
0.98 0.016 0.98 0.035 0.98 0.045 0.98 0.049
0.1 0.073 0.1 0.022 0.1 0.013 0.1 0.006
0.3 0.054 0.3 0.021 0.3 0.014 0.3 0.007
0.5 0.080 0.5 0.047 0.5 0.031 0.5 0.017

5 0.7 0.099 15 0.7 0.081 25 0.7 0.062 50 0.7 0.037
0.8 ---- 0.8 0.093 0.8 0.079 0.8 0.055
0.9 0.073 0.9 0.089 0.9 0.086 0.9 0.072
0.98 0.024 098 0.041 0.98 0.048 0.98 0.052

m, =10
a) p=0.98 b) p=0.9 c) p=07 d p=05

Fig. A-2. Cumulative distribution function of sojourn time

3. If 1<m, <o, then the queueing system is
M /M /m_, and the density function of time spent

in the service station a would be approximately

two series  exponentiadl  with  parameters

(Mebea =4y ong (ma—“l). Therefore, w,(t) is
m J—

approximately calculated as follows:

a a

(maﬂa m P
o tla =
m, -1 )( m, 4, — ﬁ).ei( Pa X

W, (1)~ (

My Moty =47 p,
()~ (A-10)
mp, — A
G2 ey
_( a - )( a a)e m, -1 t>—0
ma/ua malua Z’ m _1
() -(—=—2—) e
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