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Abstract 

The concept of  -semihypergroups is a generalization of semigroups, a generalization of semihypergroups and a 
generalization of  -semigroups. In this paper, we study the concept of semiprime ideals in a  -semihypergroup 
and prove some results. Also, we introduce the notion of  -hypergroups and closed  -subhypergroups. Finally, 
we study the concept of  -semihypergroups associated to binary relations and give necessary and sufficient 

conditions on a set of binary relations   on a non-empty set S  such that S  becomes a  -semihypergroup or a 

 -hypergroup. 
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1. Introduction 

The hyperstructure theory was born in 1934, when 
Marty introduced the notion of a hypergroup [1]. 
Since then, hundreds of papers and several books 
have been written on this topic, see [2-5]. A recent 
book on hyperstructures [6] points out on their 
applications in cryptography, codes, automata, 
probability, geometry, lattices, binary relations, 
graphs and hypergraphs. 

Algebraic hyperstructures are a generalization 
of classical algebraic structures. In a classical 
algebraic structure the composition of two elements 
is an element, while in an algebraic hyperstructure 
the composition of two elements is a non-empty set. 
More exactly, let H  be a non-empty set. Then the 

map )(: * HPHH   is called a 

hyperoperation where )(* HP  is the family of 

non-empty subsets of .H  The couple ),( H  is 

called a hypergroupoid. 
In the above definition, if A  and B  are two non-

empty subsets of H  and ,Hx  then we define  
 

}.{=    }{=  ;=
,

xAxAandAxAxbaBA
BbAa
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A hypergroupoid ),( H  is called a 

semihypergroup if for every ,,, Hzyx   we have 

zyxzyx  )(=)( , and is called a 

quasihypergroup if for every ,Hx  

.== xHHHx   This condition is called the 

reproduction axiom. The couple ),( H  is called a 

hypergroup if it is a semihypergroup and a 
quasihypergroup. 

The notion of  -semigroups was introduced by 
Sen in [7, 8]. Let S  and   be two non-empty sets. 

Then S  is called a  -semigroup if there exists a 

mapping ,SSS   written ),,( ba   by 

,ba  such that it satisfies the identities 

)(=)( cbacba   for all Scba ,,  and 

.,   Let S  be an arbitrary semigroup and 

  a non-empty set. Define a mapping 
SSS   by abba =  for all Sba ,  

and .  It is easy to see that S  is a  -
semigroup. Thus a semigroup can be considered to 
be a  -semigroup. Many classical notions of 
semigroups have been extended to  -semigroups, 
see ([9, 10]). 

Let S  be a  -semigroup and   be a fixed 

element in .  We define baba =  for all 

., Sba   Then ),( S  is a semigroup and is 

denoted by .S  
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2. Preliminaries and basic definitions 

The concept of  -semihypergroups was 
introduced by Davvaz et al. [11, 12]. In this section 
we introduce some preliminaries and basic 
definitions of  -semihypergroups and give some 
examples.  
 
Definition 2.1. Let S  and   be two non-empty 

sets. Then S  is called a  -semihypergroup if each 

  be a hyperoperation on ,S  i.e., Syx   

for every ,, Syx   and for every  ,  and 

Szyx ,,  we have the associative property that 

is .)(=)( zyxzyx    

Let A  and B  be two non-empty subsets of S  
and  . Then we define:  

 
},,|{= BbAabaBA    

 
and  
 

}.a,|{== 





ndBbAabaBABA  
A  -semihypergroup S  is called commutative 

if for every Syx ,  and for every   we 

have .= xyyx   A non-empty subset A  of S  is 

called a  -subsemihypergroup of S  if 

.AAA   

Let ),( S  be a semihypergroup and let }{=  . 

Then S  is a  -semihypergroup. So every 
semihypergroup is a  -semihypergroup. 

Let S  be a  -semihypergroup and ,  if 

we define baba =  for every Sba ,  then 

),( S  becomes a semihypergroup, we denote it by 

.S   

Now, we give some other examples of  -
semihypergroups. 

 
Example 1.  Let G  be a group and .},{=   

Then for every ,, Gyx   we define xyyx =  

and .= Gyx  Then G  is a  -semihypergroup.  

 
Example 2.  Let ),( S  be a totally ordered set 

and   be a non-empty subset of .S  We define  
 

}},,,{max|{= yxzSzyx    
 

for every Syx ,  and .  Then S  is a  -

semihypergroup.  
 

Example 3. Let S  be a  -semigroup and P  be a 

non-empty subset of .S  Let .}:{=   PP  

If we define ,= yPxyx P   for every 

Syx ,  and ,  then S  is a P -

semihypergroup.  
Let S  be a  -semihypergroup. We define a 

relation   on S  as follows:  
 

.,=),(),( Sssysxyx    
 

Obviously   is an equivalence relation. Let 

],[ x  denote the equivalence class containing 
.),( x  Let .},:],{[=   SxxM  We 

define the hyperoperation   on M  as follows:  
 
[x, ] [y, ] = {[z, ] : z x y},  

for all  [x, ],[y, ] M.

    
  


 

 
Since ,)(=)( zyxzyx   for all 

Szyx ,,  and ,,   then  
 

[x, ] ([y, ] [z, ]) = ([x, ] [y, ]) [z, ],  

for all  [x, ],[y, ],[z, ] M.

     
   

   
 

 
Thus the hyperoperation   is associative, so 

),( M  is a semihypergroup. This semihypergroup 

is called the left operator semihypergroup of .S  

Let S  be a  -semihypergroup. If there exist 

elements Se  and   such that xxe =  for 

every ,Sx  then S  is said to have a left partial 

unity which is denoted by e . It is easy to check 

whether e  is a left partial unity of ,S  then ],[ e  

is a left unity of the left operator semihypergroup 
.M  
 

Example 4. Consider Example 1 and let e  be the 

identity element of .G  Then ee =  is a left 

partial unity of the  -semihypergroup .G   
The concept of  -hyperideals of a  -

semihypergroup was defined and studied in [12].  
 

Definition 2.2. A non-empty subset I  of a  -
semihypergroup S  is called a left (right)  -

hyperideal, "ideal, for short" of S , if IIS   

( ISI  ). S  is called a left (right) simple  -
semihypergroup if it has no proper left (right) ideal. 
S  is simple if S  has no proper left and right 
ideals.  
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Let A  be a non-empty subset of a  -
semihypergroup .S  Then the intersection of all 

ideals of S  containing A  is an ideal of S  

generated by A ,  and denoted by .>< A  
 

Example 5. Consider Example 4. Put NS =  with 
natural order. Then the subset 

}2,1,,{=  nnnIn  is an ideal of ,S  for every 

�n  
The following lemmas and theorem were proved 

in [12]. 
 

Lemma 2.3.  Let S  be a  -semihypergroup. If 

A  is a non-empty subset of ,S  then  
 

.>=< SASASSAAA   
 

One can see that, if S  is a commutative  -
semihypergroup and ,SA  then 

.>=< SAAA   If S  is a commutative  -
semihypergroup with left partial unity, then 

.>=< SAA   
 

Lemma 2.4.  Let S  be a  -semihypergroup and 

  be a non-empty set such that for every ,  

I  is an ideal of .S  Then the following assertions 

hold: 

(1) 
I 

 is an ideal of ;S  

(2) 
I 

 is an ideal of .S   

  
Definition 2.5. A proper ideal P  of  -
semihypergroup S  is called a prime ideal, if for 

every ideal I  and J  of ,S  PJI   implies 

PI   or .PJ   If a  -semihypergroup S  is 

commutative, then a proper ideal P  is prime if and 
only if Pba   implies Pa  or ,Pb  for 

any ., Sba    

 
Example 6. Consider Example 2. Put 

},{1,2,== nS   for some natural number .n  

Then, all ideals of S  have the form 

,},1,,{= niiIi   for every Si  and 2I  is a 

prime ideal of .S   
 

Theorem 2.6.  Let S  be a  -semihypergroup and 

P  be a left ideal of .S  Then P  is a prime ideal of 

S  if and only if for all ,, Syx    
 

.PyorPxthatimpliesPySx   

 
Lemma 2.7.  Let S  be a commutative  -
semihypergroup with a left partial unity and M  be 
a maximal ideal of .S  Then M  is a prime ideal of 

.S   
 

Proof: Suppose that M  is a maximal ideal and e  

is the left partial unity of .S  Let Syx ,  such 

that .Myx   Then we prove that Mx  or 

.My  If ,Mx  then >,< xMM  , so by 

maximality of M  we have .>,=< xMS  Since 

,Me   it follows that there exist Ss  and 

  such that .sxe    Then, we have  
 

.)(= Msyxysxyey    
 

Similarly, if ,My  then one proves that 

.Mx  Therefore, M  is a prime ideal of .S   
 

Proposition 2.8.  Let S  be a  -semihypergroup 
with a left partial unity and I  be a proper ideal of 

.S  Then there exists a maximal ideal of S  

containing .I   
 

Proof: By Lemma 2.4 and Zorn's lemma the proof 
is obvious.  

 
Let S  be a  -semihypergroup and M  be the 

left operator semihypergroup of .S  Then for 

,MA   Davvaz et al. in [12] defined A  as 

follows:  
 

}.    ],[:{=   allforAxSxA  
 

Similarly, for ,SI   they defined I  as 

follows:  
 

}.    :],{[= SsallforIsxMxI    
 

If I  is an ideal of S  and A  is a hyperideal of 

,M  then 
 )(II  and .)(  AA  

We recall the following theorems from [12]. 
Theorem 2.9. [12] Let S  be a  -semihypergroup 
and M  be its left operator semihypergroup. Then 
the following assertions hold:   

(1) If A  is a right hyperideal of ,M  then A  is a 

right ideal of .S   
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(2) If I  is a right ideal of S  then, I  is a right 

hyperideal of .M   
 

Theorem 2.10. [12] Let S  be a  -

semihypergroup with a left partial unity and M  be 
its left operator semihypergroup. If I  is a right 

ideal of ,S  then .)(= II   

3. Semiprime ideals of  -semihypergroups 

In this section, we introduce the concept of 
semiprime ideals of a  -semihypergroup and 
prove some results. 

 
Definition 3.1. Let S  be a  -semihypergroup. 

Then a proper left (right) ideal P  of S  is said to 
be a left (right) semiprime ideal, if for any left 
(right) ideal A  of ,S  PAA   implies that 

.PA  A proper ideal P  is called semiprime 

ideal if P  is both left and right semiprime ideal of 
.S   

 
Example 7. Let },{1,2,3,== nS   for some 

�n . For every Syx ,  and   we 

define the following hyperoperation on S  
 

}}.,,{max|{= yxsSsyx    
 

Then S  is a  -semihypergroup and 

},1,,{= niiIi   is a semiprime ideal of S  for 

.<1 ni    
 

Lemma. 3.2 Let S  be a  -semihypergroup with a 

left partial unity and P  be a left ideal of .S  Then 

P  is a left semiprime ideal of S  if and only if for 

every Syx ,  we have  
 

.PxPxSx   
 
Proof: Suppose that P  is a left semiprime ideal of 
S  and PxSx   for .Sx  Then 

.PPSxSxS   Since P  is a left 

semiprime ideal and xS  is a left ideal of ,S  it 

follows that .PxSx   

Conversely, let A  be an ideal of S  such that 

.PAA   If ,Aa  then .PAAaSa   

So, by the above implication Pa  thus .PA   
 

Lemma 3.3. Let S  be a  -semihypergroup and 
M  be its left operator semihypergroup. Then the 
following statements hold:   

(1) If P  is a semiprime ideal of ,M  then P  is a 

semiprime ideal of .S   

(2) If S  has a left partial unity and Q  is a 

semiprime ideal of S , then 
Q  is a semiprime 

ideal of .M   
 

Proof: (1) Suppose that P  is a semiprime ideal of 
M  and A  is an ideal of S  such that . PAA  
Then PAA  ],[  so .],[],[ PAA    Since 

],[ A  is an ideal of M  and P  is a semiprime 

ideal of ,M  it follows that PA ],[  hence 

. PA  Thus P  is a semiprime ideal of .S  

(2) Suppose that Q  is a semiprime ideal of S  and 

A  is an ideal of M  such that . QAA   

First, we show that .)(   AAAA   Let 

. AAt  Then there exist Ayx,  and   

such that .yxt   So AAyxt   ],[],[],[   

for every .  Thus ,)(  AAt   so 

.)(   AAAA   Now, from QAA  and 

Theorem 2.10 we have  
 

.=)()( QQAAAA     
 

Since Q  is a semiprime ideal and A  is an ideal 

of ,S  it follows that .QA   Thus 

.)(   QAA  Therefore, 
Q  is a 

semiprime ideal of .M   
  

Lemma 3.4. Let iP  be a prime ideal of a  -

semihypergroup S  for every Ii  and let 

.= iIi
PP 

 Then if ,P  then P  is a 

semiprime ideal of .S   
  

Proof: It is immediate.  
 

Lemma 3.5. Let T  be a  -subsemihypergroup 
and I  be an ideal of the  -semihypergroup S  

such that .= TI  Then T  is contained in a 
 -subsemihypergroup that is maximal with respect 
to the property of not meeting .I   
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Proof: Since the set }=    |{=  IKandSKTK  

is non-empty, it follows that by Zorn's lemma,   
has a maximal element that satisfies the theorem.  

 
Lemma 3.6. Let T  be a commutative  -
subsemihypergroup and I  be an ideal of the  -
semihypergroup S  such that .= TI  Then 

there exists a prime ideal of ,S  say ,P  such that 

PI   and .= TP   
  

Proof: By Zorn's lemma, there exists an ideal P  
such that P  is maximal with respect to properties 
of PI   and .= TP  We claim that P  is a 

prime ideal of .S  Suppose that .\, PSyx   

Then, we show that x S y P.    Since Pyx ,  

and P  is maximal, it follows that 
TxP >,<  and .>,< TyP  

Thus, there exist Sts ,  such that 

TxPs  >,<  and .>,< TyPt   From 

the property ,= TP  we have only four 

cases: (i) xss 1  and ytt 1  for some 

Sts 11,  and ,,   (ii) xss 1  and 

yt =  for some Ss 1  and ,  (iii) xs =  

and ytt 2  for some St 2  and   and 

(iv) xs =  and .= yt  If (i) holds, then 

.)()( 11 ySxytxsts    

Now, since T  is a  -subsemihypergroup, it 
follows that .Tts   Thus .PySx   

Similarly, in the other cases we conclude that 
.PySx   Therefore, P  is a prime ideal of 

.S   

Let S  be a  -semihypergroup and I  be an 

ideal of S . A prime ideal P  of S  is called a 

minimal prime ideal belonging to ,I  if PI   and 

there is no prime ideal containing I  and properly 
contained in .P  

 
Corollary 3.7. If Q  is a prime ideal containing an 

ideal ,I  then there exists a minimal prime ideal 

belonging to I  which is contained in .Q   

 
Definition 3.8. Let S  be a  -semihypergroup and 

I  be an ideal of .S  Then the prime radical of I  is 

defined as the intersection of all prime ideals of S  

containing I  and is denoted by .I   
 

Proposition 3.9. Let S  be a  -semihypergroup 

and I  be an ideal of S . Then the following 
statements hold: 

(1) I  is a semiprime ideal of ;S   

(2) .}  |{= ItobelongingidealprimeminimalaisPPI    

 
Proof: (1) It is straightforward. 
(2) It is taken from Corollary 3.7.  

4.  -hypergroups 

In this section we study the concept of  -
hypergroups and give some examples. Also, we 
introduce the concept of closed  -subhypergroups 
of a  -hypergroup. 

 
Definition 4.1. A  -semihypergroup S  is called a 

 -hypergroup if ),( S  is a hypergroup for 

every .   
 
Example 8. Let },,,{= dcbaS  and .},{=   

We define the hyperoperations   and   as 

follows: 

},{},{},{},{

},{},{},{},{

},{},{},{},{

},{},{},{},{

dccbbadad

cbbadadcc

badadccbb

dadccbbaa

dcba

},{},{},{},{

},{},{},{},{

},{},{},{},{

},{},{},{},{

dadccbbad

dccbbadac

cbbadadcb

badadccba

dcba

 

Then S  is a  -hypergroup.  
 
Example 9. Let S  be a non-empty set and 

.},{=   Then for every Syx ,  and 

 ,  we define Syx =  and .},{= yxyx  

Then S  is a  -hypergroup.  
 

Example 10. Let ),( S  be a group. Let 

.)(S*P  We define yxyx  =  for every 



 
 

IJST (2011) A2: 69-80      74 

 

Syx ,  and .  Then S  is a  -

hypergroup.  
 

Example 11. Let ),( S  be a hypergroup and 

.S  We define yxyx  =  for 

every Syx ,  and .  Then S  is a  -

hypergroup.  
 

Example 12. Let ),( G  be a group and GggA }{  

be a collection of disjoint sets. Consider 

gGg
AS  

=  and .= G  For Syx ,  there 

exist Ggg yx ,  such that 
xgAx  and 

.
ygAy  We define .=

ygxgAyx   Then S  is 

a  -hypergroup.  
 

Example 13. Let S  be a  -group and P  be a 

 -subgroup of .S  Let .}|{=    Now, 

for every Syx ,  and   we define 

.= Pyxyx    Then, S  is a  -hypergroup.  

 
Theorem 4.2. [12] Let S  be a  -semihypergroup. 

Then S  is a simple  -semihypergroup if and only 

if S  is a hypergroup for every .   

 
Theorem 4.3. Let S  be a  -semihypergroup. 

Then for every ,  S  is a hypergroup if and 

only if S  is left and right simple.  
  

Proof: Suppose that S  is a hypergroup and I  is a 

left (right) ideal of .S  If ,Ix  then the 

reproduction axiom implies that = = x S S S x .  

On the other hand, we have IxS   

( ISx  ). Therefore, .= SI  

Conversely, suppose that S  is left and right 

simple. Then for every Sx  and ,  put 

.= SxI   Thus, I  is a right ideal of ,S  for  
 

ISxSSxSSxSI =)(=)(=    
 

so .= SSx  Similarly, we have .= xSS   

Therefore, S  is a  -hypergroup.  
 

Corollary 4.4. If S  is a hypergroup for some 

,  then for every ,  S  is a 

hypergroup.  

Definition 4.5. A subset H  of a  -hypergroup is 
called a  -subhypergroup if for every Hkh ,  

and   we have Hkh   and 

.== hHHHh    
 

Definition 4.6. Let S  be a  -hypergroup. Then a 

subset H  of S  is called closed if for every 
,h k H ,  x S   and   we have the 

following implication  
 

.h x H x H     
 

Example 14. Consider ),(   and let },{=   

where 1,1}{=   and 2}2,{=  . If for 

every yx,  we define:  
 
x y = {x y 1, x y 1}, x y

= {x y 2, x y 2}.

     
     

 
Then,   is a  -hypergroup and 2=H  is a 
closed subset of �. 

 
Example 15. Consider ),(   and let },{=   

where 2,2}{=   and .4,4}{=   If for every 

yx,  we define:  
 
x y = {x y 2, x y 2}, x y

= {x y 4, x y 4}.

     
     

 
Then   is a  -hypergroup and 2=H  is a 

closed  -subhypergroup of  .  
Let S  be a  -hypergroup. Then two new 

hyperoperations may be defined on S  as follows:  
 

a / b = {x S | a x b, }  

and  a \ b = {x S | a b x, }.

   
     

 
If A  and B  are non-empty subsets of ,S  then  

 

.\=\    /=/
,,

baBAandbaBA
BbAaBbAa




 

 
Lemma 4.7.  Let S  be a  -hypergroup, CBA ,,  

and D  be non-empty subsets of S  and ., Syx   

Then the following assertions hold: 
(1) If BA  and ,DC   then ;// DBCA    

(2) ;)/(=)//( BCACBA    

(3) ;)(\=\)\( CBACBA    

(4) ;)/(\ yxxy   
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(5) ;)\/( yxxy   

(6) If A  is a closed subset of ,S  then /A A A ;   

(7) ;)/( BBAA    

(8) If H  is a  -subhypergroup, then ./HHH    
  

Proof: (1) It is immediate. 
(2) Suppose that .)//( CBAx  Then, there exist 

BbAa  ,  and Cc  such that .)//( cbax  

So, we have  
 

)./()/(/

,

)(=)(

,

/,/)//(

BCAbcazax

zxabcz

bcxbcxa

cxybya

cyxbaycbax









Thus, .)/()//( BCACBA   

Conversely, suppose that .)/( BCAx   Then 

there exist BbAa  ,  and Cc  such that 

.)/( bcax   So there exists bcy   such that 

./yax  So .)(=)( bcxbcxyxa   

Thus there exists cxz   such that bza   
and so ./,/ bazczx   Therefore, .)//( CBAx  

(3) It is similar to (2). 
(4) Let ./  yxa  Then ,yax   so 

)./(\\ yxxaxy   

(5) it is similar to (4). 
(6) If ,/AAx  then ./ 21 aax  So 

.21 AAxaxa   Since A  is a closed 

subset of ,S  it follows that x A.  Therefore, 

/A A A.  

(7) Suppose that Ax  and .Bxy   Then 

.)/(/ BBAByx   

(8) Suppose that H  is a  -subhypergroup and 

.1 Hh   Then there exists Hh 2  such that 

211 hhh   thus ,// 211 HHhhh   so 

./HHH    
 

Theorem 4.8. Let S  be a  -hypergroup and H  

be a  -subhypergroup of .S  Then H  is a closed 

 -subhypergroup if and only if ./= HHH   
  

Proof: Suppose that H  is a closed  -
subhypergroup. Then, by the previous lemma, 

/H H H H .   Thus ./= HHH  
Conversely, suppose that .=/ HHH  If 

y x h H ,    for h H ,  then 

/ / =x y h H H H .   Therefore, H  is a 

closed  -subhypergroup of .S   
 

Example 16. Let G  be a group with a non trivial 

center. Let )(, GZQP   and put .},{=   

For every Gyx ,  we define xyPyx =  and 

.= xyQyx  Then G  is a  -hypergroup. 

Let ., Gba   Then  
 

.=

}|{=

}|{=

}|{=/

1111  





QabPab

xbQxbPaGx

bxbxaGx

bxaGxba


 

 
If H  is a  -subhypergroup of G  containing 

P  and ,Q  then for every Hba ,  we have 

,=/ 1111 HQabPabba  
 so by the 

above theorem, H  is a closed  -subhypergroup 
of .G   

 
Lemma 4.9. Let S  be a  -semihypergroup and 

H  and K  be two closed  -subhypergroups of 
.S  Then .>>=<< KHKH    

 
Proof: Since ,>< KHKH   it follows that 

.><>< KHKH   Now, we prove the 

converse of inclusion. Since H  and K  are closed 
 -subhypergroups of ,S  it follows that KH  is 

a closed subset of .S  Now, by the previous 
theorem and Lemma 4.7, we have  
 

.><))/((=

)/)/((/=

KHKHKH

HKKHHHH




 

 
Similarly, .>< KHK   Therefore, 

.>>=<< HHKH    

5.  -semihypergroups associated to binary 
relations 

The connections between hyperstructures and 
binary relations have been analyzed by many 
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researchers, such as Rosenberg [13], Corsini [14], 
Cristea and Stefănescu [15] and others [16, 17, 18] .  

In this section we associate to a set of binary 
relations on a non-empty set ,S  say ,  a partial 

 -hypergroupoid and get necessary and sufficient 
conditions such that it is a  -semihypergroup or a 
 -hypergroup. 

Rosenberg [13] has associated a partial 
hypergroupoid RH , with a binary relation R  

defined on a non-empty set H, where, for any 
Hyx ,   

 

xx x = L = {z H | (x,z) R}  

and  x y = x x y y.

 




    

 
An element Hx  is called an outer element for 

R  if there exists Hh  such that .),( 2Rxh   

Rosenberg proved the next theorem.  
 
Theorem 5.1. [13] RH  is a hypergroup if and only 

if 
(1) R  has full domain;  
(2) R  has full range;  

(3) ;2RR    

(4) If ,),( 2Rxa   then ,),( Rxa   whenever 

x  is an outer element.  

Let R  be a binary relation on a non-empty set 
.S  Then an element Sx  is called a semiouter 

element for the relation R  if there exists Sh  

such that .),( Rxh    

Let R  be a binary relation on a non-empty set 
SAS ,  and ., Syx   Then we use the 

following notations: 
 

;}),(|{)(= RzxSzxRLR
x 

 
;}),(),(|{),( RzyRzxSzyxR   

;},),(|{)( AaRzaSzAR   
.},),(|{)(1 AaRazSzAR   

 
Definition 5.2. Let S  be a non-empty set and   

be a set of binary relations on .S  Then for every 

  we can associate a hyperoperation   on 

S  as follows:  
 

.,,=),(= SyxLLyxyx yx  
   
 

So ),( S  is a partial hypergroupoid. Now, let 

.}|{=    Then S  is a partial  -

hypergroupoid and is denoted by .S  

To simplify, we write   by   and consider 

= , in this way for every   and 

Syx ,  we have  
 

.=),(== 
  yx LLyxyxyx   

 
It is easy to see that if for every   we have 

,=)(1 SS  then S  is a  -hypergroupoid. 

 
Example 17. Let }{1,2,3,4,5=S  and },,{=   

such that  
 

(5,5)}.(5,1),(4,5),(3,4),(2,3),{(1,3),=

(5,3)},(5,4),(4,1),(3,3),(2,5),(1,4),(1,3),{(1,1),=

(5,2)},(4,4),(4,5),(3,4),(2,4),(1,2),{(1,1),=





 
Then S  is a  -hypergroupoid.  

 
Lemma 5.3. Let S  be a non-empty set and   be a 

set of binary relations on S  such that S  is a  -

hypergroupoid. Then the following assertions hold:   
(1) S  is a commutative  -hypergroupoid;  

(2) For every Sx  and ,  ;)(= xxx    

(3) For every Szyx ,,  and ,,   

;),()(=)( zyxzyx     

(4) For every Szyx ,,  and ,,   

.)(),(=)( zyxzyx    

 
Proof: The proof is straightforward.  

In the following we provide some conditions on 
  such that S  be a  -semihypergroup. 

 
Theorem 5.4. Let S  be a non-empty set and   be 

a set of binary relations on S  such that S  be a 

 -hypergroupoid. Then S  is a  -

semihypergroup if and only if the following 
conditions hold: 
( 1SH ) For every ,,   ;    

( 2SH ) If x  is a semiouter element for the 

relation   and ,),( xa  then ),( xa  

for every Sa  and ;,    
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( 3SH ) If x  is a semiouter element for the 

relations   and   and ,),( xa  then 

,),( xa  for every Sa  and .,    

 
Proof: Suppose that S  is a  -semihypergroup. 

We prove the conditions ( SH1), ( SH2) and 
( SH3) of the theorem.  

( SH1) Let Syx ,  and  ,  such that 

.)(xy   Then we consider two cases: 

Case (i) .)(yy   Then .)(xy   

Case (ii) .)(yy   Then we have 

)(=)( yxxyxx   so the associativity axiom 

and the previous lemma conclude that 
.)()()(=)()( yxxyx    

Now, since )(xy   and ,)(yy   it follows 

that .)(xy   Therefore, .   

( SH2) Suppose that x  is a semiouter element 

for the relation   and .)(ax   So there 

exists Sh  such that .)(hx   Thus the 

associativity axiom and the previous lemma 
conclude that )(=)( ahhhhh  , thus 

.)()()(=)()( ahhah    Since 

)(ax   and ,)(hx   it follows that 

.)(ax   

( SH3) Suppose that x  is a semiouter element 

for the relations   and   and let .)(ax   

So there exist Sth ,  such that ),( xh  and 

.),( xt  Now, we have tahtah  )(=)(  

thus ).(),(=),()( thatah    

Since ,)(ax   )(hx   and ,)(tx   it 

follows that .)(ax   

Conversely, suppose that S  is a non-empty set 

and   be a set of binary relations on S  such that 

S  is a  -hypergroupoid and the conditions 

( SH1), ( SH2) and ( SH3) of the theorem are 
satisfied. We prove the associativity axiom for .S  

Let Stzyx ,,,  and  ,  such that 

.),()(=)( zyxzyxt    Then we 

have three cases: 
Case (i) .)(xt   Then by the condition 

( SH1) .)(xt   

Case (ii) .)(xt   Then if 

,)()( zxt    then t  is a semiouter 

element for the relations   and .  So by the 

condition ( SH3) .)(yt   

Case (iii) .)(zt   Then if ,)(xt   then 

t  is a semiouter element for the relation   so by 

the condition ( SH2), .)(zt   Thus 

.)()( zyxzyx    In the same way, we can 

prove the converse inclusion. Therefore, S  is a 

 -semihypergroup.  
 

Example 18. Let {1,2,3}=S  and },{=   

such that (3,3)}(2,3),(2,2),{(1,2),=  and 

.(3,3)}(3,2),(2,2),{(1,3),=  Then we have 

the table of hyperoperations   and   as follows:  
 

{3}{2,3}{2,3}3

{2,3}{2,3}{2,3}2

{2,3}{2,3}{2}1

321

{2,3}{2,3}{2,3}3

{2,3}{2}{2,3}2

{2,3}{2,3}{3}1

321

 

Then S  is a  -semihypergroup.  

 
Theorem 5.5. Let S  be a non-empty set and   be 

a set of binary relations on S  such that S  is a 

 -semihypergroup. Then S  is a  -hypergroup 

if and only if SS =)(  for every .   

  
Proof: Suppose that S  is a  -hypergroup. Then 

S  is a hypergroup for every .  So by 

Theorem 5.1,   has full range, thus .=)( SS  

Conversely, suppose that SS =)(  for every 

  so S  is a hypergroup. Therefore, S  is a 

 -hypergroup.  
 

Example 19. Let {1,2,3}=S  and },{=   

such that (3,2)}{(2,1),= S  and 

{(3,1)}= S , where S  is the diagonal 



 
 

IJST (2011) A2: 69-80      78 

 

relation on .S  Then we have the table of 

hyperoperations   and   as follows:  
 

{2,3}3

{1,2}{1,2}2

{1,2}{1}1

321

SS

S

S



{1,3}{1,3}3

{2}{1,2}2

{1,3}{1,2}{1}1

321

S

S



 

Then S  is a  -hypergroup.  
 

Lemma 5.6. Let S  be a non-empty set and   be a 

set of binary relations on S  such that S  is a  -

semihypergroup. Then )(=)(= SSI 
 

  is 

a minimal ideal of .S   

  
Proof: Suppose that ,Ia  Ss  and .  

Then we have .)()()(= ISsaas    

So I  is an ideal of .S  Furthermore, if J  is an 

ideal of S  and ,Jb  then for every Ss  and 

,  .)()(= Jbsbs   So JS )(  

hence .JI    
 

Proposition 5.7. Let S  be a non-empty set and   

be a set of binary relations on S  such that S  is a 

 -semihypergroup. Let 

.},|{=    Then 


S  is a  -

semihypergroup.  
  

Proof: We prove that 


S  satisfies the conditions 

( SH1), ( SH2) and ( SH3) of Theorem 5.4. 
Suppose that .,    Then there exist 

,,,,   such that   =  and 

.=    Since S  is a  -semihypergroup, it 

follows that    and .   

Thus  
 

=

= ( )( ) = .

    
       

 
So the condition ( SH1) holds. 

Suppose that Sx  is a semiouter element for 

the relation    and let .),(  xa  Then there 

exists Sh  such that .),(  xh  Thus x  is a 

semiouter element for the relations  ,,  

and .  Since ,),(  xa  it follows that 

  ),(,),(,),( xaxaxa  or 

.),( xa  From the condition ( SH2) for S  

we conclude that ,),( xa  ,),( xa  

),( xa  or .),( xa  Thus   =),( xa  

and the condition ( SH2) holds. 
Suppose that Sx  is a semiouter element for 

the relations    and   and let .),(  xa  

Then there exist Sth ,  such that  ),( xh  

and .),( xt  So x  is a semiouter element for 

the relations  ,,,,  and .  Thus if 

,),( xa  ,),( xa  ,),( xa  

),( xa  or ,),( xa  then from the 

condition ( SH3) for S  we conclude that 

,),( xa  ,),( xa  ),( xa  or 

,),( xa  respectively, and the condition 

( SH3) holds. Therefore, 


S  is a  -

semihypergroup. 
Let RS  be a hypergroupoid associated to a binary 

relation .R  Let .}|{=  iiR   Now, for 

every Syx ,  and i  we define  
 

.=}),(),(|{=
iR

y

iR
x

ii
i LLRzyRzxzyx 

 
Then S  is a R -hypergroupoid and denoted by 

.
R

S  In the following we verify conditions such 

that S  is a R -semihypergroup. 

 
Lemma 5.8. Let RS  be a semihypergroup 

associated to a binary relation .R  Then if 
jiRtz ),(  and ,),( jiRtx   then 

,),( jRtz   for every Stzx ,,  and ji, .  

  
Proof: We prove by mathematical induction on 

.ji   If ,2=ji   
2),( Rtz   and 

,),( 2Rtx   then t  is an outer element for R  so 

.),( Rtz   
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Suppose that the result holds for .1 ji  Now, 

let 
jiRtz ),(  and .),( jiRtx   Then there 

exists Ss  such that 
2),( Rsz   and 

.),( 1 jiRts  Thus ,),( 2Rsx   that is, s  is an 

outer element for R  and so .),( Rsz   Therefore, 

.),( jiRtz   Now, we have 
1),(  jiRtz  and 

1),(  jiRtx  thus .),( jRtz    

 
Lemma 5.9. Let RS  be a semihypergroup 

associated to a binary relation .R  Then 
R

S  is a 

R -semihypergroup.  

  
Proof: We prove the associativity law. Suppose 

that  Szyx ,,  and ., ji   Then  
 

i j i jiR R R
i j x y z

i j i j jR R R
i j x y z

x (y z) = L L L  

and (x y) z = L L L .

 

 

   

   
 

 

If 
jiR

zLt


  and ,
jiR

xLt


  then by the previous 

lemma .)( zyxLt ji

jR
z   Therefore, 

.)()( zyxzyx jiji    In a similar way we 

have the inverse inclusion.  
 

Example 20. Let {1,2,3}=S  and 

(3,2)}(2,2),(1,3),{(1,2),=R . Then RS  is a 

semihypergroup. Let },{= 21 R . Then we 

have the following hyperoperations:  
 

{2}{2,3}3

{2,3}{2}2

{1,3}1

3211

S

S

SS



{2}{2,3}3

{2,3}{2}2

1

3212

S

S

SSS



 

Then 
R

S  is a R -semihypergroup.  

6. Conclusion 

In this work, we presented the concept of 
semiprime ideals in a  -semihypergroup and 
proved some results. Also, we introduced the notion 
of  -hypergroups and closed  -subhypergroups. 
Finally, we defined the concept of  -
semihypergroups and  -hypergroups associated to 
a set of binary relations. Then we find the necessary 
and sufficient conditions on a set of binary relations 
  on a non-empty set S  such that S  becomes a 
 -semihypergroup or a  -hypergroup.  

Our future research will consider  -
semihyperrings associated to binary relations. 
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