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Abstract

The concept of I -semihypergroups is a generalization of semigroups, a generalization of semihypergroups and a

generalization of I" -semigroups. In this paper, we study the concept of semiprime ideals in a I" -semihypergroup

and prove some results. Also, we introduce the notion of I" -hypergroups and closed 1" -subhypergroups. Finally,

we study the concept of I -semihypergroups associated to binary relations and give necessary and sufficient

conditions on a set of binary relations I on a non-empty set S such that S becomesa I -semihypergroup or a

I" -hypergroup.
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1. Introduction

The hyperstructure theory was born in 1934, when
Marty introduced the notion of a hypergroup [1].
Since then, hundreds of papers and several books
have been written on this topic, see [2-5]. A recent
book on hyperstructures [6] points out on their
applications in cryptography, codes, automata,
probability, geometry, lattices, binary relations,
graphs and hypergraphs.

Algebraic hyperstructures are a generalization
of classical algebraic structures. In a classical
algebraic structure the composition of two elements
is an element, while in an algebraic hyperstructure
the composition of two elements is a non-empty set.

More exactly, let H be a non-empty set. Then the
map o:HxH>P(H) is called a

hyperoperation where P(H) is the family of

non-empty subsets of H. The couple (H,o) is
called a hypergroupoid.

In the above definition, if A and B are two non-
empty subsets of H and X € H, then we define

AocB= U aoh; Xo A={X}o A and Aox= Aoc{x}.

aeAbeB
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A hypergroupoid (H,) is called a
semihypergroup if for every X,y,ze H, we have
Xo(YyoZ)=(Xoy)ozZ, and is called a
quasihypergroup  if for every XeH,
XoH =H = H o X This condition is called the
reproduction axiom. The couple (H,o) is called a
hypergroup if it is a semihypergroup and a
quasihypergroup.

The notion of I' -semigroups was introduced by
Senin [7,8]. Let S and I' be two non-empty sets.
Then S is called a I -semigroup if there exists a
mapping SxI'xS— S, written (&,7,b) by
ayb, such that it satisfies the identities
(agb)fc=aa(bpc) for all a,b,ceS and
a,fel. Let S be an arbitrary semigroup and
I' a non-empty set. Define a mapping

SxI'xS— S by acb=ab for all a,.be S

and ¢ €. It is easy to see that S is a I'-
semigroup. Thus a semigroup can be considered to
be a I -semigroup. Many classical notions of
semigroups have been extended to I" -semigroups,
see ([9, 10]).

Let S be a I -semigroup and & be a fixed
element in I. We define a-b=aab for all

a,beS Then (S;) is a semigroup and is
denoted by S, .



1JST (2011) A2: 69-80

70

2. Preliminaries and basic definitions

The concept of I -semihypergroups was
introduced by Davvaz et al. [11, 12]. In this section
we introduce some preliminaries and basic
definitions of I -semihypergroups and give some
examples.

Definition 2.1. Let S and I be two non-empty
sets. Then S is called a I" -semihypergroup if each
y €’ be a hyperoperation on S, ie., X< S

for every X, Y € S, and for every o, f €’ and
X,Y,Z€ S we have the associative property that
is Xa(ypz) = (Xay)pz

Let A and B be two non-empty subsets of S
and y € I' . Then we define:

AsB=Ufajb|ac AbeBl,

and

ArB=| JAB=Ufajblac AbeBand y eI},

el’
AT -gemihypergroup S is called commutative
if for every X,Y€ S and for every y €' we

have X§¥ = YJX. A non-empty subset A of S is

called a I -subsemihypergroup of S if
Al'AcC A

Let (S,o) be a semihypergroup and let I" = {o}.
Then S is a I -semihypergroup. So every
semihypergroup is a I" -semihypergroup.

Let S be a I' -semihypergroup and o € I', if
we define acb=aab for every a,b€ S then
(S,°) becomes a semihypergroup, we denote it by
S,.

Now, we give some other examples of I -
semihypergroups.

Example 1. Let G be a group and I = {e, S}.
Then for every X, Y€ G, we define Xay = Xy
and XY = G. Then G isa I -semihypergroup.

Example 2. Let (S,<) be a totally ordered set
and I" be a non-empty subset of S. We define
Xy ={ze S|zzmax{X,7,Y}},

for every X,y€ S and y €. Then S isa I -
semihypergroup.

Example 3. Let S be a I -semigroup and P be a
non-empty subset of S. Let I, = {ap :ax €'},
If we define Xapy= XaPay, for every
X,yeS and a€l, then S is a Ip-
semihypergroup.

Let S be a I -semihypergroup. We define a
relation © on SxI as follows:

(X a)p(y,p) = Xas=yps,VseS.

Obviously o is an equivalence relation. Let
[X,a] denote the equivalence class containing
(X, ). Let M ={[Xa]:XxeS,ael}. We

define the hyperoperation o on M as follows:

[x,a]e[y,B]={[z,B]:z € xay},
for all [x,a],[y,B]e M.

Since  (Xay)fz= Xa(ypz), for all
X,Y,Ze S and o, €T, then

[x,a]e([y,B]e[zv]) = ([x,a]°[y,B]) [z, Y],
for all [x,al,[y,B]l,[z,v]e M.

Thus the hyperoperation o is associative, so
(M ,0) is a semihypergroup. This semihypergroup
is called the left operator semihypergroup of S.

Let S be a I -semihypergroup. If there exist
elements €€ S and O €I such that @X = X for
every X€ S, then S is said to have a left partial

unity which is denoted by €;. It is easy to check
whether € is a left partial unity of S, then [€,0]

is a left unity of the left operator semihypergroup

M.

Example 4. Consider Example 1 and let € be the
identity element of G. Then €, =€ is a left

partial unity of the I" -semihypergroup G.
The concept of I -hyperideals of a I -
semihypergroup was defined and studied in [12].

Definition 2.2. A non-empty subset | of a I'-
semihypergroup S is called a left (right) I -
hyperideal, "ideal, for short" of S, if S| |
(IFTSc1). S is called a left (right) simple I -
semihypergroup if it has no proper left (right) ideal.
S is simple if S has no proper left and right
ideals.
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Let A be a non-empty subset of a I -
semihypergroup S. Then the intersection of all
ideals of S containing A is an ideal of S

generated by A, and denoted by < A> .

Example 5. Consider Example 4. Put S= N with
natural order. Then the subset

|, ={n,n+1,n+2,---} is anideal of S, for every
neN

The following lemmas and theorem were proved
in [12].

Lemma 2.3. Let S be a I -semihypergroup. If
A is a non-empty subset of S, then

< A>= AU AI'SUS AU SAI'S

One can see that, if S is a commutative I -
semihypergroup and p+AcCS, then

<A>= AUAIS If S is a commutative I -
semihypergroup with left partial unity, then
<A>=AI'S.

Lemma 2.4. Let S be a I' -semihypergroup and
A be a non-empty set such that for every A € A,
| , is an ideal of S. Then the following assertions
hold:

(1) UMIA isanideal of S;

) ﬂmlﬂ isan ideal of S.

Definition 25. A proper ideal P of I'-
semihypergroup S is called a prime ideal, if for
every ideal | and J of S, I['J — P implies
| P or JcP. Ifa I' -semihypergroup S is

commutative, then a proper ideal P is prime if and
only if al’lbc P implies a€ P or be P, for

any a,be S

Example 6. Consider Example 2. Put
S=I={1,2,---,n} for some natural number n.

Then, all ideals of S have the form
I, ={i,i+1,---,n}, forevery i€ S and |, isa
prime ideal of S,

Theorem 2.6. Let S be a I -semihypergroup and

P be a left ideal of S. Then P is a prime ideal of
S ifand only if forall X,y € S,

X'y < P implies that xe Por ye P.

Lemma 2.7. Let S be a commutative I -
semihypergroup with a left partial unity and M be
a maximal ideal of S. Then M is a prime ideal of

S

Proof: Suppose that M is a maximal ideal and €
is the left partial unity of S. Let X,Y € S such
that XI'y < M. Then we prove that Xe M or
yeM. If Xxg M, then M c<M,X>, so by
maximality of M we have S=< M, X>. Since
€; € M, it follows that there exist S€ S and

y €I such that € € X)S. Then, we have

y =80y € (X)5)0y  XI'ydsc M.

Similarly, if Y& M, then one proves that
X & M. Therefore, M is a prime ideal of S.

Proposition 2.8. Let S be a I -semihypergroup
with a left partial unity and | be a proper ideal of
S. Then there exists a maximal ideal of S
containing | .

Proof: By Lemma 2.4 and Zorn's lemma the proof
is obvious.

Let S be a I -semihypergroup and M be the
left operator semihypergroup of S. Then for

Ac M, Davvaz et al. in [12] defined A" as
follows:

A" ={xeS:[x,ale A forall aeT}.

Similarly, for | € S, they defined |* as
follows:

I" ={[x,a]eM :xasc | forall seS}.

If | is anideal of S and A is a hyperideal of
M, then | = (17)" and Ac (A")".

We recall the following theorems from [12].
Theorem 2.9.[12] Let S be a I -semihypergroup

and M be its left operator semihypergroup. Then
the following assertions hold:

(1) If A is a right hyperideal of M, then A" isa
right ideal of S.
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@) If | is a right ideal of S then, | is a right
hyperideal of M.

Theorem 210. [12] Let S be a I'-
semihypergroup with a left partial unity and M be
its left operator semihypergroup. If | is a right

ideal of S, then | = (1 )".

3. Semiprimeidealsof I" -semihypergroups

In this section, we introduce the concept of
semiprime ideals of a I -semihypergroup and
prove some results.

Definition 3.1. Let S be a I -semihypergroup.

Then a proper left (right) ideal P of S is said to
be a left (right) semiprime ideal, if for any left
(right) ideal A of S, AIAc P implies that

AcC P. A proper ideal P is called semiprime

ideal if P is both left and right semiprime ideal of
S

Example 7. Let S=T1"={1,2,3,---,n} for some
NeN. For every X,Yy€S and ael we

define the following hyperoperation on S
Xay = {Se S| s> max{X,a, VY}}.

Then S is a I -semihypergroup and
[, ={i,i+1,---,n} is a semiprime ideal of S for
I<i<n

Lemma. 3.2 Let S be a I' -semihypergroup with a
left partial unity and P be a left ideal of S. Then
P is a left semiprime ideal of S if and only if for
every X,y € S we have

X[IxcP=xeP.

Proof: Suppose that P is a left semiprime ideal of
S and XIXxcP for xeS  Then

IXTIXcTIPcP. Since P is a left
semiprime ideal and X is a left ideal of S, it
follows that X e SI'X < P.

Conversely, let A be an ideal of S such that
ACAcC P. If ae A then al'STac ATAc P.
So, by the above implication a€ P thus Ac P.

Lemma 3.3. Let S be a I -semihypergroup and

M be its left operator semihypergroup. Then the
following statements hold:

(1) If P is a semiprime ideal of M, then P" isa
semiprime ideal of S,

(2) If S has a left partial unity and Q isa
semiprime ideal of S, then Q+y is a semiprime
ideal of M.

Proof: (1) Suppose that P is a semiprime ideal of
M and A is an ideal of S such that ATAc P*.
Then [ATAT]c P so [AT]o[AT]c P. Since
[AT] is an ideal of M and P is a semiprime
ideal of M, it follows that [A,I']< P hence
Ac P". Thus P" is a semiprime ideal of S.

(2) Suppose that Q is a semiprime ideal of S and
A is an ideal of M such that Ao Ac Q".
First, we show that ATA" < (Ao A)". Let
t € A'TA". Then there exist X,ye A" and y €I’
such that t € Xpy. So [t,a]e[X, y]o[Y,a]< Ac A
for every «ae€l. Thus te(A-A)", so
ATA" < (Ao A)*. Now, from Ac Ac Q" and

Theorem 2.10 we have
ATA c(AA)' c(Q") =Q.

Since Q is a semiprime ideal and A" is an ideal
of S, it follows that A'cQ. Thus
Ac (A" Q. Therefore, Q+' is a
semiprime ideal of M .

Lemma 34. Let P be a prime ideal of a I -
semihypergroup S for every i€l and let
P:ﬂielp' Then if P#J, then P is a

semiprime ideal of S.
Proof: It is immediate.

Lemma 35. Let T be a I -subsemihypergroup
and | be an ideal of the I -semihypergroup S
such that | N T =(J. Then T is contained in a
I" -subsemihypergroup that is maximal with respect
to the property of not meeting | .



73

1JST (2011) A2: 69-80

Proof: Since the set 4=({K|T<K<S and Knl =0}

is non-empty, it follows that by Zorn's lemma, A
has a maximal element that satisfies the theorem.

Lemma 36. Let T be a commutative I -
subsemihypergroup and | be an ideal of the I -
semihypergroup S such that | N T =&. Then
there exists a prime ideal of S, say P, such that

| cPand PNT =0.

Proof: By Zorn's lemma, there exists an ideal P
such that P is maximal with respect to properties
of |l cPand PNT = . Weclaim that P isa

prime ideal of S. Suppose that X,y e S\P.
Then, we show that XI'SI'Y & P. Since X,y ¢ P

and P is maximal, it follows that
<P, x>NnT#& and <P,y>nTz.

Thus, there exist SteS  such that
se<P,x>NT and te<P,y>NT. From
the property PNT =, we have only four
cases: (i) SesaX and tetfy for some
S.,t, €S and a,fel, (i) Sesax and
t=Yy forsome S €S and a €I, (iii) S=X
and tet,py for some t,€S and f el and
(ivy S=X and t=Yy. If (i) holds, then
sl't c (sax)I'(t,By) < xXI'Sy.

Now, since | is a I -subsemihypergroup, it
follows that SI'tcT. Thus X[Syz P.

Similarly, in the other cases we conclude that
XISy & P. Therefore, P is a prime ideal of

S.
Let S be a I -semihypergroup and | be an

ideal of S. A prime ideal P of S is called a
minimal prime ideal belonging to |, if | < P and

there is no prime ideal containing | and properly
contained in P.

Corollary 3.7. If Q is a prime ideal containing an
ideal |, then there exists a minimal prime ideal

belonging to | which is contained in Q.

Definition 3.8. Let S be a I -semihypergroup and
| be anideal of S. Then the prime radical of | is
defined as the intersection of all prime ideals of S

containing | and is denoted by /1 .

Proposition 3.9. Let S be a I -semihypergroup

and | be an ideal of S. Then the following
statements hold:

(1) /I is a semiprime ideal of S
(2) Vi =N(P|Pisaminimal primeideal belongingto 1 }.

Proof: (1) It is straightforward.
(2) It is taken from Corollary 3.7.

4. T -hypergroups

In this section we study the concept of I -
hypergroups and give some examples. Also, we
introduce the concept of closed I' -subhypergroups
ofa I -hypergroup.

Definition 4.1. A T" -semihypergroup S is called a
" -hypergroup if (S,,ar) is a hypergroup for
every €.

Example 8. Let S={a,b,c,d} and I = {a, A}
We define the hyperoperations & and [ as

follows:
a a b c d
a [{ab} {bc} {cd} {ad}
b |{b,c; {c,d} {ad} {ab}
c |{c,d} {a,d} {ab} {b,c}
d ({ad} {ab} {bc} {cd}
s a b C d
a |{bc} {cd} {ad} {ab}
b |{c.d} {ad} {ab} {bc}
c |{fad} {ab} {bc {cd}
d {ab} {bc} {cd} {ad}

Then S isa I -hypergroup.

Example 9. Let S be a non-empty set and
I'={a,f}. Then for every X,Y€S and

a,B el we define Xay =S and XBy={X,Yy}.
Then S isa I -hypergroup.

Example 10. Let (S,;) be a group. Let
I cP’(S). We define Xay = X-a - Y for every
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X,Yye€S and ael. Then S is a I'-
hypergroup.

Example 11. Let (S,0) be a hypergroup and
@D+ S We define Xay=Xoqoy for
every X,Y€S and ¢ €. Then S isa I'-
hypergroup.

Example 12. Let (G,) be a group and {A,}

be a collection of disjoint sets. Consider

S= UgEGAg and '=G. For X,Yy€ S there

geG

exist 0,,d,€G such that Xe A,  and
X

ye A\Jy' We define Xay = Agxagy. Then S is
a I -hypergroup.

Example 13. Let S be a I -group and P be a
I -subgroup of S. Let I'"={y'| ¥ €T'}. Now,

for every X,y€S and '€l we define
Xa'y = Xay U P. Then, S isa I -hypergroup.

Theorem 4.2.[12] Let S be a I -semihypergroup.
Then S is a simple I" -semihypergroup if and only

if Sa is a hypergroup for every o € I'.

Theorem 4.3. Let S be a I -semihypergroup.
Then for every @ €T, Sa is a hypergroup if and

only if S is left and right simple.

Proof: Suppose that Sa is a hypergroup and | isa

left (right) ideal of S. If Xel, then the
reproduction axiom implies that XxaS =S =Sox.
On the other hand, we have Saxcl
(XaSc |). Therefore, | = S,

Conversely, suppose that S is left and right
simple. Then for every X€ S and a €I, put

| = XaS. Thus, | is aright ideal of S, for
ITS=(XaS)I'S= xa(T'S) < xaS= |

so XaS=S. Similarly, we have S= Sax.
Therefore, S isa I" -hypergroup.

Corollary 4.4. If S, is a hypergroup for some
ael’, then for every ael, S is a
hypergroup.

Definition 4.5. A subset H of a I" -hypergroup is
called a I" -subhypergroup if for every h,k e H

and ael’ we have hokcH and
haoH =H = Hah.

Definition 4.6. Let S be a I" -hypergroup. Then a
subset H of S is called closed if for every
hkeH,XxeS and ael” we have the
following implication

hexaH = x eH.

Example 14. Consider (Z,+) and let I' = {ex, £}
where @ ={-1,1} and F={-2,42}. If for
every X, Y € Z we define:

xay ={x+y-1,x+y+1},xBy
={x+y-2,x+y+2}.

Then, Z is a I' -hypergroup and H =27 is a
closed subset of Z .

Example 15. Consider (Z,+) and let I' = {ex, [}
where @ ={-2,2} and [ = {—4,4}. If for every
X, Y € Z we define:

xoy ={X+y—-2,x+y+2},xPy
={x+y—-4,x+y+4}.

Then 7Z is a I' -hypergroup and H =27 is a
closed I" -subhypergroup of 7Z .

Let S be a I -hypergroup. Then two new
hyperoperations may be defined on S as follows:

a/b={xeS|aexab,acl}

and a\b={xeS|aebax,ael}.

If A and B are non-empty subsets of S, then

AB= |J ab and A\B= [ a\b.

acAbeB acAbeB

Lemma4.7. Let S bea I -hypergroup, A B,C

and D be non-empty subsets of S and X,y € S.

Then the following assertions hold:
(DIf Ac B and C < D, then A/C < B/D;

@) (A/B)/C = A/(CIB);
3) (A\B)\C = A\(BI'C);
@) y e x\ (¥y);
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(5) yeX(x\y);

(6) If A is a closed subset of S, then A/AC A;
(7) Ac (AI'B)/B;

(8)If H isa I' -subhypergroup, then H < H/H.

Proof: (1) It is immediate.
(2) Suppose that X € (A/B)/C. Then, there exist

ac AbeB and ceC such that X € (a/b)/C.
So, we have
xe(a/b))c = 3Jyeab,xey/c
—aeylbyexic
= ae(X'c)['b= xI'(cl'b)
= 3Jzecl'b,aexz

= Xea/zc a/(cl'b) < A/(CI'B).

Thus, (A/B)/C < A/(CT'B).

Conversely, suppose that X & A/(CI'B). Then
there exist a€ AbeB and ceC such that
X € a/(cl'b). So there exists Y € CI'D such that
Xealy. So aexXl'yc Xr'(cl'b)=(xrc)l'b.
Thus there exists Z € XI'C such that ae€ zZI['b
and so X € Z/C, z € a/b. Therefore, X € (A/B)/C.
(3) It is similar to (2).

(4) Let aexy#<. Then Xealy, so
yex\ac x\(xy).

(5) it is similar to (4).

6 If XeAA then xea/a,. So
a, e x'a, c X>TAN A Since A is a closed

subset of S, it follows that X € A. Therefore,
A/AcCA.

(7) Suppose that X€ A and Y€ XI'B. Then
x e y/B < (AI'B)/B.

(8) Suppose that H is a I -subhypergroup and
h, € H. Then there exists h, € H such that
hehl'h, thus heh/h,cHH, so
Hc H/H.

Theorem 4.8. Let S be a I -hypergroup and H
be a I -subhypergroup of S. Then H is a closed
I -subhypergroup if and only if H = H/H.

Proof: Suppose that H is a closed I -
subhypergroup. Then, by the previous lemma,

HcH/HcH. Thus H=H/H.
Conversely, suppose that H/H=H. If

yEXOLh('\H, for heH, then

Xey/hcH/H =H. Therefore, H is a
closed I" -subhypergroup of S.

Example 16. Let G be a group with a non trivial
center. Let P,Qc Z(G) and put I' ={«a, f}.
For every X,Y€G we define Xay = XyP and
XBy = XyQ. Then G isa I -hypergroup.

Let a,b e G. Then

ab ={xeG|aexb}
={xeG|ae xabu xpb}
={xeGlae xbPu xbQ}
=ab'P'uab’Q™.
If H is a I' -subhypergroup of G containing
P and Q, then for every a,beH we have
ab=ab'P'uab'Q'cH, so by the

above theorem, H is a closed I -subhypergroup

of G.

Lemma 4.9. Let S be a I -semihypergroup and

H and K be two closed I -subhypergroups of
S. Then <H UK >=<HI'K >.

Proof: Since HTK << H UK >, it follows that
<HI'K >c<H UK >. Now, we prove the

converse of inclusion. Since H and K are closed
I' -subhypergroups of S, it follows that HI'K is

a closed subset of S. Now, by the previous
theorem and Lemma 4.7, we have

H=HH c(HTKYK)H
= (HTK)/(HTK) c< HTK >.

Similarly, Kc<HIK >.
<HUK>=<HI'H >.

Therefore,

5. I -semihypergroups associated to binary
relations

The connections between hyperstructures and
binary relations have been analyzed by many
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researchers, such as Rosenberg [13], Corsini [14],
Cristea and Stefanescu [15] and others [16, 17, 18] .
In this section we associate to a set of binary

relations on a non-empty set S, say I', a partial

I" -hypergroupoid and get necessary and sufficient
conditions such that it is a I" -semihypergroup or a
I" -hypergroup.

Rosenberg [13] has associated a partial
hypergroupoid H, with a binary relation R
defined on a non-empty set H, where, for any

X, yeH

xox=L ={zeH]|(x,z)eR}

and Xoy=XoXUYyoy.

An element X e H is called an outer element for

R if there exists he H such that (h,X) ¢ R’
Rosenberg proved the next theorem.

Theorem 5.1. [13] Hy is a hypergroup if and only
if
(1) R has full domain;
(2) R has full range;
3) RcR%;
@) If (,X)e R, then (&, X) € R, whenever
X is an outer element.

Let R be a binary relation on a non-empty set
S. Then an element X€ S is called a semiouter

element for the relation R if there exists he S
such that (h,X) ¢ R

Let R be a binary relation on a non-empty set
S AcS and X,ye€S Then we use the
following notations:

L =R(X)={ze S|(x,2) eR};
R(X,y)={ze S|(X,2) e Rv(Yy,2) e R};
R(A)={ze S|(a,2)e R Jac A};
R'(A)={zeS|(za)eR Jac Al

Definition 5.2. Let S be a non-empty set and R
be a set of binary relations on S. Then for every

o € R we can associate a hyperoperation ©, on

S as follows:

Xo, Y=a(Xy)=L UL], VX yeS

So (S,Oa) is a partial hypergroupoid. Now, let
I'={o,|aeR}. Then S is a partial I'-
hypergroupoid and is denoted by S.

To simplify, we write o, by & and consider

I'=7R, in this way for every @€l and
X, Y € S we have

Xay = Xo, y=a(Xy)=L ULy

It is easy to see that if for every & € I we have
a'(S)=S, then S; isa I" -hypergroupoid.

Example 17. Let S={1,2,3,4,5} and I ={«a, 3,7}
such that

a={(1,1),(1,2),(2,4),(3.4),(4,5),(4.4).(5.2)},
B=1{(1,1),(1,3),(1,4),(2.5),(3,3),(4,1),(5.4).(5.3)},
y =1(1,3),(2,3),(3,4),(4.5),(5,1),(5,5)}

Then S isa I" -hypergroupoid.

Lemmab.3. Let S be a non-empty setand I be a
set of binary relations on S such that S isa I -
hypergroupoid. Then the following assertions hold:
(1) S; is a commutative I" -hypergroupoid;

(2) Forevery Xe S and a € I', XaX = a(X);
(3) For every X, ¥,ZeS and a,f€el,
Xa(ypz) = a(x) v pa(y, 2);

(4) For every X, Y,ZeS and «,f €T,

(Xay)fz=ap(x,y) B(2).

Proof: The proofis straightforward.
In the following we provide some conditions on

I' such that S; be a I' -semihypergroup.

Theorem 5.4. Let S be a non-empty set and I" be
a set of binary relations on S such that S. be a
I" -hypergroupoid. Then S. is a [I'-

semihypergroup if and only if the following
conditions hold:

(’'SHI1) Forevery a, f €T, a < af;
(F'SH2) If X is a semiouter element for the
relation ff and (&,X) € fa, then (a,X) e f
forevery a€ S and o, f €T
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(I'SH3) If X is a semiouter element for the
relations aff and f and (8&,X)€ fa, then

(a,X) e af, forevery ae S and o, f .

Proof: Suppose that Sy is a I -semihypergroup.

We prove the conditions (I" SH1), (I" SH2) and
(I" SH3) of the theorem.
(I'SHI) Let X, Y€ S and &, €T such that

Y € a(X). Then we consider two cases:
Case (i) Y € B(Y). Then Y € af3(X).
Case (i) Y& f(Y). Then we have

(XaX) Yy = Xa(XPY) so the associativity axiom
and the previous lemma conclude that
ap(X) B(Yy) = a(X)V fa(xX) Ba(y).
Now, since Y € @(X) and Y ¢ £(Y), it follows
that Y € af(X). Therefore, & < af3.

(I" SH2) Suppose that X is a semiouter element
for the relation @ff and X € fa(a). So there

exists e S such that X ¢ af(h). Thus the
associativity axiom and the previous lemma

conclude that (hah)fh = ha (hpa), thus
ap(hyu p(a)=a(h)u pa(h)u pa(a). Since
Xe pa(a) and xgaf(h), it follows that

X e f(a).

(I" SH3) Suppose that X is a semiouter element
for the relations @ff and £ and let X € fa(a).

So there exist N,t € S such that (h, X) ¢ @f and
(t,X) ¢ B. Now, we have ha(aft) = (haa) St
tus  a(h)u Ba(at)=aB(@h)u At).
Since Xe€ fa(a), Xx¢ apf(h) and X g S(1), it
follows that X € af3(Q).

Conversely, suppose that S is a non-empty set
and I be a set of binary relations on S such that
S. is a I -hypergroupoid and the conditions
(I" SH1), (I" SH2) and (I" SH3) of the theorem are
satisfied. We prove the associativity axiom for S..
Let X, ¥,2zteS and a,f €l such that
te Xa(ypz) = a(X)U fa(y,z). Then we
have three cases:

Case (i) te a(X). Then by the condition

(I" SH1) t € af(X).
Case (ii) t e fa(X). Then if
teaf(X)U f(Z), then t is a semiouter

clement for the relations ff and [. So by the
condition (I" SH3) t € af(Y).

Case (iii) t € fa(Z). Then if t ¢ @f(X), then
t is a semiouter element for the relation &f3 so by
the condition (I"SH2), te f(Z). Thus
X (YfzZ) < (Xay) fZ. In the same way, we can

prove the converse inclusion. Therefore, S is a
I" -semihypergroup.

Example 18. Let S=1{1,2,3} and T = {@, B}
such that a =1{(1,2),(2,2),(2,3),(3,3)} and
£=1{(1,3),(2,2),(3,2),(3,3)}. Then we have
the table of hyperoperations & and £ as follows:

1 2 3

(04

1|2y 23 23!
2 ({231 (2,3} 2.3}
314237 231 {3

1 2 3

37 1237 {235
2,30 42p 23]
2,3} {23} {23}

W N~

Then S; isa I -semihypergroup.

Theorem 5.5. Let S be a non-empty set and I" be
a set of binary relations on S such that S is a

I -semihypergroup. Then S is a I" -hypergroup
if and only if @(S)= S forevery a € T.

Proof: Suppose that S is a I -hypergroup. Then
S, is a hypergroup for every @ €. So by

o

Theorem 5.1, & has full range, thus &(S) = S.
Conversely, suppose that a(S)=S for every

a €l so S, is a hypergroup. Therefore, S;. is a
I" -hypergroup.

Example 19. Let S={1,2,3} and ' ={a, [}
a:ASU{(zal)a(?)az)} and
B=A5U{3,1)}, where Ag is the diagonal

such that
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relation on S. Then we have the table of
hyperoperations & and [ as follows:

a | 1 2 3
1 [y 2y S
2 41,20 {12} S
3/ s s 023

g |1 2 3
Lo{y {12y {13}
2 |12y {23 S
3 {13y S {13}

Then S isa I -hypergroup.

Lemmab.6. Let S be a non-empty set and I" be a
set of binary relations on S such that S isa I'-

semihypergroup. Then | =T'(S) = Uaera(S) is

a minimal ideal of Sr .

Proof: Suppose that a€l, S€S and a €T
Then we have Sca=a(a)Ua(s)ca(S)cl.
So | is an ideal of S;. Furthermore, if J is an
ideal of S and b e J, then for every S€ S and
acel, sab=a(s)uab)cJ. So a(S)cJ
hence | < J.

Proposition 5.7. Let S be a non-empty set and I"
be a set of binary relations on S such that S isa
I" -semihypergroup. Let
I' ={aup|a,pel}. Then Sl-u isa I -

semihypergroup.

Proof: We prove that SFU satisfies the conditions
(I"' SH1), (I' SH2) and (I" SH3) of Theorem 5.4.
Suppose that 6',¢' €. Then there exist
a,f,0,yel’, such that '=a U and
@' =0Uy. Since S, is a I -semihypergroup, it
follows that @ C @d U ay and < oL fy.
Thus

=auUBcaduayUpsuUPy
=(auUP)duy)=67¢.

So the condition (I" SH1) holds.
Suppose that X€ S is a semiouter element for
the relation &' and let (&, X) € ¢'0'. Then there

exists N € S such that (h, X) ¢ &'¢’. Thus X isa
semiouter element for the relations @d,ay, O
and fy. Since (a,X)€ @', it follows that
(a,X) e oa, (a,X) €y, (&,X) € Of or
(a, X) € yB. From the condition (I" SH2) for S
we conclude that (a,X)ed, (A X) ey,
(a,X)€eo or (a,x)ey. Thus (a,X)esuUy=¢'
and the condition (I" SH2) holds.

Suppose that X € S is a semiouter element for
the relations 8’9" and @' and let (&, X) € @'0'.
Then there exist h,t € S such that (h, X) ¢ 8¢’
and (t,X) € @'. So X is a semiouter element for
the relations @0, ay, SO, By,0 and y. Thus if
(@ax)eas, (axeda, (X ey,
(a,X)edf or (&, X)eyf, then from the
condition (I'SH3) for S. we conclude that
(ax)ead, (a,X)eay, (a,X)edff or
(&,X) € ¥, respectively, and the condition
(I"SH3) holds. Therefore, S-U is a I -

)
semihypergroup.
Let Sy be a hypergroupoid associated to a binary

relation R Let I'y ={e, | € N}. Now, for
every X, Y€ S and ; €' we define

xa,y=1z|(x2)e R v (y,2) e R} =17 UL].

Then S is a I'; -hypergroupoid and denoted by

SFR' In the following we verify conditions such

that S isa I'; -semihypergroup.

Lemma 58. Let S; be a semihypergroup

associated to a binary relation R Then if
(zt)e R™ and (xt) g R, then
(zt) e R!, forevery X, zteSand i, j e N.

Proof: We prove by mathematical induction on
i+j. 1 i+j=2 (zD)eR and

(X,t) ¢ R®, then t is an outer element for R so
(zt)e R
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Suppose that the result holds for i + | —1. Now,
let (zt)eR* and (Xt)gR*. Then there
exists S€S such that (ZS)eR® and
(st) e R, Thus (X,S) ¢ R?, thatis, S is an
outer element for R and so (Z,S) € R Therefore,
(zt) e R, Now, we have (z,t)e R*!™ and
(x,t) & R thus (zt) e R,

Lemma 59. Let S; be a semihypergroup

associated to a binary relation R Then SFR is a

I'; -semihypergroup.

Proof: We prove the associativity law. Suppose
that X,Y,Z€ S and a;,a; €I Then

_ Ri Ri+j Ri+j
xoy(yaz) =L UL) UL

z

_ Rt Ri*] RI
and (xouy)o,z=L0 ULy "UL.

Ri+j Ri+j .

Iftel, andtgl , thenby the previous
lemma te L?l c (X, Y)a,z Therefore,
Xa;, (Ya;Z) © (Xa;Y)a;Z In a similar way we
have the inverse inclusion.
Example  20. Let S={1,2,3} and
R=1{(1,2),(1,3),(2,2),(3,2)}. Then S; is a
semihypergroup. Let I'z ={¢,,a,}. Then we
have the following hyperoperations:

a | 1 2 3
{13} S S
2 |'s {2} {23}
S {23} {2}

a, |1 2 3
s s s
s 21 23!
3 S 2,30 {2

Then SFR is a 'y -semihypergroup.

6. Conclusion

In this work, we presented the concept of
semiprime ideals in a I -semihypergroup and
proved some results. Also, we introduced the notion
of I -hypergroups and closed I -subhypergroups.
Finally, we defined the concept of I -
semihypergroups and I" -hypergroups associated to
a set of binary relations. Then we find the necessary
and sufficient conditions on a set of binary relations
I' on a non-empty set S such that S becomes a
I" -semihypergroup or a I" -hypergroup.

Our future research will consider [ .
semihyperrings associated to binary relations.
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