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Abstract

A Cartan manifold is a smooth manifold M whose slit cotangent bundle T* M o is endowed with a regular

Hamiltonian K which is positively homogeneous of degree 2 in momenta. The Hamiltonian K defines a

*
(pseudo)-Riemannian metric gij in the vertical bundle over T M o and using it, a Sasaki type metric on

* *
TM o is constructed. A natural almost complex structure is also defined by KonT M o in such a way that

pairing it with the Sasaki type metric an almost Kéhler structure is obtained. In this paper we deform gij to a

pseudo-Riemannian metric Gij and we define a corresponding almost complex Kéhler structure. We determine

the Levi-Civita connection of G and compute all the components of its curvature. Then we prove that if the

*
structure (T M 0> G, J) is Kahler- Einstein, then the Cartan structure given by K reduces to a Riemannian

one.

Keywords: Cartan space; Kéhler structure; symmetric space; Einstein manifold; Laplace operator; Divergence;
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1. Introduction

The structure of the tangent and cotangent bundles
of a differentiable manifold is well studied in
Riemannian geometry, Finsler geometry and
Physics, and has many applications in Biology too
[1-7].

E. Cartan has originally introduced a Cartan
space, which is considered a dual of Finsler space
[8]. H. Rund [9], F. Brickell [10] and others then
studied the relation between these two spaces. The
theory of Hamilton spaces was introduced and
studied by R. Miron [11, 12]. He proved that Cartan
space is a particular case of Hamilton space.
Indeed, the geometry of regular Hamiltonians as
smooth functions on the cotangent bundle is due to
R. Miron and is now systematically described in the
monograph [13].
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Let us denote the Hamiltonian structure on a
manifold M by (M, H (X, P)). If the fundamental

function H (X, P) is 2-homogeneous on the fibres

of the cotangent bundle (T M, M), then the

notion of Cartan space is obtained. The modern
formulation of the notion of Cartan spaces is due to
R. Miron [14-16]. Based on the studies of E.
Cartan, A. Kawaguchi [17], R. Miron [13], [15],
[16], S. Vacaru [18, 19], D. Hrimiuc and H.
Shimada [20], [21], P.L. Antonelli and M.
Anastasiei [22-25], etc., the geometry of Cartan
spaces is today an important chapter of differential
geometry.

Under Legendre transformation, the Cartan
spaces appear as dual of the Finsler spaces [11]. It
is remarkable that regular Lagrangian, which is 2-
homogeneous in velocities is nothing but the square
of a fundamental Finsler function and its geometry
is Finsler geometry. Using this duality several
important results in the Cartan spaces can be
obtained: the canonical nonlinear connection, the
canonical metrical connection, the notion of

(e, ) -metrics, etc [26]. Therefore, the theory of
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Cartan spaces has the same symmetry and beauty
like Finsler geometry. Moreover, it gives a
geometrical framework for the Hamiltonian theory
of Mechanics or Physical fields.

Let (M, K) be a Cartan space on a manifold M

1
and put 7 := 5 K?2. Let us define the symmetric

1 v(7) .
M-tensor field G; :=—@; +—— P, p; on slit
B af
cotangent bundle T M, =T M —{0}, where
v =v(7) is a real valued smooth function defined
on [0,00) ©c R and @ and [ are real constants.
Using this, we can define a Riemannian metric and

almost complex structure on T Y o as follows
G=G;dx dx' +G" 6 p,dp,,
J(6)=G, 0", I(©@)=-G"s,,

where G” is the inverse of G; .

In this paper, we prove that (T M 0,G, J) is
an almost Kéhlerian manifold. We then show that
the almost complex structure J on T*MO is
integrable if and only if M has constant scalar
curvature C and the function Vv is given by
Vv =—-Ca ﬂz. We conclude that on a Cartan
manifold M of negative constant flag curvature,
(T'M,,G, J)has a Kihlerian structure. For

Cartan manifolds of positive constant flag
curvature, we show that the tube around the zero
section has a Kéhlerian structure (see Theorem 5).

Then we find the Levi-Civita connection V of
the metric G. For the connection V , we compute
the curvature of all of the components. For a Cartan
space (M, K) of constant curvature ¢, we prove
that in the following cases it reduces to a
Riemannian space: (i) for C< 0, (T*M O,G, J)
became a Kihler Einstein manifold, (ii) for C> 0,
(T; M,,G, J) became a Kihler Einstein

manifold, where T; M, , the tube around the zero

section in T M is defined by the condition
27 <L2. It results that, there is no non-

Riemannian Cartan structure such that
(T'M,,G, J) became a Einstein manifold.

2. Preliminaries

Let M be an n-dimensional C* manifold and
77 :T'"M — M its cotangent bundle. If (X')
are local coordinates on M, then (X', P, ) will be

taken as local coordinates on T M with the
momenta (P, ) provided by p=p,dX' where

p GTX*M , X =(x") and (dx') is the natural
basis of Tx*l\/l . The indices i,j,K,... will run from 1

to n and the Einstein convention on summation will
be used.

Put 5i =

and O :=ai. Let (O, ,0M)

OX

T M and (dx'.dp,)

be the dual basis of it. The kernel V(X,p) of the

(X,p)T*l\/l —T,M is called

the vertical subspace of T

be the natural basis in T

differential d7zz :T

(X’p)T M  and the

mapping (X, p) >V is a regular distribution

(x,p)
on T'M called the vertical distribution. This is
integrable with the leaves T,M , X € M and is

locally spanned by 0. The vector field
C" =p,0 is called the Liouville vector field and

=P, dx' is called the Liouville 1-form on

T'M. So dw is the canonical symplectic
structure on T M . For an easer handling of the

geometrical objects on T M , it is usual to
consider a supplementary distribution to the vertical

(X,p) >N, called the
horizontal distribution and to report all geometrical

distribution,

objectson T "M to the decomposition

T .TM=N

(x,p) @Vx p

(xp) DVixp): O

The pieces produced by the decomposition (1) are
called d-geometrical objects (d is for distinguished)
since their local components behave like
geometrical objects on M, although they depend on

X =(x") and momenta P =(p,).

The horizontal distribution is taken as being
locally spanned by the local vector fields

8 =0,+N,(x p)o’ @)

The horizontal distribution is also called a
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nonlinear connection on T M and the functions
(N )are called the local coefficients of this

nonlinear connection. It is important to note that

. . * .
any regular Hamiltonian on T M determines a
nonlinear connection whose local coefficients

verify Ny =N ;. The basis (5, ,0 ) is adapted
to the decomposition (1). Its dual is (dXi ,0P;,),
for 5p, =dp, =N ;;dx .

A Cartan structure on M is a function
K :T'M —[0,00) which has the following
properties: (i) Kis C* on T "M , =T 'M —{0};
() KX, Ap)=AK (X,p) for all A >0 and
(i) the NxN  matrix ("), where

9" (x,p) =%3‘ OIK?(X,p), is positive

definite at all points of T "M o - We notice that, in
fact, K(X,pP)>0, whenever P # 0. The pair

(M,K) is called a Cartan space. Using this
notation, let us define

o =LoK® and C*=—_Llagizk?
2 4
The properties of K imply that
p=g"p,, p=g;p o
g'pp =pp =K’
C*p,=C¥p,=C"p, =0 (4)

One considers the formal Christoffel symbols

i 1 is
7 (% P) =2 0%(0:95s+0,05 ~0.95 ), )

and the contractions y} (X, P) =7 (X, P)p, ,
Yio = 7}k P, P“. Then the functions

N, (% P)=7; (% )= 74 (x P)E"g, (x P). (©

define a nonlinear connection on T M . This
nonlinear connection was discovered by R. Miron
[14]. Thus a decomposition (1) holds. From now
on, we shall use only the nonlinear connection
given by (6).

A linear connection D on T M s said to be

an N-linear connection if D preserves by
parallelism the distribution N and V , also, we

have DO =0 for @=35p, AdX'. One proves
that an N-linear connection can be represented in
the adapted basis (J; ,0' ) in the form

D, & =B5,, D,d =-Bd", (7)

D.,8 =V45, D, 0 =-VJo, ®)

ol I o)

where Vikj is a d-tensor field and Bi;( (X, p)
behave like the coefficients of a linear connection
on M. The functions Bilj( and V, 4 define operators
of h-covariant and v-covariant derivatives in the

algebra of d-tensor fields, denoted by k and |k,

respectively. For gij , these are given by the
following equation

9’ =5,9" + 9B, +g"B,, ©)
o[ =81g" + gV + gV, (10)

An N-linear connection given in the adapted basis
(6,,0') as DT(N)=(BjV
Berwald connection if

) is called a

g’ =2, g’ =-20™, (11

where L” = k\hp are components of the

Landsberg tensor on M (see [27]).
The Berwald connection

BI'(N)=(&'N ik»0) of the Cartan spaces has

the torsions d-tensors as follows
Tjik = 0: Sjk = 0: \/| Ik = 07 Pjik = 09 (12)
Rjk =5kNij _51' N, (13)

The d-tensors of the curvature of BI'(N ) are
given by
_ i i i
R, =8B 0B}, +B5B.,
i ih i ikh
-B; By, Py =0"Bj, S =0

where B —8' i are the coefficients of the

BI'(N )—connectlon. It also has the following
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properties

Ki=0,K*=0, K*|!=2p/, (14)
=p- =0, pl =6,

pll‘J' p“ pl i (15)

pl ]:gll’ Rkijpkzo

60w =B} 0y + B0 (16)

3. Kahler structureson cotangent bundle

Suppose that

r=tKk?=1gi(x p) p p (17)
S 2 2 ’ o

We consider a real valued smooth function U
defined on [0,00) [] and real constants & and

[ . We define the following symmetric M-tensor
field of type (0,2) on T M , having the

components

Gij ::l g; + V(T)
B ap

It follows easily that the matrix (G;;) is positive

B p;- (18)

definite if and only if &, # >0, a+270 > 0.
The inverse of this matrix has the entries

V
/. pp'. (19)

GY = gg¥ —
p9 a+2tv

The components G M define symmetric M-tensor
field of type (0,2) on T "M o - It is easy to see that

if the matrix (G;;) is positive definite, then matrix

(G) is positive definite too.
Using (G;) and (G 1), the following

Riemannian metricon T~ M o is defined
G=G;dx dx' +G" d p, d p, (20)

Now, we define an almost complex structure J on

T*MO by
J(5)=G, 3,30 )=-G"5, Q1)

It is easy to check that J* = —1.

Theorem 1. (T "M ,G,J) is an almost Kahlerian
manifold.

Proof: Since the matrix (G"') is the inverse of the
matrix (G, ) we have
G(35.35,)=G,G,G(".0")
=G,G,G" =G, =G (4.5} ).
The relations
G(8,30)=G(&'.8"),
G(35.30")=G(5.0)=0,
may be obtained in a similar way, thus
G(IX,JIY)=G(X,Y), vx,Yer(T*Mo).

It means that G is almost Hermitian with respect
to J. The fundamental 2-form associated with this

almost Kahler structure is &, defined by
0(X.Y)=G(X,JY), ¥X,Ye(T'M,)
Then we get

0(0'.5,)=G(8'.35,)=G (9 .G, &")
=G*G, =4}, 0(5.5,)=0(d.,0")=0
Hence, we have

O=05p AdX. (22)

that is the canonical symplectic form of T M .
Here, we study the integrability of the almost
complex structure defined by J on TM. To do this,
we need the following lemma [13].

Lemma 2. Let (M,K) be a Cartan space. Then we
have

(D [daé}z anak,
) [@,81}=—(8jNik)8k,
3) [éi,éj}:o.

Lemma 3. Let (M, K) be a Cartan space. Then J is

a complex structure on T*MO if and only if
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Akij =0 and

v
Ry =a—ﬂ2(gikp,- ~0;P), (23)
where

Ay =6G; 6,6, +G,0'N,, -G, 0'N,,.

Proof: Using the definition of the Nijenhuis tensor
field N ; of J, that s,

N, (XY )=[IX,IY ]-3[IX.Y ]-I[X,IY ]
-[XY], vX)Yer(T'™m)
we get

N, (3.6,) = AyG™5, +(My; —Ry )", (24)
where M =G,0'G, -G, 0'G,. Lt
Ci =90,04C " | then we have

8rgjk :_gjlgd(argls — 2gj|gSkCrls :2erk-

By above equation, we obtain

o 2 \Y

G,0'G, =FCijk +a_ﬁ2(g“ P+ 9P, )
(25)

(v 2w Y 0. p

aﬂZ 0!,3 aZﬂZ iMj Mk
where C;, = gierrk. From (25) we get

\)

My =— (0P, — 95 P )- (26)

af

By a straightforward computation, it follows that
N,(@,0')=0,N,(@,5,)=0, Whenever N (s5.5)=0-
Therefore, from relations (24) and (26) we conclude
that the necessary and sufficient conditions for the

Nijenhuis tensor field N ; to vanish, so that J is a

complex structure, are that A;; =0 and (23) hold.

1%
In equation (23), we put — ,6'2 =C, where C

is constant. Then we get

R :C(gjk B — Yi pj)' @7

Theorem 4. Let (M,K) be a Cartan space of
dimension N >3. Then the almost complex

structure J on T'M o is integrable if and only if
(27) is held and the function U is given by

vV=—caf’. (28)

Proof: From equation P, =0 of relation (15),

we conclude that &, p, = N, . Hence we obtain

A =69, — 90,0 +gir6rNjk _gjrérNik
=30 — ;0 + G Bjx — ;. By
=9~ %,
2L, -2, =0

29

Now we suppose that U =—Ca/f3”. Thus from
equation Akij =0 and Lemma 3, we conclude that

J is integrable if and only if (27) is held.

A Cartan space K"
curvature C if

is of constant scalar

Hoi pi pjxhxk :C(ghjgik _ghkgij) pi pjxhxk, (30)
for every (X,p)eT,M and X =(X')eT,M .
Here H hijk 18 the (hh)h-curvature of the linear
Cartan connection of K". We replace H hjk 0
(30) with giSHrfjk and so it reduces to the
following

psHIfjk pjxhxk :C( PP — Kzghk) X"X*. 31

By part (ii) of Proposition 5.1 in chapter 7 of [13],
pSH f?jk = _thk N henCe W¢E get

ankpjxhxk :C(Kzghk_ phpk)xhxka
or equivalently
thk pj :C(Kzghk_ phpk)’ (32)

because (X ") and (X ¥) are arbitrary vector
fields on M. It is easy to check that (31) follows
from (27). Similarly it can be shown that if Cartan

space K" has the constant scalar curvature c, then
the equation (27) is held (see [28]).
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Theorem 3.5. Let (M,K) be a Cartan space with
constant curvature C. Suppose that U is given by
(28). Then

(i) for negative constant ¢, structure (T "M ,,G,J)

is a Kédhler manifold;
(ii) for positive constant C, the tube around the zero
section in T'M, defined by the condition

27r=K?< Lz , is a Kédhler manifold.
cp

Proof: The function Vmust satisfy in the following
condition

a+2wv =a(1+2(—)fr)>0, a.f>0 (33)

By using the above relation and Theorem 4, we
complete the proof.
By attention to the Theorem 5, the components of

the Kéhler metric G on T*Moare
G, =~g,~cApp
ij ,B ij i Mjo»
ﬂ?)
ﬂgu 1— 2ﬂ

(34)
2 PP

4. A Kéahler Einstein structure on cotangent
bundle

In this section, we study the property of
(T*M 0> G) to be Einstein. We find the expression

of the Levi-Civita connection V of the metric G
on T'M o » then we get the curvature tensor field of

V . Then, by computing the corresponding traces,
we find the components of Ricci tensor field of V.

4.1. The Levi-Civita Connection

Lemma 1. The Levi-Civita connection of the
Kihler metric G are given by the following

V,8' =(AL®)5,+(-Cl +¢pG'p,) 8", (33)

V0! =(CP-cpG p )5, (L, +BL)%, (36)

V.8 =(CP-cpGp)o,-Lid%  67)

B
Proof: Recall that for Cartan space with a Berwald
connection, the relation Bj, =0’N, is held, and
[6.0' =Bl Let
Véjéj = Fijh§h +F25h. Then by using the

Koszul formula we get

SO we have

_ {ﬂg" ”f;zpp] |

r”szé —B;m[ﬁg"“ IZﬁ;Zp p’ )
_—Bk"m[ﬁgm‘+l Czﬂ;,z p"p J
[ﬂgks lzﬂ;zp p j &

=5’9" L.

Similarly we obtain

3
5 ik cp ik
(ﬁg +1—2cﬂ2rp P J

- 1 . . Cﬂ3 .
==+ ik P ARk
=" (ﬂg +1—2Cﬂ2rp P j

3
ok i cp i
(ﬂg +1—20ﬂ2rp P J

1
—4g s _Cﬂp psj (40)
(ﬂ % k

=-CJ) +cpG"p,.

Using the two above equation we have (35). In a
similar way, we obtain (36), (37) and (38).

We say that the vertical distribution VT*MO is
totally geodesic (resp. minimal) in TT M o if
HVéiaj =0 (resp. ginvéiéj =0), where H
denotes the horizontal projection. Similarly, if we
denote by V the vertical projection, then we say

that the horizontal distribution HT*MO is totally
geodesic  (resp. minimal) in -|_|_*|\/|O if
va}é‘j =0 (resp. gijVV(gié‘j =0). By using
(35), we obtain

HV 0’ = L6, A1)
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and
ginvaiaj :ﬂzgij L5, = 35, (42)

where J° is the mean Landsberg tensor. Hence, we
have the following.

Corollary 2. Let (M , K) be a Cartan space with
Berwald connection. Then we have
(i) K is Landsberg metric if and only if the

vertical distribution \/T*l\/l0 is totally geodesic in
TT'™M,
(ii) K is weakly Landsberg metric if and only if

the vertical distribution VT*MO is minimal in
TT'M 0
Coroallary 3. The horizontal distribution H-r*l\/l0

cannot be totally geodesic or minimal in TT'M 0

Proof: By (38), we have
1 ts
VV{,]&j :(_FcijS+Cﬁstgja .

If HT'M o, Is totally geodesic, then we have
cfGpp' =0.
Cp, P, (1 — ZCﬂZT) =0, which cannot be true.

Therefore, we obtain

4, 2. The Curvature Tensors

Theorem 4. The coefficients of the curvature tensor
of Kéhler metric G are as follows

_Likh‘j ):|5h

K(ai’aj)ak =|:ﬁ2(ijh i

C[:k,j _Chjk,i
o - (43)
+cpG o, —cpGH oy |,
+ jk~is ik~ is a",
+Cs Ch _Cs Ch

+47 (L5 L - L, L)

_CﬂG kgl —C/ ]
K (é‘l 0 )ak =|ci'cls—ckc! + 5,
B (LML 4L 4LEL™) | (49)
By Cdk‘, —cp’L*p,
+| Ci ¥ +CBLS +C L, |0,
-CPLE +Ly!

iks™j jks™i

1 s s
Rk““ 7 —(CywC*-CC™)
<(5.0)5=| < p (Pl -pot o |8
(LS Lh LS Lh ) (Lh ) (45)

kj —is ki =js ki i

—Lh

ki|j

M . .
F(Cikh\j _Cjkh\i )+2Rsij Lhk
1 s s ~
+ +F(Cjks|‘ih _CiksLjh) ah,
+C Lk CihSLfk

jhs

[ci —ci vep (p L —p L)
K (8.6;)0" =[+C°L} —C°LL s,

i2Yj
+CILE +CILY (46)

R:p +ﬂi(cikscjhs _Cjkscihs)
"{:zﬂzph(p’ﬁik—pié‘jk) ",

+LE LK FLELS - LEL

hij hji

+

cM-chyclclh-crch
(6.0")s, =|+cB(G"s5) -G7's) s, (47)
(UL - )
[ \—Lah' Jer
Ck"rl‘ +cpLp, LY
K(8.0")5, =| -Bj) +C LY 5,
L —CcTLL +C L™ 4g)

1 s is
7(C|kh (:lsh(:J Clksckjl )
B
+ +CphCif< +Ckai£| o".
—fG,,6! +LL L},
+LL Ly -L

hk i

Proof: Recall that the curvature Kof Vis
obtained from the following
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K(X)Y)Z=V,V,Z-V,V,Z

Z, VXY,Zer(T'M,). @)

“Vixy)
Using (49) we have
K(8',0)8" =V, Vv, 0 -V, V& (50

By (35), it follows that
V.V, 0 =0 (Bg™LY )0,
+(ﬁzgms|-:: )Vgl J

N . . : (51
+0' (CX +cpG ¥ p,)o°
+(—C3j" +cpAG X ps)Vé, o°

Since phLE =0, p L?l =p' L?l = and

8g’ =—2C¥ | then by (51) the following
relation yields

ﬂZ thk Nl

K
Vé'vbia - +ﬁ2(cmihL£< _CsjkLihs) h

- (52)
A9 gl Ly +C/C?
+|+¢?B°G*G " p,p, —cpC™p, |0",

+0' (-C +cpGpy)

where L™ =d'L"™. Since O'r=p and
bk pj = g” , We obtain
" i
cpG T p, —c G py
+C’ GG p, p,

—CZﬂZG ikG jh ph ps (53)

2 4 KN KRl
TN
1_2Cﬂ22_ +gjkp|_g|kpj

By replacing 1, ] in (52) and setting these
equations in (50), also by attention to (53), we get

K (&'.0")o" =[ﬂ2 (L - )Jéh
N Cll —C) +cpG s,

—cpG s +clcs
CICP+ 7 (LL L - L, L%)o".

(54)

Similarly we can obtain the other components of
curvature tensor.

By using (45), we have
ngi +é(cikscjhs _Cjkscihs)
(K (5i95j)5k)H = +Czﬂz(pi5jh_pj5ih)pk o

#(Lg L - L)+ (L -Lhy)

ki Fis ki Ejs ki

Contracting the above equation by [, gives us

ph(K(é‘i’é‘j)é‘k)H =_th|2'i =R
If (T*MO,G) is locally flat, then we have
K(X.Y)Z=0 forall X.Y,Zex(T'M,).

Hence, by using the above equation we infer that
Ri =0 or Ry p' =0. Therefore, we have the

following.

Theorem 5. Let (l\/l ,K ) be a Cartan space and G

be the Riemannian metric on T*l\/l0 defined by
(4). If (T*MO,G)is locally flat, then (M, K)

has the zero constant curvature.

Theorem 6. Let (M,K)be a Cartan space of

constant curvature C and the components of the
metric G are given by (34). Then the following are

held if and only if (|\/| ,K ) is reduce to a
Riemannian space.

(i )for c<O0, (T*MO,G, J) is a Kéhler Einstein
manifold.

(ii)for c>0, (T;MO,G,J) is a Kihler
Einstein manifold, where T; M, is the tube around

the zero section in TM , defined by the condition
1

2t < >

Proof: Let (M , K) be a Riemannian space. Then
CE and F?: vanish and H ;k is a function

of ( X" ) . Therefore (45) reduces to the following
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K(5.5,)5, =[ Ry + ¢ (po; - p,07) by |6, (55)

From Proposition 10.2 in chapter 4 of [13], we
have R =—p, Rgi . Then we have

thQi = C(gkjéih - 9ki5jh) Ph- (56)

Differentiating (56) with respect to [, and
taking P =0, it follows that

R(Sji :C(gmds_gkiﬁf)' (57)
By putting (57) in (55), one can obtain
1

LIk k Mj é‘iS

(,Bg cApp J

1 s
—Kﬂ O —COPP; ]51
:Cﬂ(ij 57 -Gy 515)55

o,

K (5.6, )5, =cp . (58)

Also from (48), we get

K(8'.6;)8, = cpG5,0°. (59)
From (58) and (59), we conclude that

Ric(},6, ) =G"G (K (4,6 ) 4.,

4G,G (K (8,5,)8,,8"),

=cpB(Gy 5 -G, 57 )G "Gy, (60)
+C Gy 6,G, G

=enfG,, =cnfG (6,6, ).

Similarly from (43) and (44), respectively, it
follows that

K (8'.0")o" =cp(G*s -G*o})e",

(61)
K (8.0")0" =cpG*s) s,
By using (61), we obtain
Ric(6',8)=G"G (K (4..6')8".5,)
4G, G (K (8,87 )8",8"), (62)

=cfG'5/G"G,, +cB(G* s, -G*5!)G,G™
=cnfG* =cnpG (éj ,0 )

From (44) and (46), we have, respectively

K (s.5,)8" =(R§ +c R, G™p, )é°,

(63)
K (a| ) - —CﬁG k55|
By using (63), we obtain
Ric(o;,0)=G"G (K (4,,5,)8",5, ) o

4G,G (K (8,9, )z’ak,a“):o.
From (47), we get

K(8'.0")d, =cB(G"5) -G*5,)5,. (6
By attention to (59) and (65), one can yield

Ric(81.5,)=6"6 (K (4.0)3.a,)
4G,G (K (,07)8,.0") =0.

From (60), (62), (64) and (66), it follows that
RiC(X,Y):cnﬂG(X,Y),VX,YEI(T*M). This

means that (T*M ,G) is an Einstein manifold.

Conversely, let (i ),(ii)are held. Then there exist
constant A such that RiC(X,Y) = ﬂG(X,Y) .

We consider the following cases:

Case (1). If =0 (ic., (T*M ,G)is Ricci flat),

then we have Ric(0 ,é") =0. By using (43) and
(44) we get
pG,G (K (¢',8")8*,8") = pCi”
-pCl"+(n-1)cpp G
and
G”‘G(K (8.6")0 .5 ) cfp,G*
-pCy™ + B LY,
By using the two above equations, it results that
0=p,Ric(&',8*)=cnBp,G* o
-pCy " + B LY.

With a simple calculation, one can obtain
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3
cnpBp,G* =cn oy CP ik
By ﬂpk[ﬂg +1—20ﬂ2‘l'p p (68)
cnpg® .
=7ﬂz p’,
1-2cp°r

and

PG =-p'C) =-5C =-C"=~1", (69)
P L, = =Py L™ =0, (70)

h

By using (67),(70), we obtain

2

—,6’2 p'+1'=0. (71)

1-2cp°r

. i . .
Since P;|* =0, by contracting (71) with p; we

2cnpir

have—ﬁ2 =0. Thus we get S =0, which
1-2cp°r

is a contradiction.

Cae (2. If A#0, then we have
Py Ric(éj ,8k) = 1G* P, - By using (44), (43),
(68) and (70), we obtain

|} =(ﬂ—cnﬁ)# p'. (72)

Contracting (72) with P J- yields

2Pt
A— —— =0, 73
( Cnﬂ)l—zcﬂzr =

ie, A=CNnP. Thus by (72), we conclude that
11=0,ie, (|V| , K)is reduced to a Riemannian

space.

Corollary 7. There is no non-Riemannian Cartan
structure such that (T*MO,G,J) becomes an

Einstein manifold.
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