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Abstract 

The ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in each 
component. keeping this in mind, Linton and Banaschewski with Nelson defined and studied the tensor product in 
an equational category and in a general (concrete) category K, respectively, using bimorphisms, that is, defined 
via the Hom-functor on K. Also, the so-called sesquilinear, or one and a half linear maps and the corresponding 
tensor products generalize these notions for modules and vector spaces. In this paper, taking a concrete category K 

and an arbitrary subfunctor H  of the functor = ( )opU Hom U U¢ ´  rather than just the Hom-functor, where U  

is the underlying set functor on K, we generalize sesquilinearity to bivariation and study the related notions such 
as functional internal lifts, universal bivariants, tensor products, and their interdependence. 
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1. Introduction 

Let Mod be the category of modules over a ring R  
(commutative with 1) and 

Mod Mod SetMod :
opHom ´   be the usual 

Hom-functor to the category Set , of sets and maps, 
taking any pair ( , )A B  of R -modules to the set 

Mod( , )Hom A B  of R -morphisms (linear maps) and 

any R -morphisms to its underlying set map. Recall 
that, for R -modules , ,A B C , a (set) map 
:v A B C´   is said to be bilinear if for every 

element a AÎ  and b BÎ , the map 

= ( , ) :av v a B C-   is in Mod( , )Hom B C  and 

the map = ( , ) :bv v b A C-   is in 

Mod( , )Hom AC . In other words, both = ( , )av v a -  

and = ( , )bv v b-  are ModHom -maps, that is, are in 

Mod  rather than just in Set . 
Now, recall that the tensor product of R -modules 

is defined using the above mentioned bilinear maps. 
In fact, for any two R -modules A  and B , their 
tensor product is an R -module A BÄ  equipped 
with a universal bilinear map 
:u A B A B´  Ä , which means that for any 
R -module C  and a bilinear map :v A B C´  ,  
there exists a unique R -morphism  
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:w A B CÄ   making the following triangle 
commutative: 

C

wv

BABA
u



 

These notions can be one step extended to the 
cases where we replace objects and morphisms of 
Mod with those of, for example, an equational 
category K of algebras (see Linton [1]), or with 
those of an arbitrary concrete category K over the 
category Set of sets and functions (see 

Banaschewski and Nelson [2]). In these cases, av  

and bv  mentioned above would be KHom -maps 

(morphisms in K).  
Before stating the main aims of the present paper, 

let us recall one more generalization of the above 
notions. Sesquilinear, also called one and a half 
linear, maps and the corresponding tensor products, 
studied in multilinear algebra, analysis, geometry, 
and physics (see, for example, [3], [4], and [5]), 
further generalize the above notions for modules 
and vector spaces. For vector spaces , ,A B C  over a 
field F  and a given automorphism a  of the field 
F , a map :v A B C´   is said to be a - 
sesquilinear if it satisfies: 
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(1) 1 2 1 2 1 1

1 2 2 1 2 2

( , ) = ( , )

( , ) ( , ) ( , )

v a a b b v a b

v a b v a b v a b

+ +
+ + +

 

 
(2) ( , ) = ( ) ( , )v ra sb r sv a ba 

 
for all 1 2 1 2, , , , ,a a A b b B r s FÎ Î Î . (Often the 

field F , and also the vector space C , is the field of 
complex numbers and a  is the complex 
conjugation). Note that if a  is the identity map, a -
sesquilinear maps are just the  bilinear ones. Of 
course, one could further generalize the notion of 
a -sesquilinear maps by taking two automorphisms 
a  and b  of the field F  and define ( , )a b - 

bivariant maps, replacing the above condition (2) 
by 
 

(2) '  ( , ) = ( ) ( ) ( , )v ra sb r s v a ba b . 
 

Notice that, an ( , )Fida -bivariant map is just an 

a -sesquilinear map, and = = Fida b  gives a 

bilinear one.  
In the present paper we propose the next step of 

generalization to the above notion of an ( , )a b -

sesquivariant map. Firstly, as in [2], from now on 
we consider an arbitrary concrete category K 
having (small) concrete products and pullbacks, 
that is such that the products and pullbacks are 
preserved by the underlying-set functor 
: K SetU  . If no confusion arises, we do not 

distinguish in notation between an object A  in K 
and its underlying set ( ) =| |U A A , and also 

between a morphism f  in K and its underlying set 

map ( ) =| |U f f . 

Secondly, the main generalization in this paper, is 
to take an arbitrary concrete category K having 
(small) concrete products and pullbacks and replace 

KHom  by arbitrary subfunctors, from now on 

denoted by G , H , of the composite  
 

Set
: K K Set Set Set

op HomU U
op opU

´

¢ ´ ---  ´ --   
 

Thus, generalizing [1], [2], [6], [7], we present a 
generalization of a -sesquilinear maps, and the 
corresponding tensor products. 

These generalizations not only provide a deeper 
understanding of the real features of these notions, 
but also show that these classical notions can be 
studied in a categorical setting. For example, we see 
that the existence of universal bimorphisms and 
functional hom-functors survives the passage from 
the category of modules or vector spaces to many 
other categories, such as the category of acts over a 
monoid, see [7]. One can now study these notions 

for multi modules or algebras (as sheaves of 
modules or algebras).  

2. Bivariations 

In this section we study the notion of bivariation 
which generalizes the usual notions of a bilinear 
(bimorphism) and an a -sesquilinear morphism 
used, for example, in multilinear algebra, analysis, 
geometry, and physics. 
 
Definition 2.1. Let G , H  be subfunctors of U ¢ , 
and , , KA B C Î . A map :| | | | | |v A B C´   is 

said to be a ( , )G H - bivariant if for every a AÎ , 

the map = ( , )av v a -  is an H -map, that is 

( , )av H B CÎ , and for every element b BÎ , the 

map = ( , )bv v b-  is a G -map, that is 

( , )bv G ACÎ . Instead of ( , )G H -bivariant we also 

say:  
(1) G - bivariant when =G H , 

(2) H - sesquivariant when K=G Hom , 

(3) bilinear when K= =G H Hom .  

Notice that the same special cases as in Definition 
2.1 apply to the notions and results given 
throughout the paper which, in particular, gives the 
cases discussed in [1] and [2]. 

Also notice that an a -sesquilinear map is the 
same as an H -sesquivariant map in the sense of 
Definition 2.1, where H  is the subfunctor of 

Set= ( )opU Hom U U¢ ´  mentioned above (here 

U  is the underlying-set functor of the concrete 
category K of vector spaces over F ) which takes a 
pair ( , )A B  of vector spaces to the set of all maps 

:f A B  satisfying 

(1) ( ) = ( ) ( ),f x y f x f y+ +  

(2) ( ) = ( ) ( ),f rx r f xa  

for all ,x y AÎ  and r FÎ . It is easy to check that 
this H  admits an internal lift (to K), that is 
=| H |H , where | H |= HU  , for some functor 

H : K K Kop ´  .  
We need the following assumptions before stating 

our first proposition: 
 

Remark 2.2. In the rest of the paper we consider 
the subfunctors  
 

: K K SetopH ´   
 
of U ¢  that satisfy the following condition: 
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(Productive) For any family { }i i If Î  of H -maps 

between the underlying sets of objects ,A B  of K, 
 

( , ) ( ) ( ) ( , )Ii i i If H A B i I f H A BÎÎ " Î  Î  

 

where ( ) : I
i i If A BÎ   is the induced map from 

A  to the I -fold product IB  of B  with itself. Note 

that KHom  clearly satisfies the Condition 

(Productive). 
Also notice that H  being a functor is closed 

under composition with morphisms in K; in the 
sense that, given ( , )f H A BÎ  and morphisms 

:g A A¢  , :h B B ¢ , we get 

( , )h f g H A B¢ ¢Î  . 

 
Notation 2.3. Let H  be a subfunctor of U ¢ , 
, KA B Î , and a AÎ . We use special notations 

for the following set maps: 
(1) a : ( , )H A B B  defined by a( ) = ( )h h a , for 

every ( , )h H A BÎ , 

(2) , : ( , )ABe H A B A B´   defined by 

, ( , ) = ( )ABe h a h a , and 

(3) ,ABi  for the inclusion map 

| |( , ) ( , ) =| |AH A B U A B B¢ . 

(4) s  for the isomorphism 
| | | | | | | |B A A B´ @ ´ . 

 
Proposition 2.4. Let G  and H  be subfunctors of 
U ¢ . Then for , , KA B C Î  and 

:| | | | | |v A B C´  , the following are 

equivalent: 
(i) v  is ( , )G H -bivariant. 

(ii) The exponential adjoint v  of v , that is 
| |:| | | |Bv A C , given by ( )( ) = ( , )v a b v a b , 

factors through | |
, : ( , ) | |BBCi H B C C , and 

analogously | |:| | | |Av B Cs   factors through 

| |
, : ( , ) | |AACi G AC C . 

(iii) | |:| | | |Bv A C  is a G -map and 

| |:| | | |Av B Cs   is an H -map. 

(iv) | |:| | | |Bv A C  is a G -map and factors 

through | |
, : ( , ) | |BBCi H B C C . 

(v) | |:| | | |Av B Cs   is an H -map and factors 

through | |
, : ( , ) | |AACi G AC C .  

 
Proof: (i) (ii) We have ( )( ) = ( , )v a b v a b  and so 

( ) = av a v  is an H -map, since v  is ( , )G H -

bivariant. Also, ( )( )( ) = ( , )v b a v a bs  and so 

( )( ) = bv b vs  is a G -map. 

(ii) (iii) We have = = ( )( )b
bp v v v bs  , 

where | |:| | | |B
bp C C  is the b th projection map 

of the product, and is a G -map for all b BÎ . 
Since G  satisfies Condition (Productive), this 

implies that = ( )b b Bv p v Î  is a G -map. 

Similarly, v s  is an H -map. 
(iii) (iv) By (iii), v  is a G -map. Also, 

( )( ) = ( ) = ( )( )( )av a v v as- - -  which, is an 

H -map by (iii). 

(iv) (v) We have ( )( )( ) = ( )( )v a v as - -  

which is an H -map, since v  factors through ,BCi . 

Also, ( )( )( ) = ( )( )v b v bs - -  is a G -map and so 

v s  factors through ,ACi . 

(v) (i) This is true because 

( )( )( ) = ( )av a vs - -  is an H -map, since v s  

is an H -map. Also = ( )bv v bs  is a G -map, 

since v s  factors through ,ACi .  

Since it is easily seen that the composite of a 
( , )G H -bivariant with a morphism in K is again a 

( , )G H -bivariant map, the above notion of 

variation gives rise to the following Set-valued 
functor: 
 
Definition 2.5. Let G  and H  be subfunctors of 
U ¢ . The functor  
 

: K K K Setop opGH ´ ´ B  
 
defined on objects by  
 

is  a bivariant map

( , , ) = { :

| ( , ) }.

GH A B C v A B

C v G H

´ 

-

B
 

 
and naturally on morphisms is called the functor of 
( , )G H -bivariant maps. 

From the above proposition we have 
 
Proposition 2.6. Let G  and H  be subfuctors of 
U ¢ . Then ( , , )GH A B CB  is the following pullback 
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| |

| |,
| |( ),

| | | | | |

( , , ) ( , )

( , ) (| | )

B

BAC
AiBC

A B A

GH A B C G AC

i

H B C C



 



B
 

 
Proof: Since | |, BAC

i  is the inclusion map, the 

pullback of i  and ,BCi  is 
 

| | 1 | |
,[( ) ] ( , )A B
BCP i G AC-= = 

| |
,

| |
,

{ :| | ( , ) | ( ) ( )

( , )}

A
BC

B
BC

g A H B C i g

i g G AC

= 

= Î
 

 
Now, taking ( , , )v GH A B CÎ B , by part (i) (iv) 

of Proposition 2.4, v PÎ . Conversely, g PÎ  

implies that ˆ :g A B C´  , given by 

(̂ , ) = ( )( )g a b g a b , belongs to ( , , )GH A B CB , since 

ˆ =g g  and using (iv) (i) in Proposition 2.4.  
 
Remark 2.7. Notice that a map 
:| | | | | |v A B C´   is ( , )G H -bivariant if and 

only if | | | |: {0} | |A Bv C ´ , 0 v , factors 

through | | | |
, , : ( , , ) | |A B
ABCi GH A B C C ´B .  

 
Definition 2.8. A ( , )G H -bivariant map 

, : ( , )ABu A B U A B´   is said to be ( , )G H - 

universal (for A  and B ) if any ( , )G H -bivariant 

map :v A B C´   factors through it by a unique 
morphism in K (that is, there exists a unique K-

morphism : ( , )f U A B C  with , =ABf u v .)  

 
Remark 2.9. If a universal ( , )G H -bivariant map 

, : ( , )ABu A B U A B´   exists for each 

, KA B Î , then we naturally get a functor 
 

: K K KGH ´ U  
 
defined on objects by ( , ) = ( , )GH A B U A BB , and 

for any two morphisms :h A A¢ , :k B B ¢  
in K, the morphism ( , ) : ( , ) ( , )U h k U A B U A B¢ ¢  

is the unique morphism in K induced by the 
universal property of universal ( , )G H -bivariant:  
 

,

,

( , )

( , )

( , )

uAB

uA B

A B U A B

h k U h k

A B U A B
¢ ¢

´ 
´  

¢ ¢ ¢ ¢´ 

 

where , : ( , )A Bu A B U A B¢ ¢ ¢ ¢ ¢ ¢´   is a universal 

( , )G H -bivariant map for A¢  and B ¢  (note that 

since ,A Bu ¢ ¢  is ( , )G H -bivariant, so is the 

composite , ( )A Bu h k¢ ¢ ´ ). Also, notice that the 

existence of the universal ( , )G H -bivariant maps 

clearly gives K( , , ) ( ( , ), ))GH A B C Hom U A B C@B .  

3. Functional internal lifts 

It is well known that even in the case where K is 
the category of R -modules or the category of M -
sets (of sets with actions of a monoid M  on them, 

see [7]), the Hom-functor KHom  is, in general, not 

functional; that is, for objects A  and B  in K, 

K( , )Hom A B  is not in general a subobject 

(submodule) of the | |A -fold product | |AB . 

Some conditions equivalent to KHom  being 

functional are given in [2] and [6]. In this section 
we study this notion for any subfunctor H  of U ¢  
for the general concrete category we have been 
working with in this paper, and give some 
necessary and sufficient conditions under which H  
is functional. 

 

Definition 3.1. Let : K K SetopH ´   be a 
subfunctor of U ¢ . Then:  

(1) A functor H : K K Kop ´   is said to be an 
internal lift (IL) of H  (to K) if H =U H ; that 
is, the following diagram is commutative:  
 

K K Set

H

K

H
op

U

´ 
 

 
(2) The internal lift H  of H  is called a strong 
internal lift (SIL) of H  if it satisfies the condition 
(S) For any , , KA B C Î , a set map 

: H( , )f A B C  is an H -map whenever for each 

b BÎ , b f  is an H -map.  
Definition 3.2. Let H  be an internal lift of H . A 
monomorphism :f A B  in K is called an H -

embedding if any map :g C A  is in ( , )H C A  

whenever f g  is in ( , )H C B . 
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Definition 3.3. An internal lift H  of H  is said to 
be: 
(1) A functional internal lift (FIL) if for every two 
objects , KA B Î , the inclusion map 

| |
, : H( , )

A
ABi A B B  is a morphism (and hence a 

monomorphism) in K. 
(2) A strong functional internal lift (SFIL) if it is a 
functional internal lift (FIL) and, further, each 

| |
, : H( , )

A
ABi A B B  is an H -embedding.  

Notice that the | |A -fold product functor 

| |( ) : K K Kop-- ´   is not only a strong internal 

lift (SIL) of the functor : K K SetopU ¢ ´  , but 
is also a strong functional internal lift (SFIL) of it. 

 
Theorem 3.4. Let H  be an internal lift of H . 
Then, the following are equivalent: 
(i) H  is a functional internal lift (FIL) of H . 
(ii) For any , K,A B a AÎ Î , the set map 

a : H( , )A B B  is a morphism in K. 

(iii) The evaluation maps , : H( , )ABe A B A B´   

are H -sesquivariant.  
 
Proof: (i) (ii) Notice that the inclusion map 

| |
, : H( , )

A
ABi A B B  is in fact the map which 

exists by the universal property of products and 
makes the following diagram commutative:  
 

,
| |( , )

a

iA B
A

a

H A B B

p

B


  

 
Now, if ,ABi  is a morphism in K then, since 

each ap  is a morphism in K, we get that 

,a = a ABp i  is a morphism in K. Conversely, if 

each a  is a morphism in K, then ,ABi , which exists 

by the universal property of products in K, is a 
morphism in K. 

(ii) (iii) By definition, we have ( , ) =ABe v v-  is 

an H -map. Also, ( , ) = aABe a-  which is in K by 

(ii). 

(iii) (i) Note that a = ( , )ABe a- , which is in K, 

by the definition of a H -sesquivariant.  
 
Proposition 3.5. Let H  be a subfunctor of U ¢ . 
Then, an internal lift (IL) of H  is a strong 
functional internal lift (SFIL) if and only if it is a 

strong internal lift (SIL) as well as a functional 
internal lift (FIL).  

 
Proof: ( ) Let H  be an internal lift of H  which 
is a SFIL. Then it is a FIL, by definition. To prove 
that it is a SIL, let : H( , )f A B C  be a map such 

that b f  is an H -map 
for every b BÎ . But, as the proof of Theorem 

3.4 shows, for every b BÎ , ,b = b B Cp i , so 

, = bb B Cp i f f    is an H -map. Now, since 

H  satisfies Condition (Productive), this implies 

that ,BCi f  is an H -map, because 

, ,= ( )BC b B C b Bi f p i f Î   . Finally, using the 

fact that ,BCi  is an H -embedding, it is concluded 

that f  is an H -map.  

( ) Let : H( , )g C A B  be a map such that 

,ABi g  is an H -map. Applying Condition (S), we 

show that a g  is an H -map for each a AÎ , and 
then get that g  is an H -map. Since H  is closed 
under composition with morphisms in K, we get 

that ,a ABp i g   is an H -map. But, as we stated 

in the proof of Theorem 3.4, ,a = a ABp i , and so 

a g  is an H -map.  
Also, it is clear that: 

 
Proposition 3.6. If all monomorphisms in K are 
H -embeddings, then an internal lift (IL) of H  is a 
strong functional internal lift (SFIL) if and only if it 
is a functional internal lift (FIL).  

 

Proposition 3.7. Let , : K K SetopG H ´   be 

subfunctors of U ¢ , and H  be a functional internal 
lift of H . Then, there is a natural equivalence  
 

( ,H( , )) ( , , )G A B C GH A B C B  
 
such that ˆh h  is defined by (̂ , ) = ( )( )h a b h a b  

for all a AÎ  and b BÎ  if and only if for each 

, KB C Î , | |
, : H( , )

B
BCi B C C  is a G -

embedding.  
 
Proof: ( ) Recalling Proposition 2.6, the given 
assignment is a bijection between 

| |
,= { :| | ( , ) | ( , )}B
BCP g A H B C i g G AC Î  

and ( , , )GH A B CB . On the other hand, each 

member g  of P  belongs to ( ,H( , ))G A B C . This is 

because ,BCi g , and hence g , is a G -map, since 
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,BCi  is a G -embedding. Conversely, each element 

of ( ,H( , ))G A B C  is clearly in P . Therefore, 

( ,H( , ))G A B C  and ( , , )GH A B CB  are both 

pullbacks of | |( , )BG AC  and | |H( , )AB C . Hence, we 

get the desired equivalence. The proof of the 
naturality is straightforward. 

( ) Let : H( , )f A B C  be such that ,BCi f  

is a G -map. Then f  is also a G -map, since 
ˆ :f A B C´   is in ( , , )GH A B CB . In fact, 

(̂ , ) = ( )f a f a-  is an H -map and 

,(̂ , ) = b = b B Cf b f p i f-     is a G -map.  

 

Corollary 3.8. Let H : K K Kop ´   be a 
functional internal lift (FIL) of 

: K K SetopH ´  . Then, there is a natural 
equivalence  
 

( ,H( , )) ( , , )H A B C HH A B C B  
 

such that ˆh h  is defined by (̂ , ) = ( )( )h a b h a b  

for all a AÎ  and b BÎ  if and only if H  is a 
strong functional internal lift of H .  
 
Corollary 3.9. Let G  and H  be subfunctors of U ¢  
with functional internal lifts G  and H , 

respectively. If each | |
, : H( , )

B
BCi B C C  is a 

G -embedding and each | |
, : G( , )

A
ACi AC C  is 

an H -embedding, then  
 
( ,H( , )) ( , , ) ( ,G( , ))G A B C GH A B C H B AC@ @B  

 
Proof: Applying Proposition 3.7, we get that  
 

( ,H( , )) ( , , )G A B C GH A B C@ B  
 
and ( ,G( , )) ( , , )H B AC HG B AC@ B . But there is, 

clearly, a natural equivalence between 
( , , )GH A B CB  and ( , , )HG B ACB . Hence, the 

desired equivalences are obtained.  
 

Remark 3.10. The equivalence 
( ,H( , )) ( ,G( , )))G A B C H B AC@  obtained in 

Corollary 3.9 is in fact given by 
# #, ( )( ) = ( )( )f f f b a f a b  for all a AÎ  and 

b BÎ . 
 

Finally, we consider Proposition 3.7 in the case 

where K=G Hom .  

 

Proposition 3.11. Let H  be an internal lift (IL) of 

: K K SetopH ´  . Then,  
 

( ,H( , )) ( , , ),K KHom A B C Hom H A B C B  
 

given by ˆh h  with (̂ , ) = ( )( )h a b h a b  for all 

a AÎ  and b BÎ , is a natural equivalence if and 
only if H  is a functional internal lift (FIL) of H .  

 
Proof: ( ) Consider the identity map 
: H( , ) H( , )id B C B C . Then 

ˆ : H( , )id B C B C´   belongs to 

K ( , , )Hom H A B CB . In particular, for b BÎ , 

ˆb = bid  belongs to K. So, by Theorem 3.4, H  is a 
FIL of H . 

( ) Applying Proposition 3.7 for K=G Hom , 

since each | |
, : H( , )

B
BCi B C C  is clearly a G -

embedding, we get the desired equivalence.  
 

Remark 3.12  The equivalence obtained in 
Proposition 3.7 will be an isomorphism in K if we 
add the assumption that G  admits an internal lift 
G . This is because, following the proof of 
Proposition 3.7, G( ,H( , ))A B C  and ( , , )GH A B CB  

are both pullbacks of subobjects | |G( , )BAC  and 

| |H( , )AB C  of | | | |( )B AC . So, we also get that the 

equivalences given in Corollaries 3.8, 3.9 are in fact 
isomorphisms in K. A similar result is true for 

Proposition 3.11 if we assume that KHom  has an 

internal lift.  

4. Tensor products 

In this last section we define tensor products with 
respect to an arbitrary subfunctor H  of U ¢  and 
study the interdependence between the following 
notions: tensor product, bivariance, and 
functionality of an internal lift. These notions 
generalize the ordinary ones. 

 
Definition 4.1  Let ,G H  be subfunctors of U ¢  and 
H  be an internal lift of H . A functor 
: K K KÄ ´   is said to be a ( , )G H - tensor 

product if there is a natural equivalence  
 

K( ( , ), ) ( ,H( , )).Hom GÄ - - -  - - -  
 
Instead of ( , )G H -tensor product we also say:  

(1) G - tensor product when =G H , 

(2) H - sesquitensor product when K=G Hom , 
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(3) tensor product when K= =G H Hom .  

 
Theorem 4.2. Let ,G H  be subfunctors of U ¢ , H  
be a functional internal lift of H , and 
: K K KÄ ´   be any functor. Then any two of 

the following statements imply the third one: 
(T) Ä  is a ( , )G H -tensor product. 

(E) | |
, : H( , )

B
BCi B C C  is a G -embedding for 

each , KB C Î . 

(U) Ä  is the functor GHU.  
 
Proof: (T)+(E) (U) Let 

K: ( ( , ), ) ( ,H( , ))Hom Gh Ä - - -  - - -  be a 

natural equivalence. Take , KA B Î  and consider 

l  as the image of :id A B A BÄ  Ä  under 

, ,AB A Bh Ä . Using (E) and applying the equivalence 

given in Proposition 3.7, we get a ( , )G H -bivariant 

map ˆ :l A B A B´  Ä . We show that this map 
is a universal ( , )G H -bivariant. Let 

:v A B C´   be a ( , )G H -bivariant. Then 

again, applying the equivalence given in 
Proposition 3.7, we get ( ,H( , ))v G A B CÎ . Now, 

1
, , ( ) :ABC v A B Ch- Ä   is a unique morphism in 

K with 1
, ,

ˆ( ) =ABC v l vh-  . This is because, by the 

naturality of h , 1
, ,

ˆ= ( )ABCv v lh-  . 

(U)+(E) (T) Let , , KA B C Î . Define  
 

, , K: ( , ) ( ,H( , ))ABC Hom A B C G A B Ch Ä   
 
by , , ( )ABCf fh , where 

, , ( )( )( ) = ( , )ABC f a b fu a bh , 

a AÎ , b BÎ , and , :ABu A B A B´  Ä  is a 

universal ( , )G H -bivariant map which exists by 

(U). Notice that , ,ABCh  is injective, since by the 

universality of u , =f u g u   implies =f g . 
To see that it is also surjective, let 
: H( , )h A B C  be a G -map. Then, by the 

equivalence given in Proposition 3.7, we get a 

( , )G H -bivariant ˆ :h A B C´  . Using the 

universality of u , we get a unique morphism 

:gf A B CÄ   in K  with ˆ=gf u g , which 

means that , , ( ) =ABC gf gh  as required. The 

naturality of h  also follows from the universality of 

each ,ABu . 

(T)+(U) (E) Applying (T), we have an 
equivalence  
 

K( ), ) ( ,H( , ))Hom A B C G A B CÄ @  
 
and, by (U), we get an equivalence 

K( , , ) ( , )GH A B C Hom A B C@ ÄB  (see Remark 

2.9). Consequently, we have an equivalence 
( , , ) ( ,H( , ))GH A B C G A B C@B . So, by 

Proposition 3.7, each | |
, : H( , )

B
BCi B C C  is a 

G -embedding.  
 

Corollary 4.3. Let ,G H  be subfunctors of U ¢  and 
H  be a functional internal lift  (FIL) of H , and 

each | |
, : H( , )

B
BCi B C C  be a G -embedding. 

Then, a functor : K K KÄ ´   is a ( , )G H -

tensor product if and only if Ä  is a functor of 
( , )G H -universal bivariants.  

Finally, using Proposition 3.11, we get Theorem 

4.2 for the special case where K=G Hom . 

 
Theorem 4.4. Let H  be an internal lift of H  and 
: K K KÄ ´   be a functor. Then, any two of 

the following conditions imply the third: 
(T) (Ä  is an H -sesquitensor product) There is a 
bijection  
 

K K( , ) ( ,H( , ))Hom A B C Hom A B CÄ @  

 
natural in all three arguments; in particular, this 
gives that for every object B  in K, the functor 

B- Ä  is a left adjoint to the functor H( , )B - . 

(E) (H  is a functional internal lift of H ) For any 
two objects A  and B  in K, the inclusion map 

| |
, : H( , )

A
ABi A B B  is a morphism in K (here 

| |AB  denotes the | |A -fold product in K of B  with 

itself ). 

(U) (Ä  is the functor of universal ( , )KHom H -

bivariants ) There is a family of maps  
 

, : , , KABu A B A B A B´  Ä Î  

 
which forms a natural transformation 
:u -´-  - Ä - , such that for any two objects 

A  and B  in K, the map ,ABu  is the universal H -

sesquivariant map for A  and B ; that is ,ABu  is 

H -sesquivariant and for any H -sesquivariant map 
:v A B C´  , there exists exactly one 
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morphism :f A B CÄ   in K such that 

,= ABv f u .  
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