http://www.shirazu.ac.ir/en

Γ-hypergroups and **Γ**-semihypergroups associated to binary relations

D. Heidari and B. Davvaz*

Department of Mathematics,Yazd University, Yazd, Iran Email: davvaz@yazduni.ac.ir

Abstract

The concept of Γ -semihypergroups is a generalization of semigroups, a generalization of semihypergroups and a generalization of Γ -semigroups. In this paper, we study the concept of semiprime ideals in a Γ -semihypergroup and prove some results. Also, we introduce the notion of Γ -hypergroups and closed Γ -subhypergroups. Finally, we study the concept of Γ -semihypergroups associated to binary relations and give necessary and sufficient conditions on a set of binary relations Γ on a non-empty set S such that S becomes a Γ -semihypergroup or a Γ -hypergroup.

Keywords: Hypergroup; semihypergroup; Γ -semigroup; Γ -semihypergroup; binary relation

1. Introduction

The *hyperstructure* theory was born in 1934, when Marty introduced the notion of a *hypergroup* [1]. Since then, hundreds of papers and several books have been written on this topic, see [2-5]. A recent book on hyperstructures [6] points out on their applications in cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs.

Algebraic hyperstructures are a generalization of classical algebraic structures. In a classical algebraic structure the composition of two elements is an element, while in an algebraic hyperstructure the composition of two elements is a non-empty set. More exactly, let H be a non-empty set. Then the map $\circ: H \times H \rightarrow P^*(H)$ is called a *hyperoperation* where $P^*(H)$ is the family of non-empty subsets of H. The couple (H,\circ) is called a *hypergroupoid*.

In the above definition, if A and B are two nonempty subsets of H and $x \in H$, then we define

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b; \ x \circ A = \{x\} \circ A \ and \ A \circ x = A \circ \{x\}.$$

*Corresponding author

Received: 12 October 2010 / Accepted: 20 February 2011

А hypergroupoid $(H.\circ)$ is called а semihypergroup if for every $x, y, z \in H$, we have $x \circ (y \circ z) = (x \circ y) \circ z$, and is called а quasihypergroup if for every $x \in H$, $x \circ H = H = H \circ x$. This condition is called the reproduction axiom. The couple (H, \circ) is called a hypergroup if it is a semihypergroup and a quasihypergroup.

The notion of Γ -semigroups was introduced by Sen in [7, 8]. Let S and Γ be two non-empty sets. Then S is called a Γ -semigroup if there exists a mapping $S \times \Gamma \times S \to S$, written (a, γ, b) by $a\gamma b$, such that it satisfies the identities $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a,b,c \in S$ and $\alpha,\beta \in \Gamma$. Let S be an arbitrary semigroup and Γ a non-empty set. Define a mapping $S \times \Gamma \times S \to S$ by $a\alpha b = ab$ for all $a,b \in S$ and $\alpha \in \Gamma$. It is easy to see that S is a Γ semigroup. Thus a semigroup can be considered to be a Γ -semigroup. Many classical notions of semigroups have been extended to Γ -semigroups, see ([9, 10]).

Let S be a Γ -semigroup and α be a fixed element in Γ . We define $a \cdot b = a\alpha b$ for all $a, b \in S$. Then (S, \cdot) is a semigroup and is denoted by S_{α} .

2. Preliminaries and basic definitions

The concept of Γ -semihypergroups was introduced by Davvaz et al. [11, 12]. In this section we introduce some preliminaries and basic definitions of Γ -semihypergroups and give some examples.

Definition 2.1. Let *S* and Γ be two non-empty sets. Then *S* is called a Γ -semihypergroup if each $\gamma \in \Gamma$ be a hyperoperation on *S*, i.e., $x\gamma y \subseteq S$ for every $x, y \in S$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$ we have the associative property that is $x\alpha(y\beta z) = (x\alpha y)\beta z$.

Let A and B be two non-empty subsets of S and $\gamma \in \Gamma$. Then we define:

$$A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B\},\$$

and

 $A\Gamma B = \bigcup_{\gamma \in \Gamma} A \gamma B = \bigcup \{a \gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma \}.$

A Γ -semihypergroup S is called *commutative* if for every $x, y \in S$ and for every $\gamma \in \Gamma$ we have $x\gamma = \gamma\gamma x$. A non-empty subset A of S is called a Γ -subsemihypergroup of S if $A\Gamma A \subseteq A$.

Let (S,\circ) be a semihypergroup and let $\Gamma = \{\circ\}$. Then *S* is a Γ -semihypergroup. So every semihypergroup is a Γ -semihypergroup.

Let *S* be a Γ -semihypergroup and $\alpha \in \Gamma$, if we define $a \circ b = a\alpha b$ for every $a, b \in S$ then (S, \circ) becomes a semihypergroup, we denote it by S_{α} .

Now, we give some other examples of Γ -semihypergroups.

Example 1. Let *G* be a group and $\Gamma = \{\alpha, \beta\}$. Then for every $x, y \in G$, we define $x \alpha y = xy$ and $x\beta y = G$. Then *G* is a Γ -semihypergroup.

Example 2. Let (S, \leq) be a totally ordered set and Γ be a non-empty subset of S. We define

$$x\gamma y = \{z \in S \mid z \ge \max\{x, \gamma, y\}\},\$$

for every $x, y \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semihypergroup.

Example 3. Let *S* be a Γ -semigroup and *P* be a non-empty subset of *S*. Let $\Gamma_p = \{\alpha_p : \alpha \in \Gamma\}$. If we define $x\alpha_p y = x\alpha P\alpha y$, for every $x, y \in S$ and $\alpha \in \Gamma$, then *S* is a Γ_p -semihypergroup.

Let S be a Γ -semihypergroup. We define a relation ρ on $S \times \Gamma$ as follows:

$$(x,\alpha)\rho(y,\beta) \Leftrightarrow x\alpha s = y\beta s, \forall s \in S.$$

Obviously ρ is an equivalence relation. Let $[x, \alpha]$ denote the equivalence class containing (x, α) . Let $M = \{[x, \alpha] : x \in S, \alpha \in \Gamma\}$. We define the hyperoperation \circ on M as follows:

 $[x,\alpha] \circ [y,\beta] = \{[z,\beta] : z \in x\alpha y\},$ for all $[x,\alpha], [y,\beta] \in M.$

Since $(x\alpha y)\beta z = x\alpha(y\beta z)$, for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, then

$$[x,\alpha] \circ ([y,\beta] \circ [z,\gamma]) = ([x,\alpha] \circ [y,\beta]) \circ [z,\gamma],$$

for all $[x,\alpha], [y,\beta], [z,\gamma] \in M.$

Thus the hyperoperation \circ is associative, so (M, \circ) is a semihypergroup. This semihypergroup is called the left operator semihypergroup of S.

Let S be a Γ -semihypergroup. If there exist elements $e \in S$ and $\delta \in \Gamma$ such that $e \delta x = x$ for every $x \in S$, then S is said to have a left partial unity which is denoted by e_{δ} . It is easy to check whether e_{δ} is a left partial unity of S, then $[e, \delta]$ is a left unity of the left operator semihypergroup M.

Example 4. Consider Example 1 and let e be the identity element of G. Then $e_{\alpha} = e$ is a left partial unity of the Γ -semihypergroup G.

The concept of Γ -hyperideals of a Γ -semihypergroup was defined and studied in [12].

Definition 2.2. A non-empty subset I of a Γ -semihypergroup S is called a left (right) Γ -hyperideal, "ideal, for short" of S, if $S\Gamma I \subseteq I$ ($I\Gamma S \subseteq I$). S is called a left (right) simple Γ -semihypergroup if it has no proper left (right) ideal. S is *simple* if S has no proper left and right ideals.

Let A be a non-empty subset of a Γ semihypergroup S. Then the intersection of all ideals of S containing A is an ideal of S generated by A, and denoted by $\langle A \rangle$.

Example 5. Consider Example 4. Put S = N with natural order. Then the subset $I_n = \{n, n+1, n+2, \cdots\}$ is an ideal of *S*, for every $n \in \mathbb{N}$

The following lemmas and theorem were proved in [12].

Lemma 2.3. Let S be a Γ -semihypergroup. If A is a non-empty subset of S, then

$$< A >= A \cup A \Gamma S \cup S \Gamma A \cup S \Gamma A \Gamma S.$$

One can see that, if *S* is a commutative Γ -semihypergroup and $\phi \neq A \subseteq S$, then $\langle A \rangle = A \cup A \Gamma S$. If *S* is a commutative Γ -semihypergroup with left partial unity, then $\langle A \rangle = A \Gamma S$.

Lemma 2.4. Let *S* be a Γ -semihypergroup and Λ be a non-empty set such that for every $\lambda \in \Lambda$,

 I_{λ} is an ideal of S. Then the following assertions hold:

(1)
$$\bigcup_{\lambda \in \Lambda} I_{\lambda}$$
 is an ideal of S;
(2) $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ is an ideal of S.

Definition 2.5. A proper ideal P of Γ semihypergroup S is called a *prime* ideal, if for every ideal I and J of S, $I\Gamma J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. If a Γ -semihypergroup S is commutative, then a proper ideal P is prime if and only if $a\Gamma b \subseteq P$ implies $a \in P$ or $b \in P$, for any $a, b \in S$.

Example 6. Consider Example 2. Put $S = \Gamma = \{1, 2, \dots, n\}$ for some natural number n. Then, all ideals of S have the form $I_i = \{i, i+1, \dots, n\}$, for every $i \in S$ and I_2 is a prime ideal of S.

Theorem 2.6. Let S be a Γ -semihypergroup and P be a left ideal of S. Then P is a prime ideal of S if and only if for all $x, y \in S$,

 $x \Gamma S \Gamma y \subseteq P$ implies that $x \in P$ or $y \in P$.

Lemma 2.7. Let S be a commutative Γ -semihypergroup with a left partial unity and M be a maximal ideal of S. Then M is a prime ideal of S.

Proof: Suppose that M is a maximal ideal and e_{δ} is the left partial unity of S. Let $x, y \in S$ such that $x \Gamma y \subseteq M$. Then we prove that $x \in M$ or $y \in M$. If $x \notin M$, then $M \subset M, x >$, so by maximality of M we have S = M, x >. Since $e_{\delta} \notin M$, it follows that there exist $s \in S$ and $\gamma \in \Gamma$ such that $e_{\delta} \in x\gamma s$. Then, we have

$$y = e_{\delta} \delta y \in (x \not s) \delta y \subseteq x \Gamma y \delta s \subseteq M$$

Similarly, if $y \notin M$, then one proves that $x \notin M$. Therefore, M is a prime ideal of S.

Proposition 2.8. Let S be a Γ -semihypergroup with a left partial unity and I be a proper ideal of S. Then there exists a maximal ideal of S containing I.

Proof: By Lemma 2.4 and Zorn's lemma the proof is obvious.

Let S be a Γ -semihypergroup and M be the left operator semihypergroup of S. Then for $A \subseteq M$, Davvaz et al. in [12] defined A^+ as follows:

$$A^+ = \{ x \in S : [x, \alpha] \in A \text{ for all } \alpha \in \Gamma \}.$$

Similarly, for $I \subseteq S$, they defined $I^{+'}$ as follows:

$$I^{+'} = \{ [x, \alpha] \in M : x \alpha s \subseteq I \text{ for all } s \in S \}.$$

If *I* is an ideal of *S* and *A* is a hyperideal of *M*, then $I \subseteq (I^{+'})^+$ and $A \subseteq (A^+)^{+'}$.

We recall the following theorems from [12].

Theorem 2.9. [12] Let S be a Γ -semihypergroup and M be its left operator semihypergroup. Then the following assertions hold:

(1) If A is a right hyperideal of M, then A^+ is a right ideal of S.

(2) If I is a right ideal of S then, $I^{+'}$ is a right hyperideal of M.

Theorem 2.10. [12] Let *S* be a Γ -semihypergroup with a left partial unity and *M* be its left operator semihypergroup. If *I* is a right ideal of *S*, then $I = (I^{+'})^+$.

3. Semiprime ideals of Γ -semihypergroups

In this section, we introduce the concept of semiprime ideals of a Γ -semihypergroup and prove some results.

Definition 3.1. Let S be a Γ -semihypergroup. Then a proper left (right) ideal P of S is said to be a left (right) semiprime ideal, if for any left (right) ideal A of S, $A\Gamma A \subseteq P$ implies that $A \subseteq P$. A proper ideal P is called semiprime ideal if P is both left and right semiprime ideal of S.

Example 7. Let $S = \Gamma = \{1, 2, 3, \dots, n\}$ for some $n \in \mathbb{N}$. For every $x, y \in S$ and $\alpha \in \Gamma$ we define the following hyperoperation on *S*

$$x\alpha y = \{s \in S \mid s \ge \max\{x, \alpha, y\}\}.$$

Then *S* is a Γ -semihypergroup and $I_i = \{i, i+1, \dots, n\}$ is a semiprime ideal of *S* for $1 \le i \le n$.

Lemma. 3.2 Let *S* be a Γ -semihypergroup with a left partial unity and *P* be a left ideal of *S*. Then *P* is a left semiprime ideal of *S* if and only if for every $x, y \in S$ we have

$$x\Gamma S\Gamma x \subseteq P \Longrightarrow x \in P$$

Proof: Suppose that *P* is a left semiprime ideal of *S* and $x\Gamma S\Gamma x \subseteq P$ for $x \in S$. Then $S\Gamma x\Gamma S\Gamma x \subseteq S\Gamma P \subseteq P$. Since *P* is a left semiprime ideal and $S\Gamma x$ is a left ideal of *S*, it follows that $x \in S\Gamma x \subset P$.

Conversely, let A be an ideal of S such that $A\Gamma A \subseteq P$. If $a \in A$, then $a\Gamma S\Gamma a \subseteq A\Gamma A \subseteq P$. So, by the above implication $a \in P$ thus $A \subseteq P$. **Lemma 3.3.** Let S be a Γ -semihypergroup and M be its left operator semihypergroup. Then the following statements hold:

(1) If P is a semiprime ideal of M, then P^+ is a semiprime ideal of S.

(2) If S has a left partial unity and Q is a semiprime ideal of S, then $Q^{+'}$ is a semiprime ideal of M.

Proof: (1) Suppose that P is a semiprime ideal of M and A is an ideal of S such that $A\Gamma A \subseteq P^+$. Then $[A\Gamma A, \Gamma] \subseteq P$ so $[A, \Gamma] \circ [A, \Gamma] \subseteq P$. Since $[A, \Gamma]$ is an ideal of M and P is a semiprime ideal of M, it follows that $[A, \Gamma] \subseteq P$ hence $A \subseteq P^+$. Thus P^+ is a semiprime ideal of S. (2) Suppose that Q is a semiprime ideal of S and A is an ideal of M such that $A \circ A \subseteq Q^{+'}$. First, we show that $A^+\Gamma A^+ \subseteq (A \circ A)^+$. Let $t \in A^+\Gamma A^+$. Then there exist $x, y \in A^+$ and $\gamma \in \Gamma$ such that $t \in x\gamma y$. So $[t, \alpha] \in [x, \gamma] \circ [y, \alpha] \subseteq A \circ A$ for every $\alpha \in \Gamma$. Thus $t \in (A \circ A)^+$, so $A^+\Gamma A^+ \subseteq (A \circ A)^+$. Now, from $A \circ A \subseteq Q^{+'}$ and Theorem 2.10 we have

$$A^{+}\Gamma A^{+} \subseteq (A \circ A)^{+} \subseteq (Q^{+})^{+} = Q.$$

Since Q is a semiprime ideal and A^+ is an ideal of S, it follows that $A^+ \subseteq Q$. Thus $A \subseteq (A^+)^{+'} \subseteq Q^{+'}$. Therefore, $Q^{+'}$ is a semiprime ideal of M.

Lemma 3.4. Let P_i be a prime ideal of a Γ -semihypergroup S for every $i \in I$ and let $P = \bigcap_{i \in I} P_i$. Then if $P \neq \emptyset$, then P is a semiprime ideal of S.

Proof: It is immediate.

Lemma 3.5. Let T be a Γ -subsemihypergroup and I be an ideal of the Γ -semihypergroup Ssuch that $I \cap T = \emptyset$. Then T is contained in a Γ -subsemihypergroup that is maximal with respect to the property of not meeting I. **Proof:** Since the set $A = \{K | T \le K \le S \text{ and } K \cap I = \emptyset\}$ is non-empty, it follows that by Zorn's lemma, A has a maximal element that satisfies the theorem.

Lemma 3.6. Let T be a commutative Γ -subsemihypergroup and I be an ideal of the Γ -semihypergroup S such that $I \cap T = \emptyset$. Then there exists a prime ideal of S, say P, such that $I \subset P$ and $P \cap T = \emptyset$.

Proof: By Zorn's lemma, there exists an ideal Psuch that P is maximal with respect to properties of $I \subseteq P$ and $P \cap T = \emptyset$. We claim that P is a prime ideal of S. Suppose that $x, y \in S \setminus P$. Then, we show that $x \Gamma S \Gamma y \not\subset P$. Since $x, y \notin P$ and Ρ is maximal, it follows that $< P, x > \cap T \neq \emptyset$ and $\langle P, y \rangle \cap T \neq \emptyset$. $s, t \in S$ Thus, there exist such that $s \in P, x > \cap T$ and $t \in P, y > \cap T$. From the property $P \cap T = \emptyset$, we have only four cases: (i) $s \in s_1 \alpha x$ and $t \in t_1 \beta y$ for some $s_1, t_1 \in S$ and $\alpha, \beta \in \Gamma$, (ii) $s \in s_1 \alpha x$ and t = y for some $s_1 \in S$ and $\alpha \in \Gamma$, (iii) s = xand $t \in t_2 \beta y$ for some $t_2 \in S$ and $\beta \in \Gamma$ and (iv) s = x and t = y. If (i) holds, then $s\Gamma t \subseteq (s_1 \alpha x)\Gamma(t_1 \beta y) \subseteq x\Gamma S\Gamma y.$

Now, since T is a Γ -subsemihypergroup, it follows that $s\Gamma t \subseteq T$. Thus $x\Gamma S\Gamma y \not\subset P$. Similarly, in the other cases we conclude that $x\Gamma S\Gamma y \not\subset P$. Therefore, P is a prime ideal of S.

Let S be a Γ -semihypergroup and I be an ideal of S. A prime ideal P of S is called a minimal prime ideal belonging to I, if $I \subseteq P$ and there is no prime ideal containing I and properly contained in P.

Corollary 3.7. If Q is a prime ideal containing an ideal I, then there exists a minimal prime ideal belonging to I which is contained in Q.

Definition 3.8. Let S be a Γ -semihypergroup and I be an ideal of S. Then the prime radical of I is defined as the intersection of all prime ideals of S containing I and is denoted by \sqrt{I} .

Proposition 3.9. Let S be a Γ -semihypergroup and I be an ideal of S. Then the following statements hold:

(1) \sqrt{I} is a semiprime ideal of S;

(2) $\sqrt{I} = \bigcap \{P \mid P \text{ is a minimal prime ideal belonging to } I\}.$

Proof: (1) It is straightforward.(2) It is taken from Corollary 3.7.

4. Γ -hypergroups

In this section we study the concept of Γ -hypergroups and give some examples. Also, we introduce the concept of closed Γ -subhypergroups of a Γ -hypergroup.

Definition 4.1. A Γ -semihypergroup S is called a Γ -hypergroup if (S_{α}, α) is a hypergroup for every $\alpha \in \Gamma$.

Example 8. Let $S = \{a, b, c, d\}$ and $\Gamma = \{\alpha, \beta\}$. We define the hyperoperations α and β as follows:

	α	а	b	С	d
	а	$\{a,b\}$	$\{b,c\}$	$\{c,d\}$	$\{a,d\}$
	b	$\{b,c\}$	$\{c,d\}$	$\{a,d\}$	$\{a,b\}$
	С	$\{c,d\}$	$\{a,d\}$	$\{a,b\}$	$\{b,c\}$
	d	$\{c,d\}$ $\{a,d\}$	$\{a,b\}$	$\{b,c\}$	$\{c,d\}$
		I			
	β	a	b	С	d
-	а	$\{b,c\}$	b $\{c,d\}$	<i>c</i> { <i>a</i> , <i>d</i> }	$\frac{d}{\{a,b\}}$
_	а	$\{b,c\}$			
_	a b c	${b,c}$ ${c,d}$ ${a,d}$	$\{c,d\}$	$\{a,d\}$	$\{a,b\}$
_	a b c	$\{b,c\}$	$\begin{array}{l} \{c,d\}\\ \{a,d\} \end{array}$	$\{a,d\}$ $\{a,b\}$	$\{a,b\}$ $\{b,c\}$

Then S is a Γ -hypergroup.

Example 9. Let *S* be a non-empty set and $\Gamma = \{\alpha, \beta\}$. Then for every $x, y \in S$ and $\alpha, \beta \in \Gamma$ we define $x \alpha y = S$ and $x \beta y = \{x, y\}$. Then *S* is a Γ -hypergroup.

Example 10. Let (S, \cdot) be a group. Let $\Gamma \subseteq \mathsf{P}^*(S)$. We define $x \alpha y = x \cdot \alpha \cdot y$ for every

 $x, y \in S$ and $\alpha \in \Gamma$. Then S is a Γ -hypergroup.

Example 11. Let (S, \circ) be a hypergroup and $\emptyset \neq \Gamma \subseteq S$. We define $x \alpha y = x \circ \alpha \circ y$ for every $x, y \in S$ and $\alpha \in \Gamma$. Then S is a Γ -hypergroup.

Example 12. Let (G, \cdot) be a group and $\{A_g\}_{g \in G}$ be a collection of disjoint sets. Consider $S = \bigcup_{g \in G} A_g$ and $\Gamma = G$. For $x, y \in S$ there exist $g_x, g_y \in G$ such that $x \in A_{g_x}$ and $y \in A_{g_y}$. We define $x \alpha y = A_{g_x \alpha g_y}$. Then S is a Γ -hypergroup.

Example 13. Let *S* be a Γ -group and *P* be a Γ -subgroup of *S*. Let $\Gamma' = \{\gamma' \mid \gamma \in \Gamma\}$. Now, for every $x, y \in S$ and $\alpha' \in \Gamma$ we define $x\alpha'y = x\alpha y \cup P$. Then, *S* is a Γ' -hypergroup.

Theorem 4.2. [12] Let *S* be a Γ -semihypergroup. Then *S* is a simple Γ -semihypergroup if and only if S_{α} is a hypergroup for every $\alpha \in \Gamma$.

Theorem 4.3. Let S be a Γ -semihypergroup. Then for every $\alpha \in \Gamma$, S_{α} is a hypergroup if and only if S is left and right simple.

Proof: Suppose that S_{α} is a hypergroup and I is a left (right) ideal of S. If $x \in I$, then the reproduction axiom implies that $x \alpha S = S = S \alpha x$. On the other hand, we have $S \alpha x \subseteq I$ ($x \alpha S \subseteq I$). Therefore, I = S.

Conversely, suppose that S is left and right simple. Then for every $x \in S$ and $\alpha \in \Gamma$, put $I = x\alpha S$. Thus, I is a right ideal of S, for

 $I\Gamma S = (x\alpha S)\Gamma S = x\alpha(S\Gamma S) \subseteq x\alpha S = I$

so $x\alpha S = S$. Similarly, we have $S = S\alpha x$. Therefore, S is a Γ -hypergroup.

Corollary 4.4. If S_{α} is a hypergroup for some $\alpha \in \Gamma$, then for every $\alpha \in \Gamma$, S_{α} is a hypergroup.

Definition 4.5. A subset H of a Γ -hypergroup is called a Γ -subhypergroup if for every $h, k \in H$ and $\alpha \in \Gamma$ we have $h\alpha k \subseteq H$ and $h\alpha H = H = H\alpha h$.

Definition 4.6. Let *S* be a Γ -hypergroup. Then a subset *H* of *S* is called closed if for every $h, k \in H, x \in S$ and $\alpha \in \Gamma$ we have the following implication

$$h \in x \alpha H \Longrightarrow x \in H$$
.

Example 14. Consider $(\mathbb{Z},+)$ and let $\Gamma = \{\alpha, \beta\}$ where $\alpha = \{-1,1\}$ and $\beta = \{-2,+2\}$. If for every $x, y \in \mathbb{Z}$ we define:

$$x\alpha y = \{x + y - 1, x + y + 1\}, x\beta y$$
$$= \{x + y - 2, x + y + 2\}.$$

Then, \mathbb{Z} is a Γ -hypergroup and $H = 2\mathbb{Z}$ is a closed subset of \mathbb{Z} .

Example 15. Consider $(\mathbb{Z},+)$ and let $\Gamma = \{\alpha, \beta\}$ where $\alpha = \{-2,2\}$ and $\beta = \{-4,4\}$. If for every $x, y \in \mathbb{Z}$ we define:

$$x\alpha y = \{x + y - 2, x + y + 2\}, x\beta y$$
$$= \{x + y - 4, x + y + 4\}.$$

Then \mathbb{Z} is a Γ -hypergroup and $H = 2\mathbb{Z}$ is a closed Γ -subhypergroup of \mathbb{Z} .

Let S be a Γ -hypergroup. Then two new hyperoperations may be defined on S as follows:

 $a / b = \{x \in S \mid a \in x \alpha b, \alpha \in \Gamma\}$ and $a \setminus b = \{x \in S \mid a \in b \alpha x, \alpha \in \Gamma\}.$

If A and B are non-empty subsets of S, then

$$A/B = \bigcup_{a \in A, b \in B} a/b$$
 and $A \setminus B = \bigcup_{a \in A, b \in B} a \setminus b$.

Lemma 4.7. Let S be a Γ -hypergroup, A, B, C and D be non-empty subsets of S and $x, y \in S$. Then the following assertions hold:

(1) If A ⊆ B and C ⊆ D, then A/C ⊆ B/D;
(2) (A/B)/C = A/(CΓB);
(3) (A \ B) \ C = A \ (BΓC);

(4)
$$y \in x \setminus (x/y);$$

(5) $y \in x/(x \setminus y);$

(6) If A is a closed subset of S, then A / A ⊆ A;
(7) A ⊆ (AΓB)/B;

(8) If H is a Γ -subhypergroup, then $H \subseteq H/H$.

Proof: (1) It is immediate.

(2) Suppose that $x \in (A/B)/C$. Then, there exist $a \in A, b \in B$ and $c \in C$ such that $x \in (a/b)/c$. So, we have

$$\begin{aligned} x \in (a/b)/c & \Rightarrow \exists y \in a/b, x \in y/c \\ \Rightarrow a \in y\Gamma b, y \in x\Gamma c \\ \Rightarrow a \in (x\Gamma c)\Gamma b = x\Gamma(c\Gamma b) \\ \Rightarrow \exists z \in c\Gamma b, a \in x\Gamma z \\ \Rightarrow x \in a/z \subseteq a/(c\Gamma b) \subseteq A/(C\Gamma B). \end{aligned}$$

Thus, $(A/B)/C \subseteq A/(C\Gamma B)$.

Conversely, suppose that $x \in A/(C\Gamma B)$. Then there exist $a \in A, b \in B$ and $c \in C$ such that $x \in a/(c\Gamma b)$. So there exists $y \in c\Gamma b$ such that $x \in a/y$. So $a \in x\Gamma y \subseteq x\Gamma(c\Gamma b) = (x\Gamma c)\Gamma b$. Thus there exists $z \in x\Gamma c$ such that $a \in z\Gamma b$ and so $x \in z/c, z \in a/b$. Therefore, $x \in (A/B)/C$. (3) It is similar to (2).

(4) Let $a \in x/y \neq \emptyset$. Then $x \in a\Gamma y$, so $y \in x \setminus a \subseteq x \setminus (x/y)$.

(5) it is similar to (4).

(6) If $x \in A/A$, then $x \in a_1/a_2$. So $a_1 \in x \Gamma a_2 \subseteq x \Gamma A \cap A$. Since A is a closed subset of S, it follows that $x \in A$. Therefore, $A / A \subseteq A$.

(7) Suppose that $x \in A$ and $y \in x\Gamma B$. Then $x \in y/B \subseteq (A\Gamma B)/B$.

(8) Suppose that H is a Γ -subhypergroup and $h_1 \in H$. Then there exists $h_2 \in H$ such that $h_1 \in h_1 \Gamma h_2$ thus $h_1 \in h_1/h_2 \subseteq H/H$, so $H \subseteq H/H$.

Theorem 4.8. Let S be a Γ -hypergroup and H be a Γ -subhypergroup of S. Then H is a closed Γ -subhypergroup if and only if H = H/H.

Proof: Suppose that H is a closed Γ -subhypergroup. Then, by the previous lemma, $H \subseteq H / H \subseteq H$. Thus H = H/H.

Conversely, suppose that H/H = H. If $y \in x \alpha h \cap H$, for $h \in H$, then $x \in y / h \subseteq H / H = H$. Therefore, H is a closed Γ -subhypergroup of S.

Example 16. Let *G* be a group with a non trivial center. Let $P, Q \subseteq Z(G)$ and put $\Gamma = \{\alpha, \beta\}$. For every $x, y \in G$ we define $x\alpha y = xyP$ and $x\beta y = xyQ$. Then *G* is a Γ -hypergroup. Let $a, b \in G$. Then

$$a/b = \{x \in G \mid a \in x \Gamma b\}$$

= $\{x \in G \mid a \in x \alpha b \cup x \beta b\}$
= $\{x \in G \mid a \in x b P \cup x b Q\}$
= $ab^{-1}P^{-1} \cup ab^{-1}Q^{-1}$.

If *H* is a Γ -subhypergroup of *G* containing *P* and *Q*, then for every $a, b \in H$ we have $a/b = ab^{-1}P^{-1} \cup ab^{-1}Q^{-1} \subseteq H$, so by the above theorem, *H* is a closed Γ -subhypergroup of *G*.

Lemma 4.9. Let S be a Γ -semihypergroup and H and K be two closed Γ -subhypergroups of S. Then $\langle H \cup K \rangle = \langle H \Gamma K \rangle$.

Proof: Since $H\Gamma K \subseteq H \cup K >$, it follows that $\langle H\Gamma K \rangle \subseteq H \cup K \rangle$. Now, we prove the converse of inclusion. Since H and K are closed Γ -subhypergroups of S, it follows that $H\Gamma K$ is a closed subset of S. Now, by the previous theorem and Lemma 4.7, we have

$$H = H/H \subseteq ((H\Gamma K)/K)/H$$
$$= (H\Gamma K)/(H\Gamma K) \subseteq H\Gamma K > .$$

Similarly, $K \subseteq \langle H\Gamma K \rangle$. Therefore, $\langle H \cup K \rangle = \langle H\Gamma H \rangle$.

5. Γ -semihypergroups associated to binary relations

The connections between hyperstructures and binary relations have been analyzed by many

researchers, such as Rosenberg [13], Corsini [14], Cristea and Stefănescu [15] and others [16, 17, 18].

In this section we associate to a set of binary relations on a non-empty set S, say Γ , a partial Γ -hypergroupoid and get necessary and sufficient conditions such that it is a Γ -semihypergroup or a Γ -hypergroup.

Rosenberg [13] has associated a partial hypergroupoid H_R , with a binary relation R defined on a non-empty set H, where, for any $x, y \in H$

$$x \circ x = L_x = \{z \in H \mid (x, z) \in R\}$$

and $x \circ y = x \circ x \cup y \circ y$.

An element $x \in H$ is called an outer element for R if there exists $h \in H$ such that $(h, x) \notin R^2$. Rosenberg proved the next theorem.

Theorem 5.1. [13] H_R is a hypergroup if and only if

(1) R has full domain;

(2) R has full range;

(3) $R \subseteq R^2$;

(4) If $(a, x) \in \mathbb{R}^2$, then $(a, x) \in \mathbb{R}$, whenever x is an outer element.

Let R be a binary relation on a non-empty set S. Then an element $x \in S$ is called a semiouter element for the relation R if there exists $h \in S$ such that $(h, x) \notin R$.

Let *R* be a binary relation on a non-empty set *S*, $A \subseteq S$ and $x, y \in S$. Then we use the following notations:

$$L_x^R = R(x) = \{z \in S \mid (x, z) \in R\};\$$

$$R(x, y) = \{z \in S \mid (x, z) \in R \lor (y, z) \in R\};\$$

$$R(A) = \{z \in S \mid (a, z) \in R, \exists a \in A\};\$$

$$R^{-1}(A) = \{z \in S \mid (z, a) \in R, \exists a \in A\}.\$$

Definition 5.2. Let *S* be a non-empty set and \mathcal{R} be a set of binary relations on *S*. Then for every $\alpha \in \mathcal{R}$ we can associate a hyperoperation \circ_{α} on *S* as follows:

$$x \circ_{\alpha} y = \alpha(x, y) = L_x^{\alpha} \cup L_y^{\alpha}, \forall x, y \in S.$$

So (S, \circ_{α}) is a partial hypergroupoid. Now, let $\Gamma = \{\circ_{\alpha} \mid \alpha \in \mathcal{R}\}$. Then S is a partial Γ hypergroupoid and is denoted by S_{Γ} .

To simplify, we write \circ_{α} by α and consider $\Gamma = \mathcal{R}$, in this way for every $\alpha \in \Gamma$ and $x, y \in S$ we have

$$x \alpha y = x \circ_{\alpha} y = \alpha(x, y) = L_x^{\alpha} \cup L_y^{\alpha}$$

It is easy to see that if for every $\alpha \in \Gamma$ we have $\alpha^{-1}(S) = S$, then S_{Γ} is a Γ -hypergroupoid.

Example 17. Let $S = \{1,2,3,4,5\}$ and $\Gamma = \{\alpha, \beta, \gamma\}$ such that

 $\begin{aligned} & \alpha = \{(1,1),(1,2),(2,4),(3,4),(4,5),(4,4),(5,2)\}, \\ & \beta = \{(1,1),(1,3),(1,4),(2,5),(3,3),(4,1),(5,4),(5,3)\}, \\ & \gamma = \{(1,3),(2,3),(3,4),(4,5),(5,1),(5,5)\}. \end{aligned}$

Then S_{Γ} is a Γ -hypergroupoid.

Lemma 5.3. Let S be a non-empty set and Γ be a set of binary relations on S such that S_{Γ} is a Γ -hypergroupoid. Then the following assertions hold: (1) S_{Γ} is a commutative Γ -hypergroupoid;

(2) For every $x \in S$ and $\alpha \in \Gamma$, $x\alpha x = \alpha(x)$; (3) For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, $x\alpha(y\beta z) = \alpha(x) \cup \beta\alpha(y, z)$; (4) For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$,

 $(x\alpha y)\beta z = \alpha\beta(x, y) \cup \beta(z).$

Proof: The proof is straightforward.

In the following we provide some conditions on Γ such that S_{Γ} be a Γ -semihypergroup.

Theorem 5.4. Let S be a non-empty set and Γ be a set of binary relations on S such that S_{Γ} be a Γ -hypergroupoid. Then S_{Γ} is a Γ semihypergroup if and only if the following conditions hold:

 $(\Gamma SH1)$ For every $\alpha, \beta \in \Gamma, \ \alpha \subseteq \alpha\beta$;

 $(\Gamma SH2)$ If x is a semiouter element for the relation $\alpha\beta$ and $(a,x) \in \beta\alpha$, then $(a,x) \in \beta$ for every $a \in S$ and $\alpha, \beta \in \Gamma$;

 $(\Gamma SH3)$ If x is a semiouter element for the relations $\alpha\beta$ and β and $(a,x) \in \beta\alpha$, then $(a,x) \in \alpha\beta$, for every $a \in S$ and $\alpha, \beta \in \Gamma$.

Proof: Suppose that S_{Γ} is a Γ -semihypergroup. We prove the conditions (Γ SH1), (Γ SH2) and (Γ SH3) of the theorem.

(Γ SH1) Let $x, y \in S$ and $\alpha, \beta \in \Gamma$ such that $y \in \alpha(x)$. Then we consider two cases:

Case (i) $y \in \beta(y)$. Then $y \in \alpha\beta(x)$.

Case (ii) $y \notin \beta(y)$. Then we have $(x\alpha x)\beta y = x\alpha(x\beta y)$ so the associativity axiom and the previous lemma conclude that $\alpha\beta(x)\cup\beta(y)=\alpha(x)\cup\beta\alpha(x)\cup\beta\alpha(y)$.

Now, since $y \in \alpha(x)$ and $y \notin \beta(y)$, it follows that $y \in \alpha\beta(x)$. Therefore, $\alpha \subseteq \alpha\beta$.

(Γ SH2) Suppose that x is a semiouter element for the relation $\alpha\beta$ and $x \in \beta\alpha(a)$. So there exists $h \in S$ such that $x \notin \alpha\beta(h)$. Thus the associativity axiom and the previous lemma conclude that $(h \alpha h) \beta h = h \alpha (h \beta a)$, thus $\alpha\beta(h) \cup \beta(a) = \alpha(h) \cup \beta\alpha(h) \cup \beta\alpha(a)$. Since $x \in \beta\alpha(a)$ and $x \notin \alpha\beta(h)$, it follows that $x \in \beta(a)$.

(Γ SH3) Suppose that x is a semiouter element for the relations $\alpha\beta$ and β and let $x \in \beta\alpha(a)$. So there exist $h, t \in S$ such that $(h, x) \notin \alpha\beta$ and $(t, x) \notin \beta$. Now, we have $h\alpha(a\beta t) = (h\alpha a)\beta t$ thus $\alpha(h) \cup \beta\alpha(a, t) = \alpha\beta(a, h) \cup \beta(t)$. Since $x \in \beta\alpha(a), x \notin \alpha\beta(h)$ and $x \notin \beta(t)$, it follows that $x \in \alpha\beta(a)$.

Conversely, suppose that *S* is a non-empty set and Γ be a set of binary relations on *S* such that S_{Γ} is a Γ -hypergroupoid and the conditions (Γ SH1), (Γ SH2) and (Γ SH3) of the theorem are satisfied. We prove the associativity axiom for S_{Γ} . Let $x, y, z, t \in S$ and $\alpha, \beta \in \Gamma$ such that $t \in x\alpha(y\beta z) = \alpha(x) \cup \beta\alpha(y, z)$. Then we have three cases:

Case (i) $t \in \alpha(x)$. Then by the condition (Γ SH1) $t \in \alpha \beta(x)$.

Case (ii) $t \in \beta \alpha(x)$. Then if $t \notin \alpha \beta(x) \cup \beta(z)$, then t is a semiouter

element for the relations $\alpha\beta$ and β . So by the condition (Γ SH3) $t \in \alpha\beta(y)$.

Case (iii) $t \in \beta \alpha(z)$. Then if $t \notin \alpha \beta(x)$, then t is a semiouter element for the relation $\alpha \beta$ so by the condition (Γ SH2), $t \in \beta(z)$. Thus $x\alpha(y\beta z) \subseteq (x\alpha y)\beta z$. In the same way, we can prove the converse inclusion. Therefore, S_{Γ} is a Γ -semihypergroup.

Example 18. Let $S = \{1,2,3\}$ and $\Gamma = \{\alpha, \beta\}$ such that $\alpha = \{(1,2), (2,2), (2,3), (3,3)\}$ and $\beta = \{(1,3), (2,2), (3,2), (3,3)\}$. Then we have the table of hyperoperations α and β as follows:

α	1	2	3	
1	{2}	{2,3}	{2,3}	
2	{2,3} {2,3}	{2,3}	{2,3}	
3	{2,3}	{2,3}	{3}	
	•			
β	1	2	3	
β 1	{3}	2 {2,3}	3 {2,3}	
1 2				

Then S_{Γ} is a Γ -semihypergroup.

Theorem 5.5. Let *S* be a non-empty set and Γ be a set of binary relations on *S* such that S_{Γ} is a Γ -semihypergroup. Then S_{Γ} is a Γ -hypergroup if and only if $\alpha(S) = S$ for every $\alpha \in \Gamma$.

Proof: Suppose that S_{Γ} is a Γ -hypergroup. Then S_{α} is a hypergroup for every $\alpha \in \Gamma$. So by Theorem 5.1, α has full range, thus $\alpha(S) = S$.

Conversely, suppose that $\alpha(S) = S$ for every $\alpha \in \Gamma$ so S_{α} is a hypergroup. Therefore, S_{Γ} is a Γ -hypergroup.

Example 19. Let $S = \{1,2,3\}$ and $\Gamma = \{\alpha, \beta\}$ such that $\alpha = \Delta_S \cup \{(2,1), (3,2)\}$ and $\beta = \Delta_S \cup \{(3,1)\}$, where Δ_S is the diagonal

relation	on	<i>S</i> .	Then	we	have	the	table	of
hyperope	eratic	ons <i>O</i>	and ,	β as	follow	vs:		

α	1	2	3	
1	{1}	{1,2}	S	
2 3	{1,2}	{1,2}	S	
3	{1,2} <i>S</i>	S	{2,3}	
	I			
β	1	2	3	
β 1	1 {1}	2 {1,2}	3 {1,3}	
β 1 2	$ 1 {1} {1,2} {1,3} $			

Then S is a Γ -hypergroup.

Lemma 5.6. Let *S* be a non-empty set and Γ be a set of binary relations on *S* such that S_{Γ} is a Γ -semihypergroup. Then $I = \Gamma(S) = \bigcup_{\alpha \in \Gamma} \alpha(S)$ is a minimal ideal of S_{Γ} .

Proof: Suppose that $a \in I$, $s \in S$ and $\alpha \in \Gamma$. Then we have $s\alpha a = \alpha(a) \cup \alpha(s) \subseteq \alpha(S) \subseteq I$. So *I* is an ideal of S_{Γ} . Furthermore, if *J* is an ideal of S_{Γ} and $b \in J$, then for every $s \in S$ and $\alpha \in \Gamma$, $s\alpha b = \alpha(s) \cup \alpha(b) \subseteq J$. So $\alpha(S) \subseteq J$ hence $I \subseteq J$.

Proposition 5.7. Let *S* be a non-empty set and Γ be a set of binary relations on *S* such that S_{Γ} is a Γ -semihypergroup. Let $\Gamma_{\cup} = \{ \alpha \cup \beta \mid \alpha, \beta \in \Gamma \}$. Then $S_{\Gamma_{\cup}}$ is a Γ_{\cup} -semihypergroup.

Proof: We prove that $S_{\Gamma_{\bigcirc}}$ satisfies the conditions $(\Gamma \text{ SH1})$, $(\Gamma \text{ SH2})$ and $(\Gamma \text{ SH3})$ of Theorem 5.4. Suppose that $\theta', \varphi' \in \Gamma_{\bigcirc}$. Then there exist $\alpha, \beta, \delta, \gamma \in \Gamma$, such that $\theta' = \alpha \cup \beta$ and $\varphi' = \delta \cup \gamma$. Since S_{Γ} is a Γ -semihypergroup, it follows that $\alpha \subseteq \alpha \delta \cup \alpha \gamma$ and $\beta \subseteq \beta \delta \cup \beta \gamma$. Thus

$$\theta' = \alpha \cup \beta \subseteq \alpha \delta \cup \alpha \gamma \cup \beta \delta \cup \beta \gamma$$
$$= (\alpha \cup \beta)(\delta \cup \gamma) = \theta' \phi'.$$

So the condition (Γ SH1) holds.

Suppose that $x \in S$ is a semiouter element for the relation θ' and let $(a, x) \in \varphi'\theta'$. Then there exists $h \in S$ such that $(h, x) \notin \theta'\varphi'$. Thus x is a semiouter element for the relations $\alpha\delta, \alpha\gamma, \beta\delta$ and $\beta\gamma$. Since $(a, x) \in \varphi'\theta'$, it follows that $(a, x) \in \delta\alpha, (a, x) \in \gamma\alpha, (a, x) \in \delta\beta$ or $(a, x) \in \gamma\beta$. From the condition (Γ SH2) for S_{Γ} we conclude that $(a, x) \in \delta, (a, x) \in \gamma,$ $(a, x) \in \delta$ or $(a, x) \in \gamma$. Thus $(a, x) \in \delta \cup \gamma = \varphi'$ and the condition (Γ SH2) holds.

Suppose that $x \in S$ is a semiouter element for the relations $\theta' \varphi'$ and φ' and let $(a, x) \in \varphi' \theta'$. Then there exist $h, t \in S$ such that $(h, x) \notin \theta' \varphi'$ and $(t, x) \notin \varphi'$. So x is a semiouter element for the relations $\alpha \delta, \alpha \gamma, \beta \delta, \beta \gamma, \delta$ and γ . Thus if $(a, x) \in \alpha \delta$, $(a, x) \in \delta \alpha$, $(a, x) \in \gamma \alpha$, $(a, x) \in \delta \beta$ or $(a, x) \in \gamma \beta$, then from the condition (Γ SH3) for S_{Γ} we conclude that $(a, x) \in \alpha \delta$, $(a, x) \in \alpha \gamma$, $(a, x) \in \delta \beta$ or $(a, x) \in \gamma \beta$, respectively, and the condition (Γ SH3) holds. Therefore, $S_{\Gamma_{\cup}}$ is a Γ_{\cup} semihypergroup.

Let S_R be a hypergroupoid associated to a binary relation R. Let $\Gamma_R = \{\alpha_i \mid i \in \mathbb{N}\}$. Now, for every $x, y \in S$ and $\alpha_i \in \Gamma$ we define

$$x\alpha_i y = \{z \mid (x, z) \in \mathbb{R}^i \lor (y, z) \in \mathbb{R}^i\} = L_x^{\mathbb{R}^i} \cup L_y^{\mathbb{R}^i}.$$

Then S is a Γ_R -hypergroupoid and denoted by S_{Γ_R} . In the following we verify conditions such that S is a Γ_R -semihypergroup.

Lemma 5.8. Let S_R be a semihypergroup associated to a binary relation R. Then if $(z,t) \in R^{i+j}$ and $(x,t) \notin R^{i+j}$, then $(z,t) \in R^j$, for every $x, z, t \in S$ and $i, j \in \mathbb{N}$.

Proof: We prove by mathematical induction on i + j. If i + j = 2, $(z,t) \in \mathbb{R}^2$ and $(x,t) \notin \mathbb{R}^2$, then t is an outer element for R so $(z,t) \in \mathbb{R}$.

Suppose that the result holds for i + j - 1. Now, let $(z,t) \in R^{i+j}$ and $(x,t) \notin R^{i+j}$. Then there exists $s \in S$ such that $(z,s) \in R^2$ and $(s,t) \in R^{i+j-1}$. Thus $(x,s) \notin R^2$, that is, s is an outer element for R and so $(z,s) \in R$. Therefore, $(z,t) \in R^{i+j}$. Now, we have $(z,t) \in R^{i+j-1}$ and $(x,t) \notin R^{i+j-1}$ thus $(z,t) \in R^j$.

Lemma 5.9. Let S_R be a semihypergroup associated to a binary relation R. Then S_{Γ_R} is a Γ_R -semihypergroup.

Proof: We prove the associativity law. Suppose that $x, y, z \in S_{\Gamma}$ and $\alpha_i, \alpha_j \in \Gamma$. Then

$$\begin{aligned} &x\alpha_i(y\alpha_j z) = L_x^{R^i} \cup L_y^{R^{i+j}} \cup L_z^{R^{i+j}} \\ &\text{and } (x\alpha_i y)\alpha_j z = L_x^{R^{i+j}} \cup L_y^{R^{i+j}} \cup L_z^{R^j}. \end{aligned}$$

If $t \in L_z^{R^{i+j}}$ and $t \notin L_x^{R^{i+j}}$, then by the previous lemma $t \in L_z^{R^j} \subseteq (x\alpha_i y)\alpha_j z$. Therefore, $x\alpha_i(y\alpha_j z) \subseteq (x\alpha_i y)\alpha_j z$. In a similar way we have the inverse inclusion.

Example 20. Let $S = \{1,2,3\}$ and $R = \{(1,2), (1,3), (2,2), (3,2)\}$. Then S_R is a semihypergroup. Let $\Gamma_R = \{\alpha_1, \alpha_2\}$. Then we have the following hyperoperations:

α_1	1	2	2	3
1	{1,3	} 5	5	S
2	S	{2	2}	{2,3}
3	S	{2,	3}	{2}
	I			
α_2	1	2	3	
1	S	S	S	
2	S	{2}	{2,.	3}
3	S	{2,3}	{2	}

Then $S_{\Gamma_{R}}$ is a Γ_{R} -semihypergroup.

6. Conclusion

In this work, we presented the concept of semiprime ideals in a Γ -semihypergroup and proved some results. Also, we introduced the notion of Γ -hypergroups and closed Γ -subhypergroups. Finally, we defined the concept of Γ -semihypergroups and Γ -hypergroups associated to a set of binary relations. Then we find the necessary and sufficient conditions on a set of binary relations Γ on a non-empty set S such that S becomes a Γ -semihypergroup or a Γ -hypergroup.

Our future research will consider Γ - semihyperrings associated to binary relations.

References

- [1] Marty, F. (1934). Sur une generalization de la notion de groupe, δ^{th} congres Math (45-49). Stockholm, Scandinaves.
- [2] Corsini, P. (1993). *Prolegomena of hypergroup theory*. Second Edition, Aviani Editore.
- [3] Davvaz, B. & Leoreanu-Fotea, V. (2008). *Hyperring Theory and Applications*. USA: International Academic Press.
- [4] Freni, D. (2002). A new characterization of the derived hypergroup via strongly regular equivalences. *Communication in Algebra*, 30(8), 3977-3989.
- [5] Vougiouklis, T. (1994). Hyperstructures and their representations. 115, Palm Harber. USA: Hadronic Press, Inc.
- [6] Corsini, P. & Leoreanu, V. (2003). Applications of hyperstructures theory, Advanced in Mathematics. Kluwer Academic Publisher.
- [7] Sen, M. K. (1981). On Γ -semigroups, *Proc. of the Int. Conf. on Algebra and it's Appl.* (301-308). New York, Decker Publication.
- [8] Sen, M. K. & Saha, N. K. (1986). On Γ -semigroup I. Bull. Cal. Math. Soc., 78, 180-186.
- [9] Dutta, T. K. & Adhikari, N. C. (1996). On Noetherian Γ -semigroup. *Kyungpook Math. J.*, *36*, 89-95.
- [10] Saha, N. K. (1987). On Γ -semigroup II. Bull. Cal. Math., Soc., 79, 331-335.
- [11] Anvariyeh, S. M., Mirvakili, S. & Davvaz, B. (2010). On Γ -hyperideals in Γ -semihypergroups. *Carpathian journal of mathematics*, 26, 11-23.
- [12] Heidari, D., Dehkordi, S. O. & Davvaz, B. (2010). Γ -semihypergroups and their properties. *U.P.B. Sci. Bull., Series A*, 72(1), 195-208.
- [13] Rosenberg, I. G. (1998). Hypergroups and join spaces determined by relations. *Riv. Math. Pura e Appl.*, 4, 93-101.
- [14] Corsini, P., Leoreanu, V. (2000). Hypergroups and binary relations. *Algebra Universalis.*, 43, 321-330.
- [15] Cristea, I. & Stefănescu, M. (2008). Binary relations and reduced hypergroups. *Discrete Math.*, 308, 3537-3544.
- [16] Cristea, I. & Stefănescu, M. (2010). Hypergroups and *n*-ary relations. *European J. Combin.*, 31, 780-789.
- [17] Spartalis, S. I. & Mamaloukas, C. (2006). Hyperstructures associated with binary relations. *Comput. Math. Appl.*, *51*, 41-50.
- [18] Davvaz, B. & Leoreanu-Fotea, V. (2010) Binary

relations for ternary semihypergroups. Comm. Algebra, 38, 3621-3636.