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Abstract 

A Cartan manifold is a smooth manifold M  whose slit cotangent bundle 0
*MT  is endowed with a regular 

Hamiltonian  K  which is positively homogeneous of degree 2 in momenta. The Hamiltonian K  defines a 

(pseudo)-Riemannian metric ijg  in the vertical bundle over 0
*MT  and using it, a Sasaki type metric on 

0
*MT  is constructed. A natural almost complex structure is also defined by K  on 0

*MT  in such a way that 

pairing it with the Sasaki type metric an almost Kähler structure is obtained. In this paper we deform ijg  to a 

pseudo-Riemannian metric ijG  and we define a corresponding almost complex Kähler structure. We determine 

the Levi-Civita connection of G and compute all the components of its curvature. Then we prove that if the 

structure ),,( 0
* JGMT  is Kähler- Einstein, then the Cartan structure given by K  reduces to a Riemannian 

one. 
 
Keywords: Cartan space; Kähler structure; symmetric space; Einstein manifold; Laplace operator; Divergence; 
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1. Introduction 

The structure of the tangent and cotangent bundles 
of a differentiable manifold is well studied in 
Riemannian geometry, Finsler geometry and 
Physics, and has many applications in Biology too 
[1-7]. 

É. Cartan has originally introduced a Cartan 
space, which is considered a dual of Finsler space 
[8]. H. Rund [9], F. Brickell [10] and others then 
studied the relation between these two spaces. The 
theory of Hamilton spaces was introduced and 
studied by R. Miron [11, 12]. He proved that Cartan 
space is a particular case of Hamilton space. 
Indeed, the geometry of regular Hamiltonians as 
smooth functions on the cotangent bundle is due to 
R. Miron and is now systematically described in the 
monograph [13].  
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Let us denote the Hamiltonian structure on a 

manifold M by )),(,( PxHM . If the fundamental 

function ),( PxH  is 2-homogeneous on the fibres 

of the cotangent bundle ),( * MMT , then the 

notion of Cartan space is obtained. The modern 
formulation of the notion of Cartan spaces is due to 
R. Miron [14-16]. Based on the studies of E. 
Cartan, A. Kawaguchi [17], R. Miron [13], [15], 
[16], S. Vacaru [18, 19], D. Hrimiuc and H. 
Shimada [20], [21], P.L. Antonelli and M. 
Anastasiei [22-25], etc., the geometry of Cartan 
spaces is today an important chapter of differential 
geometry.  

Under Legendre transformation, the Cartan 
spaces appear as dual of the Finsler spaces [11]. It 
is remarkable that regular Lagrangian, which is 2-
homogeneous in velocities is nothing but the square 
of a fundamental Finsler function and its geometry 
is Finsler geometry. Using this duality several 
important results in the Cartan spaces can be 
obtained: the canonical nonlinear connection, the 
canonical metrical connection, the notion of 

),(  -metrics, etc [26]. Therefore, the theory of 
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Cartan spaces has the same symmetry and beauty 
like Finsler geometry. Moreover, it gives a 
geometrical framework for the Hamiltonian theory 
of Mechanics or Physical fields.  

Let ),( KM  be a Cartan space on a manifold M 

and put 2

2

1
: K . Let us define the symmetric 

M-tensor field jiijij ppgG




)(1

:   on slit 

cotangent bundle }0{*
0

*  MTMT , where 

)(   is a real valued smooth function defined 

on R),0[  and    and   are real constants. 

Using this, we can define a Riemannian metric and 

almost complex structure on 0
*MT  as follows  

 

ji
ijji

ij ppGdxdxGG  , 
 

,)(,)( k
ikkk

iki GJGJ     
 

where ijG  is the inverse of ijG .  

In this paper, we prove that ),,( 0
* JGMT  is 

an almost Kählerian manifold. We then show that 

the almost complex structure J on 0
*MT  is 

integrable if and only if M has constant scalar 
curvature c and the function   is given by 

2 c . We conclude that on a Cartan 

manifold M of negative constant flag curvature, 

),,( 0
* JGMT has a Kählerian structure. For 

Cartan manifolds of positive constant flag 
curvature, we show that the tube around the zero 
section has a Kählerian structure (see Theorem 5).  

Then we find the Levi-Civita connection   of 

the metric G. For the connection  , we compute 
the curvature of all of the components. For a Cartan 
space ),( KM  of constant curvature c, we prove 

that in the following cases it reduces to a 

Riemannian space: (i) for 0c , ),,( 0
* JGMT  

became a Kähler Einstein manifold, (ii) for 0c ,  

),,( 0
* JGMT  became a Kähler Einstein 

manifold, where 0
*MT , the tube around the zero 

section in MT *  is defined by the condition 

2

1
2




c
 . It results that, there is no non-

Riemannian Cartan structure such that 

),,( 0
* JGMT  became a Einstein manifold.  

2. Preliminaries 

Let M be an n-dimensional C   manifold and 
* *:T M M   its cotangent bundle. If ( )ix  

are local coordinates on M, then ( , )i
ix p  will be 

taken as local coordinates on *T M  with the 

momenta ( )ip  provided by i
ip p dx  where 

*
xp T M , ( )ix x  and ( )idx  is the natural 

basis of *
xT M . The indices i,j,k,… will run from 1 

to n and the Einstein convention on summation will 
be used.  

Put :i ix


 


 and :i

ip


 


 . Let ( , )i

i   

be the natural basis in *
( , )x pT T M  and ( idx ,

idp ) 

be the dual basis of it. The kernel ( , )x pV  of the 

differential * *
( , ): x p xd T T M T M   is called 

the vertical subspace of *
( , )x pT T M  and the 

mapping ( , )( , ) x px p V  is a regular distribution 

on *T M  called the vertical distribution. This is 

integrable with the leaves *
xT M , x M  and is 

locally spanned by i . The vector field 
* i

iC p   is called the Liouville vector field and 
i

ip dx   is called the Liouville 1-form on 
*T M . So d  is the canonical symplectic 

structure on *T M . For an easer handling of the 

geometrical objects on *T M , it is usual to 
consider a supplementary distribution to the vertical 

distribution, ( , )( , ) x px p N , called the 

horizontal distribution and to report all geometrical 

objects on *T M  to the decomposition  
 

     
*

, , , .x p x p x pT T M N V                              (1) 

 
The pieces produced by the decomposition (1) are 

called d-geometrical objects (d is for distinguished) 
since their local components behave like 
geometrical objects on M, although they depend on 

( )ix x  and momenta ( )ip p .  

The horizontal distribution is taken as being 
locally spanned by the local vector fields  

 

 : , j
i i ijN x p                                          (2) 

 
The horizontal distribution is also called a 
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nonlinear connection on *T M  and the functions 

( )ijN are called the local coefficients of this 

nonlinear connection. It is important to note that 

any regular Hamiltonian on *T M  determines a 
nonlinear connection whose local coefficients 

verify ij jiN N . The basis ( , )i
i   is adapted 

to the decomposition (1). Its dual is ( , )i
idx p , 

for j
i i jip dp N dx   .  

A Cartan structure on M is a function 
*: [0, )K T M    which has the following 

properties: (i) K is C   on * *
0 {0}T M T M  ; 

(ii) ( , ) ( , )K x p K x p   for all 0   and 

(iii) the n n  matrix ( )ijg , where 

21
( , ) ( , )

2
ij i jg x p K x p    , is positive 

definite at all points of *
0T M . We notice that, in 

fact, ( , ) 0K x p  , whenever 0p  . The pair 

( , )M K  is called a Cartan space. Using this 

notation, let us define  
 

2 21 1

2 4
i i ijk i j kp K and C K           

 
The properties of K imply that  

 

2

,i ij j
j i ij

ij i
i j i

p g p p g p

g p p p p K

 

 
                                   (3) 

 
0ijk ikj kij

k k kC p C p C p                            (4) 
 

One considers the formal Christoffel symbols  
 

   1
, : ,

2
i is
jk k js j sk s kjx p g g g g           (5) 

 

and the contractions ( , ) : ( , )i
jk jk ix p x p p  , 

: .i k
j jk ip p
   Then the functions  

 

       1
, , , , ,

2
h

ij ij h ijN x p x p x p g x p    


    (6) 

 
define a nonlinear connection on *T M . This 
nonlinear connection was discovered by R. Miron 
[14]. Thus a decomposition (1) holds. From now 
on, we shall use only the nonlinear connection 
given by (6).  

A linear connection D  on *T M  is said to be 

an N-linear connection if D  preserves by 
parallelism the distribution N  and ,V  also, we 

have 0D   for i
ip dx   . One proves 

that an N-linear connection can be represented in 

the adapted basis ( , )i
i   in the form  

 

, ,
j j

k i i k
i ij j kjD B D B                        (7) 

 
, ,j j

kj i ij k
i i k kD V D V 

 
     

                  (8) 
 

where kj
iV  is a d-tensor field and ( , )k

ijB x p  

behave like the coefficients of a linear connection 

on M. The functions k
ijB  and kj

iV define operators 

of h-covariant and v-covariant derivatives in the 

algebra of d-tensor fields, denoted by |k  and |k , 

respectively. For ijg , these are given by the 

following equation  
 

,ij ij sj i is j
k sk skkg g g B g B                         (9) 

 

.
kij k ij sj ik is jk

s sg g g V g V                       (10) 

 
An N-linear connection given in the adapted basis 

( , )i
i   as ( ) ( , )i ik

jk jD N B V   is called a 

Berwald connection if  
 

2 , 2 ,
kij ij ij ijk

kkg L g C                        (11) 

 
where |

ij ij h
k k hL C p  are components of the 

Landsberg tensor on M (see [27]).  
The Berwald connection 

( ) ( ,0)i
jkB N N    of the Cartan spaces has 

the torsions d-tensors as follows  
 

0, 0, 0, 0,i jk jk i
jk i i jkT S V P              (12) 

 
.ijk k ij j ikR N N                                         (13) 

 
The d-tensors of the curvature of ( )B N  are 

given by  
 

, , 0

  

   

i i i s i
jkj h jk k jh jk sh

s i ih h i ikh
jh sk jk jk j

R B B B B

B B P B S

 
 

 
where i i

jk jkB N   are the coefficients of the 

( )B N -connection. It also has the following 
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properties  
 

2 2 20, 2 ,j j
jjK K K p                     (14) 

 
0, ,

, 0

  

 

i j j
i ii j j

i j ij k
kij

p p p

p g R p


                         (15) 

 
.s s

i ik ji sk ki jsg B g B g                                     (16) 

3. Kähler structures on cotangent bundle 

Suppose that  
 

.),(
2

1

2

1
: 2

ji
ij pppxgK                   (17) 

 
We consider a real valued smooth function   

defined on [0, )  �  and real constants   and 

 . We define the following symmetric M-tensor 

field of type (0,2) on *
0T M  having the 

components  
 

 1
: .ij ij i j

v
G g p p


 

                                (18) 

 
It follows easily that the matrix ( )ijG  is positive 

definite if and only if , 0,    2 0.    

The inverse of this matrix has the entries  
 

.
2

kl kl k lv
G g p p

v


 

 


                        (19) 

 
The components klG  define symmetric M-tensor 

field of type (0,2) on *
0T M . It is easy to see that 

if the matrix ( )ijG  is positive definite, then matrix 

( )klG  is positive definite too.  

Using ( )ijG  and ( )ijG , the following 

Riemannian metric on 0
*MT  is defined  
 

ji
ijji

ij ppGdxdxGG                    (20) 
 

Now, we define an almost complex structure J on 

0
*MT  by  

 

( ) , ( )k i ik
i ik kJ G J G                        (21) 

 
It is easy to check that .2 IJ   

 

Theorem 1. *
0( , , )T M G J  is an almost Kählerian 

manifold.  
 
Proof: Since the matrix ( )klG  is the inverse of the 

matrix ( )ijG  we have  
 

   
 

, ,

, .

  

  

 k r
i j ik jr

kr
ik jr ij i j

G J J G G G

G G G G G

 

 
 

 
The relations  
 

   
   

, , ,

, , 0,

    

   

   

 

i j i j

k k
i i

G J J G

G J J G 
 

 
may be obtained in a similar way, thus  
 

     *
0, , , , .G JX JY G X Y X Y T M    

 
It means that G is almost Hermitian with respect 

to J. The fundamental 2-form associated with this 
almost Kähler structure is  , defined by  
 
     *

0, : , , ,X Y G X JY X Y T M     

 
Then we get  
 

     
   

, , ,

, , , 0

     

     

   

 

i i i k
j j jk

ik i i j
jk j i j

G J G G

G G

  

    
 

 
Hence, we have  

 
.i

ip dx                                                    (22) 
 
that is the canonical symplectic form of *T M . 
Here, we study the integrability of the almost 
complex structure defined by J on TM. To do this, 
we need the following lemma [13].  
 
Lemma 2. Let (M,K) be a Cartan space. Then we 
have  

(1) , ,k
i j kijR     

  

(2)  , ,j j k
i ikN      
    

(3) , 0.i j    
   

 
Lemma 3. Let (M, K) be a Cartan space. Then J is 

a complex structure on 0
*MT  if and only if 
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0kijA  and  
 

 2
,kij ik j jk i

v
R g p g p


                          (23) 

 
where  
 

.r r
kij i jk j ik ir jk jr ikA G G G N G N       

 
Proof: Using the definition of the Nijenhuis tensor 

field JN  of J, that is,  
 

       
   *

, , , ,

, , ,

  

  

JN X Y JX JY J JX Y J X JY

X Y X Y T M

 
we get  
 

   , ,hk k
J i j hij k kij kijN A G M R         (24) 

 
where r r

kij ir jk jr ikM G G G G     . Let 

:r rls
jk jl skC g g C , then we have  

 
2 2 .r r ls rls r

jk jl sk jl sk jkg g g g g g C C        
 

By above equation, we obtain  
 

 2 2

2

2 2 2

2

2 2
.

   

  
   
 

 r
ir jk ijk ji k ik j

i j k

v
G G C g p g p

v vv v
p p p

 


   

 (25) 

 
where .r

ijk ir jkC g C  From (25) we get  
 

 2
.kij ik j jk i

v
M g p g p


                         (26) 

 
By a straightforward computation, it follows that 

( , ) 0, ( , ) 0,i j i
J J jN N         whenever ( , ) 0J i jN    . 

Therefore, from relations (24) and (26) we conclude 
that the necessary and sufficient conditions for the 

Nijenhuis tensor field JN  to vanish, so that J is a 

complex structure, are that 0kijA   and (23) hold. 

In equation (23), we put 
2

c



  , where c  

is constant. Then we get  
 

 .kij jk i ik jR c g p g p                                  (27) 

 
Theorem 4. Let (M,K) be a Cartan space of 
dimension 3n  . Then the almost complex 

structure J on 0
*MT  is integrable if and only if 

(27) is held and the function   is given by  
 

2.v c                                                        (28) 

 
Proof: From equation | 0i kp   of relation (15), 

we conclude that i k ikp N  . Hence we obtain  
 

2 2 0

r r
kij i jk j ik ir jk jr ik

r r
i jk j ik ir jk jr ik

jk i ik j

jki ikj

A g g g N g N

g g g B g B

g g

L L

 

 

     

   

 

  

 

   (29) 

 

Now we suppose that 2c   . Thus from 

equation 0kijA   and Lemma 3, we conclude that 

J is integrable if and only if (27) is held. 

A Cartan space nK  is of constant scalar 
curvature c if  
 

  ,i j h k i j h k
hijk hj ik hk ijH p p X X c g g g g p p X X     (30) 

 
for every *

0( , )x p T M  and ( )i
xX X T M  . 

Here hijkH  is the (hh)h-curvature of the linear 

Cartan connection of nK . We replace hijkH  in 

(30) with s
is hjkg H  and so it reduces to the 

following  
 

 2 .s j h k h k
s hjk h k hkp H p X X c p p K g X X    (31) 

 
By part (ii) of Proposition 5.1 in chapter 7 of [13], 

s
s hjk hjkp H R  , hence we get  

 

 2 ,j h k h k
hjk hk h kR p X X c K g p p X X   

 
or equivalently  

 

 2 ,j
hjk hk h kR p c K g p p                          (32) 

 
because ( )hX  and ( )kX  are arbitrary vector 

fields on M. It is easy to check that (31) follows 
from (27). Similarly it can be shown that if Cartan 

space nK  has the constant scalar curvature c, then 
the equation (27) is held (see [28]).  
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Theorem 3.5. Let (M,K) be a Cartan space with 
constant curvature c. Suppose that   is given by 
(28). Then  
(i) for negative constant c, structure *

0( , , )T M G J  

is a Kähler manifold;  
(ii) for positive constant c, the tube around the zero 
section in *T M , defined by the condition 

2
2

1
2 K

c



  , is a Kähler manifold.  

 
Proof: The function v must satisfy in the following 
condition  
 

  22 1 2 0, , 0     a v a c      (33) 

 
By using the above relation and Theorem 4, we 

complete the proof. 
By attention to the Theorem 5, the components of 

the Kähler metric G on *
0T M are 

 

3

2

1
,

.
1 2

ij ij i j

ij
ij i j

G g c p p

c
G g p p

c







  

  
 

                      (34) 

4. A Kähler Einstein structure on cotangent 
bundle 

In this section, we study the property of 

 *
0 ,T M G  to be Einstein. We find the expression 

of the Levi-Civita connection   of the metric G  

on *
0T M , then we get the curvature tensor field of 

 . Then, by computing the corresponding traces, 

we find the components of Ricci tensor field of  .  

4.1. The Levi-Civita Connection 

Lemma 1. The Levi-Civita connection of the 
Kähler metric G  are given by the following  
 

   2 ,i

j ijs ij ij s
s s sL C c G p  


      

    (35) 

 
    ,

i

j js js j j s
i i s is isC c G p L B          (36) 

 

  ,i

is is i s
j j j s jsC c G p L  


    

           (37) 

 

  2

1
,

i

s s s
j ij ij s ijs js iL B C c G p   


 

       
 

   (38) 

 
Proof: Recall that for Cartan space with a Berwald 

connection, the relation i j
jk ikB N   is held, and 

so we have , j j k
i ikB    
  . Let 

j

j ijh ij h
h h


     

  . Then by using the 

Koszul formula we get 
 

3

2

3

2

3

2

3

2

2

1 2

1

2 1 2

1 2

1 2

.

  
     
         
 

       
 

  


ij i j
k

ijs i mj m j
km

j mi m i
km

ks k s

ks ij
k

c
g p p

c

c
B g p p

c

c
B g p p

c

c
g p p

c

g L

 
 


 


 


 



           (39) 

 
Similarly we obtain 
 

3

2

3

2

3

2

1 2

1

2 1 2

1 2

1

.

  
     
         
 

       
 

 
 

  







i jk j k

ij j ik i k
s

k ij i j

ks k s

ij ij
s s

c
g p p

c

c
g p p

c

c
g p p

c

g c p p

C c G p


 


 


 






      (40) 

 
Using the two above equation we have (35). In a 

similar way, we obtain (36), (37) and (38). 

We say that the vertical distribution *
0VT M  is 

totally geodesic (resp. minimal) in *
0TT M  if 

0i

jH


  
  (resp. 0i

j
ijg H


  

 ), where H  

denotes the horizontal projection. Similarly, if we 
denote by V  the vertical projection, then we say 

that the horizontal distribution *
0HT M  is totally 

geodesic (resp. minimal) in *
0TT M  if 

0
i jV     (resp. 0

i

ij
jg V    ). By using 

(35), we obtain 
 

2 ,i
j ijs

sH L 


  
                                         (41) 
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and 

 
2 2 ,i

j ijs s
ij ij s sg H g L J   


   

            (42) 
 
where sJ  is the mean Landsberg tensor. Hence, we 
have the following.  
 
Corollary 2. Let  ,M K  be a Cartan space with 

Berwald connection. Then we have  

 i K  is Landsberg metric if and only if the 

vertical distribution *
0VT M  is totally geodesic in 

*
0TT M ; 

 ii K  is weakly Landsberg metric if and only if 

the vertical distribution *
0VT M  is minimal in 

*
0TT M .  

 
Corollary 3. The horizontal distribution *

0HT M  

cannot be totally geodesic or minimal in *
0TT M .  

 
Proof: By (38), we have 
 

2

1
i

s
j ijs js iV C c G p  


 

     
 

 . 

 
If *

0HT M  is totally geodesic, then we have 

0j
js ic G p p  . Therefore, we obtain 

 21 2 0i scp p c   , which cannot be true. 

4. 2. The Curvature Tensors 

Theorem 4. The coefficients of the curvature tensor 
of Kähler metric G are as follows 
 

   

 

2

, ,

2

,

                     ,

      
 
 
  

    
   

  



i j k jkh i ikh j
h

ik j jk i
h h

jk i ik j
h h h

jk is ik js
s h s h

j sik i sjk
sh sh

K L L

C C

c G c G

C C C C

L L L L

 

   



(43) 

 

 
 

,

2

, 2

,

,

                    ,

  
      
 
   
  
 
     
 
   

 



kh j kh j
i i

j k ih ks jk hs
i s i s i h

sjk h hjk k hjs
is sii

k j jk jk
ih i hh i

jsk js s sk j h
ish k ih i sh

js k k j
h is hi

c G C

K C C C C

L L L L L

B C c L p

C L C L C L

C L L

 

 





(44) 

 

 

 

 
   

 
 

2

2 2

2

2

1

,

1
2

1
                     

   
 
   
 
    
 
 
   
 
   

 
 

h hs hs
kji iks j jks i

h h
i j k i j j i k h

s h s h h h
kj is ki js kj i ki j

s
sij hkikh j jkh i

s s
jks ih iks jh

s s
jhs ki ihs jk

R C C C C

K c p p p

L L L L L L

C C R L

C L C L

C L C L



      




,





 h

(45) 

 

 
 

 

 

2

2

2 2

,

1

                     

   
 
    
 
   
    
 
   
 
    

 



kh kh kh kh
j i i jj i i j

k ks h ks h
i j j si i sj h

sh k sh k
j si i sj

k ks ks
hji i jhs j ihs

k k
h j i i j

k k k s k s
sj hi si hjhi j hj i

C C c p L p L

K C L C L

C L C L

R C C C C

c p p p

L L L L L L



  



   ,



 h

(46) 

 

   
 

, ,

2

,

  ,

    
     
 
   
    

 



jh i ih j js ih is jh
k k k s k s

i j ih j jh i
k k k h

jsh i ish j
sk sk

i j j i h
kh kh

C C C C C C

K c G G

L L L L

L L

    



 (47) 

 

 

 

2 ,

,

,
2

,

1

 .

  
 
    
 
    
   
 
   
 
  
    





jh jh h j
i k kik i

j h j js h
i k ik k si h

jh s sh j hjs
s ki i sk iks

j js js
ikh ish k iks h

j j h
h ik k ih

j j s
kh i sk hi

j s j
sh ki hk i

C c L p L

K B C L

C L C L C L

C C C C C

cp C cp C

c G L L

L L L



  



 

(48) 

 
Proof: Recall that the curvature K of  is 
obtained from the following  
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 

   *
0,

,

, , , .

    

  

X Y Y X

X Y

K X Y Z Z Z

Z X Y Z T M
        (49) 

 
Using (49) we have  

 

 , i j j i

i j k k kK
   

            
             (50) 

 
By (35), it follows that 

 

 
 
 

 

2

2

 





    

 

   

    

 





 

 



i j

i

i

k i ms kj
m s

ms jk
m s

i jk jk s
s s

jk jk s
s s

g L

g L

C c G p

C c G p

 

 





                    (51) 

 
Since 0h

h tlp L  , 0l h r h
rl rlp L p L   and 

2k ij kijg C   , then by (51) the following 

relation yields 
 

 

 

2 ,

2

2

2 2 2 ,

 

 
    
   
  
 

    
 
    

 






i j

hjk i

k
hmih jk jk ihs

m s

ms jk in jk is
nh m s s h

jk is ijk h
s h h

i jk jk
h h

L

C L C L

g g L L C C

c G G p p c C p

C c G p








 



(52) 

 
where ,hjk i i hjkL L  . Since i ip   and 

i j ijp g  , we obtain 
 

, ,

2 2

2 2

2 4

2
0.

1 2







 
      

jk i ik j
s s

jk ih
h s

ik jh
h s

ik j jk i

jk i ik j

c G p c G p

c G G p p

c G G p p

g p g pc

c g p g p

 






 

       (53) 

 
By replacing ,i j  in (52) and setting these 

equations in (50), also by attention to (53), we get 
 

   

 

2

, ,

2

,

.

      
  

  
   

   

  



jkh i ikh ji j k
h

ik j jk i jk i
h h h

ik j jk is
h s h

ik js j sik i sjk h
s h sh sh

K L L

C C c G

c G C C

C C L L L L

 

 

 



   (54) 

 

Similarly we can obtain the other components of 
curvature tensor. 

By using (45), we have 
 

  
 

 
   

2

2 2

1

, .

   
 
   
 
    
 
 

h hs hs
kji iks j jks i

H
h h

i j k i j j i k h

s h s h h h
kj is ki js kj i ki j

R C C C C

K c p p p

L L L L L L



      

 

Contracting the above equation by hp  gives us 
 

  , .
H

h
h i j k h kji kjip K p R R       

 
If  *

0 ,T M G  is locally flat, then we have 

 , 0K X Y Z   for all  *
0, ,X Y Z T M . 

Hence, by using the above equation we infer that 

0kjiR   or 0j
kjiR p  . Therefore, we have the 

following. 
  

Theorem 5. Let  ,M K be a Cartan space and G  

be the Riemannian metric on *
0T M  defined by 

(34). If  *
0 ,T M G is locally flat, then  ,M K  

has the zero constant curvature. 
  

Theorem 6. Let  ,M K be a Cartan space of 

constant curvature c  and the components of the 

metric G are given by (34). Then the following are 

held if and only if  ,M K is reduce to a 

Riemannian space.  

 i for 0c  ,  *
0 , ,T M G J  is a Kähler Einstein 

manifold.  

 ii for 0c  ,  *
0 , ,T M G J  is a Kähler 

Einstein manifold, where *
0T M  is the tube around 

the zero section in TM , defined by the condition 

2

1
2

c



 .  

 
Proof: Let  ,M K  be a Riemannian space. Then 

hi
kC  and h

ikP  vanish and i
jkH  is a function 

of  hx . Therefore (45) reduces to the following  
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     2 2, .s s s
i j k kji i j j i k sK R c p p p          

 (55) 

 
From Proposition 10.2 in chapter 4 of [13], we 

have h
kji h kjiR p R  . Then we have  

 

  .h h h
h kji kj i ki j hp R c g g p                         (56) 

 
Differentiating (56) with respect to sp  and 

taking 0p  , it follows that 
 

 .s s s
kji kj i ki jR c g g                                   (57) 

 
By putting (57) in (55), one can obtain 

 

 

 

1

,
1

  

  
  

     
   
   

 

s
kj k j i

i j k s

s
ki k i j

s s
kj i ki j s

g c p p

K c

g c p p

c G G

 


    
 



   

    (58) 

 
Also from (48), we get 

 

 , .i i s
j k sk jK c G                                 (59) 

 
From (58) and (59), we conclude that 

 

    
  

 

 

, , ,

, , ,

, .



  

 



 

 

hi
j k i j k h

i h
hi j k

s s hi
kj i ki j sh

i sh
sk j hi

jk i k

Ric G G K

G G K

c G G G G

c G G G

cn G cn G

     

 

  

 

   

      (60) 

 
Similarly from (43) and (44), respectively, it 

follows that 
 

   
 

, ,

,

     

  

   

 

i j k jk i ik j s
s s

j k ks j
i i s

K c G G

K c G

  

   
      (61) 

 
By using (61), we obtain 

 
    

  
 

 

, , ,

, , ,

, .

    
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  

   

   

   

 

j k ih j k
i h

i j k h
ih

ks j ih jk i ik j hs
i hs s s hi

jk j k

Ric G G K

G G K

c G G G c G G G G

cn G cn G

 

    

 

   (62) 

 
From (44) and (46), we have, respectively  

 
   
 

, ,

, .

   

   

 

 

k k hk s
i j sij hij s

i k ks i
j j s

K R c R G p

K c G

  

   
   (63) 

 
By using (63), we obtain 

 

    
  

, , ,

, , 0.

  

    

 

  

k ih k
j i j h

i k h
ih j

Ric G G K

G G K

   


     (64) 

 
From (47), we get  

 

   , .i j is j js i
k k k sK c G G               (65) 

 
By attention to (59) and (65), one can yield 

 

    
  

, , ,

, , 0.

  

    

 

  

j ih j
k i k h

i j h
ih k

Ric G G K

G G K

   


        (66) 

 
From (60), (62), (64) and (66), it follows that 

     *, , , ,Ric X Y cn G X Y X Y T M    . This 

means that  * ,T M G  is an Einstein manifold. 

Conversely, let    ,i ii are held. Then there exist 

constant  such that    , ,Ric X Y G X Y . 

We consider the following cases:  
 

Case (1). If 0   (i.e.,  * ,T M G is Ricci flat), 

then we have  , 0j kRic     . By using (43) and 

(44) we get 
 

  
 

,

,

, ,

1

    

  

   i j k h hk j
k ih k h

jk h jk
k h k

p G G K p C

p C n c p G
 

 
and  
 

  
, 2

, ,  

 

 ih j k jk
i h k

kh j hjk
k h k h

G G K c p G

p C p L

  


 

 
By using the two above equations, it results that 

 

 
, 2

0 ,

.

   

 

 j k jk
k k

jk h hjk
k h k h

p Ric cn p G

p C p L




              (67) 

 
With a simple calculation, one can obtain 
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3

2

2

2

1 2

                ,
1 2

 
   




jk jk j k
k k

j

c
cn p G cn p g p p

c

cn
p

c

  
 


 

     (68) 

 
and 
 

, , ,jk h h jk h jk jh j
k h k h k h hp C p C C C I          (69) 

 
0.hjk hjk

k h k hp L p L                                    (70) 

 
By using (67),(70), we obtain 

 
2

2
0.

1 2
j jcn

p I
c


 

 


                                  (71) 

 
Since 0j

jp I  , by contracting (71) with jp  we 

have
2

2

2
0

1 2

cn

c

 
 




. Thus we get 0  , which 

is a contradiction.  
 
Case (2). If 0  , then we have 

 ,j k ik
k kp Ric G p    . By using (44), (43), 

(68) and (70), we obtain 
 

  2
.

1 2
j jI cn p

c

 
 

 


                      (72) 

 
Contracting (72) with jp yields 

 

  2

2
0,

1 2
cn

c

 
 

 


                             (73) 

 
i.e., cn  . Thus by (72), we conclude that 

0jI  , i.e.,  ,M K is reduced to a Riemannian 

space. 
 
Corollary 7. There is no non-Riemannian Cartan 

structure such that  *
0 , ,T M G J  becomes an 

Einstein manifold.  
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