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Abstract 

Soil surfaces in arid and semi-arid lands often lack photoautotrophic life but are covered by communities of soil 
surface covering organisms able to tolerate dehydration, and thus adapted to aridity. One important objective of 
multi-spectral remote sensing instruments is the detection of the optical characteristics of the Earth’s surface using 
high spectral resolution bands. In this study ASTER imagery and reflected radiation in VNIR bands were used to 
investigate biological Soil Crusts (BSCs) in the field. By applying IARR (Internal Average Relative Reflectance), 
FCC (False Color Composite), MNF (Minimum Noise Fraction Transform), and MEM (Mathematical Evaluation 
Method) techniques, BSCs are successfully detected in the Chadormalu desert area of central Iran. This study 
clearly shows the capability of ASTER data (VNIR bands) to detect BSC or cyanobacteria soil crusts. The 
proposed MEM method, despite being approximative is suitable for detecting microorganisms in inaccessible 
areas such as other planet surfaces or remote areas on earth. 
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1. Introduction 

Soil surfaces in arid and semi-arid lands often lack 
photoautotrophic life but are covered by a 
community of soil surface organisms that are 
adapted to aridity and thus able to tolerate 
dehydration. These communities are known as 
Biological Soil Crust (BSC) or microphytic soil 
crust and comprise a complex assemblage of 
bacteria, cyanobacteria, green algae, microfungi, 
lichens and mosses [1-3]. 

This phenomenon has been widely reported from 
the Middle East [e.g. 4], the African Sahel and 
Sahara [3], North and South America [5], Central 
Asia and Australia [3, 6], Northern Victoria Land, 
McMurdo Dry Valleys and Ice Shelf, Antarctica [e. 
g. 7] and India [8]. 

Cyanobacteria and algae are major components of 
many BSCs [3, 9]. Danin et al. [10], Danin [11] and 
those in the Negev Desert, Israel, consist mostly of 
cyanobacteria with Microcoleous vaginatus;  
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the dominant species accompanied by another 
cynobacteria genus (e.g. Scytonema, Schizothrix, 
Calothrix, Chroococcidiopsis, Nostoc and 
Phorimidium) [12]. Similarly, BSCs are present in 
4% of the Sonoran Desert [13-15] and comprise up 
to 70% of the living cover in arid and semiarid 
areas of the Colorado Plateau Biogeographical 
Province. Of these organisms, the cyanobacterium 
Microcoleous Vaginatus is estimated to contribute 
95% of the soil biomass in shrub and grass 
interspaces at sites in both the Colorado Plateau and 
the Great Basin Biogeographical Provinces.  

Cyanobacteria structure is similar to that of 
bacteria (i.e. prokaryote) but their photosynthetic 
mechanism resembles that of green algae [4, 16, 
17]. Cyanobacteria have not only the common 
chlorophyll a, but also phycobilin pigments and 
many are able to fix atmospheric nitrogen which is 
needed for proteins. These features, and the lack of 
complex parts, make it possible for BSCs to occupy 
an ecological niche in the extreme desert extreme 
environment.  

The cyanobacteria crust, being never more than a 
few millimeters thick, constitutes a relatively small 
portion of the soil profile, but since it occupies the 
uppermost part of the profile, it plays an important 
role in the desert ecosystem. Danin [11] proposed 
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that due to the adhesive properties of its filaments, 
cyanobacteria crust stabilizes the mobile sand dune 
and prevents water and wind soil erosion. Shields et 
al. [18] showed that it improves soil fertility due to  
changes in the content of different elements such as 
amino nitrogen, oxygen, organic carbon and 
nutrients. 

Remote sensing instruments are designed to use 
the optical characteristics of the Earth’s surface to 
discriminate and map various materials. 

To date, little research has been done to spectrally 
examine biological soil crusts or map them using 
remote sensing [19]. Karnieli et al. [4] have shown 
that spectral reflectance values can be measured 
during wet seasons and O’ Neill [6], Karnieli and 
Sarafis [20], Tromp and Steenis [21] and Zombre et 
al. [22], presented spectral curves of cyanobacteria 
crust. However, none of these authors analyzed, 
systematically, the spectral features of the 
cyanobacteria crust through the atmospheric 
windows available to spectral remote sensing 
instruments (‘i.e. Visible (VIS), Near Infrared 
(NIR), and Shortwave Infrared (SWIR)) under 
different moisture conditions. 

The ASTER sensor was installed as payload onto 
an Earth Observing System (EOS) Terra platform 
and launched on December 18, 1999. It acquires 
multi-spectral images in14 channels variously 
spaced through the Shortwave Infrared (SWIR), 
Visible and Near Infrared (VNIR) and Thermal 
Infrared (TIR) (Table 1). The VNIR atmospheric 
window is useful in studying vegetation [23, 24] or, 
in other words, is an important source of 
information for studying chlorophyll a [25]. This 
sensor is also a developed multi-spectral sensor 
which can classify minerals using data from the 
SWIR region and identify rocks using data from the 
thermal infrared region [26, 27, 28]. Although 
ASTER collects data in 9 channels of the VIS, NIR 
and SWIR, it remains a low resolution instrument 
and hence is only marginally effective in 
discriminating the full scope of spectral variety 
present in a case study. However, for general 
classification purpose, the new space-born imagers 
(e.g. ASTER and ALI) present a substantial 
improvement in spectral mapping capability over 
older satellite platforms (e.g. Landsat-7ETM) [24]. 
ALI gives increased spectral resolution in the VNIR 
compared to Landsat-7ETM. ASTER is cheap, 
easily available and has the capacity for targeting 
exploration and land cover studies. [29]. It has an 
increased spectral resolution in the SWIR compared 
to Landsat TM and ALI [28, 30]. In other words, 
ASTER has more bands and better spatial and 
spectral resolution than Landsat-7ETM and, is 
cheaper and more available than ALI. Fig. 1 
compares the characteristics of ASTER, ALI and 
Landsat-7ETM.  

The BSCs have been detected in the Negev 
desert, Israel, by a low spectral resolution sensor 
(i.e. Landsat TM) [31]. Carranza and Hale [32] 
suggested that, Landsat TM bands 5 and 7 are 
potentially useful in detecting clay zones in arid 
areas. However, similarities in shape and relative 
intensities of the reflection curves of vegetation and 
clay minerals in the spectral regions covered by 
Landsat TM bands 5 and 7 make their 
discrimination difficult (Fig. 1).  

 

 
 
Fig 1. Generalized reflectance spectra of vegetation, clay 
and iron oxides (Modified from Carranza and Hale, [32]). 
Note the overlap between clay and vegetation spectral 
reflectances. 
 

If biological soil crusts (especially cyanobacteria 
species) extend a wide carpet and are present in 
sufficient quantities (manifested by chlorophyll a) 
at the surface, from which solar radiation can be 
reflected to the sensor, then spectroradiometers 
including ASTER offer the prospect of an 
additional source of data available to the biologist 
and environmental geologist [20, 22, 25, 33].  

Detecting and mapping a variety of surface 
features using image data can be obtained by a 
number of different techniques (e.g. Minimum 
Noise Fraction (MNF) transform, matched filtering, 
Principal Component Analysis (PCA) , spectral 
linear mixture, Biological soil Index, Neural 
Network) [e.g. 25, 30, 34, 35] but, there has been 
little work done on soil crusts. Moghtaderi et al. 
[30, 34], using MNF transform and Mathematical 
Evaluation Method (MEM) techniques on ASTER 
images showed that the capability and accuracy of 
the MEM method is better than 2×2 correlated filter 
technique. This study (MEM and ground control) 
clearly showed the capability of ASTER data in the 
detection of alteration minerals in the Chadormalu 
iron ore deposit, central Iran. The output of 
applying MEM is a grayscale image, in which the 
Digital Number (DN) values match the percentage 
of the alteration mineral present.  Kishino et al. [25] 
implemented the neural network (NN) method in 
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the analysis of ASTER data (VNIR bands) of 
Tokyo Bay, as a case study in the coastal waters in 
order to demonstrate the usefulness of remote 
sensing with high spatial resolution. Their results 
showed that the indicated concentration of 
chlorophyll a was reasonably accurate. Of course, it 
is necessary to improve the optical model for 
simulated data sets as well. Svab et al. [35] 
suggested that PCA, spectral linear modeling and 
multivariate regression analysis may be used to 
provide estimates of chlorophyll a ((chl a)) 
concentration. None of these methods [25, 35] can 
record BSCs (e.g. cyanobacteria) with sufficient 
reliability. 

This research is important to discriminate and map 
such crusts with a low cost readily available data 
source for desert ecosystem protection and may be 
useful (MEM method) in astrobiological studies, 
especially in Mars biological explorations. 

In this study an attempt is made to detect 
cyanobacteria crusts within Chadormalu desert 
(North of Chadormalu iron deposit). The main 
purpose is to discriminate and compare the spatial 
extent of BSC and barren areas.

 
Table 1. Performance parameters for the ASTER radiometer [30] 

 

 
 
 

 
 

ASTER baseline performance requirements      

System                         Band number Spectral 
Range (µM) 

Radiometric 
resolution 

Absolute 
Accuracy (σ) 

Spatial  
resolution 

Signal 
Quantization 
levels 

VNIR                                                1 
                                                          2 
                                                         3N 
                                                         3B 
  SWIR                                             4 
                                                         5 
                                                         6 
                                                         7 
                                                         8 
                                                         9 
TIR                                                 10 
                                                        11 
                                                        12 
                                                        13 
                                                        14 
 
 
 
Stereo base-to-height ratio             0.6 (along-
track) 
Swath width                                   60 km 
Total coverage in                           232 km 
       Cross-track direction 
        By pointing 
Mission life                                   5 years 
MTF at Nyquist frequency           0.25 (cross-
track) 
                                                      0.20 (along-
track) 
Band-to-band registration             Intra-
telescope:0.2 pixels 
                                                      Intra-
telescope:0.3 pixels 
                                                      of coarser 
band 
Peak data rate                               89.2 Mbps 
Mass                                             406 kg 
Peak power                                   726 W 

0.52-0.60 
0.63-0.69 
0.78-0.86 
0.78-0.86 
1.600-1.700 
2.145-2.185 
2.185-2.225 
2.235-2.285 
2.295-2.365 
2.360-2.430 
8.125-8.475 
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

NEΔρ≤0.5% 
 
 
 
NEΔρ≤0.5% 
NEΔρ≤0.5% 
NEΔρ≤0.5% 
NEΔρ≤0.5% 
NEΔρ≤0.5% 
NEΔρ≤0.5% 
 
 
NEΔT≤0.3K
. 
 
 
 

≤ ± 4 % 
 
 
 
 
 
≤ ± 4 % 
 
 
 
 
≤ 3 K (200-240 
K) 
≤ 2 K (240-270 
K) 
≤ 1 K (270-340 
K) 
≤ 2 K (340-370 
K) 
 
 
 
 
 
 
 
 
 

15 m 
 
 
 
 
 
30 m 
 
 
 
 
 
90 m 
 
 
 
 
 
 
 
 
 
 

8 bits 
 
 
 
 
 
8 bits 
 
 
 
 
 
12 bits 
 
 
 
 
 
 

Band number 3N refers to the nadir pointing 
view, whereas 3B designates the backward 
pointing view (modified from Rowan and 
Mars, 2003). 
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2. Material and methods 

2.1. Meteorological background 

 
The Chadormalu area (including the northern 
desert) is located in the Bafq metallogenic province 
in central Iran, about 115 km southeast of Yazd city 
(55° 15′- 55° 45′E, 32° 15′-32° 25′N) (Fig. 2a, b). 
The extreme aridity of the Chadormalu desert is due 
to the Zagros and Alborz mountain ranges to the 
west and north respectively which prohibit wet (or 
rainy) weather from reaching this area. Also, the 
salt deserts (kavir) of Bafq and Saqand occupy the 
west and north of the Bafq region. The average 
annual rainfall is 55.7 mm and it only rains in the 
winter and early spring (January-April). Average 
minimum daily temperatures are -9.6°C in January 
and 25°C in May. The average maximum daily 
temperature is 18°C and 45°C in January and July, 
respectively. 
 

2.2. Spectral characteristics of cyanobacteria 

 
The spectral reflectance curves (SRC) of surface 

materials may be used directly to infer natural 
surface features like the biological soil crust in this 
research [24, 26, 30, 34]. Laboratory reflectance 
spectra are accessible over the internet from the 
USGS (United States Geological Survey) 
(http://speclab.cr.usgs.gov/spectral.lib04/spectral- 
lib.desc+plots.html) digital spectral library. These 
sites provide data on minerals, rocks, vegetation 
and soils, but there are no data on microphytic (e.g. 
cyanobacteria) crusts. For this study the most 
appropriate spectral curve selection criterion is the 
spectra of dry cyanobacteria crust proposed by 
Karnieli and Sarafis [20] (Fig. 3a), because it is 
measured from Microcoleous Vaginatus and  
Nostoc which, with Schizothrix, Calothrix, 
Chroococcidiopsis and Phorimidium constitutes the 
most common cyanobacteria (genus) found in the 
deserts of the world [10, 11, 36, 37]. In Fig. 3b-f, 
spectral reflectance curves of soil minerals with 
grain sizes between 150-500 and ≤ 10 µm are 
displayed. Although these curves may overlap with 
spectra of wet cyanobacteria crust, examining the 
spectral reflectance curves of hematite and goethite 
indicate that no such overlaps occur in this study. 

 

 

 
 

Fig. 2 (a). Location of Chadormalu desert area in central 
Iran [30], (b) Geological map of Chadormalu desert and 
Chadormalu iron oxide deposit (bordered area) (Modified 
from Moghtaderi et al., [30]) 
 

The wavelength positions, reflectance, depth and 
number of spectral absorption features define the 
diagnostic features of any material (including 
microphyts) and hence provide the basis for 
mapping BSC(s) [38]. Sharp fluctuations in the 
reflectance spectral curves for cyanobacteria were 
used to determine the best ASTER bands (3, 2, 1 
bands) for the detection of cyanobacteria (‘i.e. M. 
vaginatus and Nostoc) (Fig. 3a Table 2). 
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Fig. 3(a). Spectral reflectance curve of Cyanobacteria in 
dry and wet conditions (Modified from Karnieli and 
Sarafis, [20]) (nm = Nanometer) compared with clay and 
Iron minerals (Fig. 3b-f) including the Hematite, goethite, 
magnetite, and kaolinite respectively, in each figure, there 
is no overlap between Fig. 3a and spectral reflectance 
curves of clay and Iron minerals, especially in dry 
condition.  
 
Table 2. Reflectance values of the dry and wet conditions 
of cyanobacteria extracted from Karnieli and Sarafis [20] 
 

Cyanobacteria VNIR bands 

 1         2        3 
Dry conditions 0.31 0.33 0.36 
Wet conditions 0.18 0.17 0.21 

 

2.3. ASTER image processing and methodology 

 
ASTER Image processing was carried out 

according to the following steps: 
1) Initially, bands 1, 2, 3 were selected from the 14 
bands available in ASTER imagery, as these bands 
contain the most discriminatory information for the 
spectral curves of cyanobacteria [20]. 

2) ASTER level-1B data are radiance at the sensor, 
and not reflectance. In order to directly compare 
multi-spectral image spectra with reference spectra, 
the encoded radiance value in the image must be 
converted to reflectance [12]. The Internal Average 
Relative Reflectance (IARR) method in ENVI 
software was applied on the ASTER radiance data 
to obtain relative reflectance images and then a 
false color composite (FCC) image was created 
from the reflectance data. The IARR is 
pseudoreflectance, and although this is not true 
reflectance, it has been shown to be directly 
proportional to true reflectance, and therefore 
values obtained from such data should be 
proportional to real reflectance. According to Kruse 
et al. [39], Kruse [40] and Van der Meer [41] the 
IARR calibration method normalizes images to a 
scene average spectrum or normalizes the data by 
scaling the sum of the input pixel values in each 
spectral band for each pixel to a constant value. 
This shifts all spectral radiances to the same relative 
brightness. This is particularly effective for 
reducing imaging spectrometer data to relative 
reflectance in an area where no ground 
measurements exist and little is known about the 
scene. This method requires no knowledge of the 
surface materials because it uses an average 
effective spectral radiance calculated directly from 
the input data. Apparent reflectance is calculated 
for each pixel of the image by dividing the scene 
average spectrum into the spectrum for each pixel. 
In other words, the effective spectral radiance of 
each pixel in the image is divided by the average 
effective spectral radiance. The average spectral 
radiance is also thought to contain solar irradiance. 
The resulting spectral values represent reflectance 
relative to the average spectrum. The procedure 
removes the majority of the atmospheric effects, 
except in cases when the area has wide variations in 
elevation, or where atmospheric conditions are not 
uniform across the image. It works best for arid 
areas with no vegetation. Thus, the final outputs 
(MEM’s digital numbers) in this research are not 
real reflectance values, but are proportional to 
them. 
3) FCC was composed using bands 3, 2, 1(RGB).  
4) A forward minimum noise fraction (FMNF) 
transform was carried out on the FCC to identify 
the noise within the image [26, 28, 42]. The FMNF 
procedure is similar to PCA. The main difference is 
that the FMNF considers the noise, while PCA 
observes the data variation. The FMNF performs an 
ordering component method according to maximum 
variance. The dimensionality of image data can be 
reduced for processing algorithms by working in 
FMNF space and ignoring noisy bands, and using 
only bands containing useful information. The 
FMNF transformation is used to determine the 
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dimensionality of the image data, separate noise in 
the data, and to reduce the computational 
requirements for subsequent processing [43]. 
5) After applying a linear image enhancement (2%) 
to the resultant FMNF images of the fourth step, an 
inverse MNF transform (Fig. 4a) is applied to 
return the data from FMNF space to spectral space 
in a cleaner form. 
 

 
Fig. 4(a) 

 
Fig. 4(b) 

 
So, we are applying an inverse or reverse MNF 

but not taking out any of the noise bands. This way, 
the contrast/stretch of the MNF bands is adjusted to 
eliminate extreme values, essentially clipping the 
FMNF data. 
6) The MEM method is applied to the inverse MNF 
data. This data was used as input for the MEM 
process. 

The degree of the proximity of the input DN 
(Digital Number) values to the cyanobacteria 
reflectance values (Table 2) was calculated using 
the following formula proposed by Moghtaderi et 
al. [30, 34]:  
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Where m, n is the number of rows and columns of 

the input or output image; b=1, 2, 3 is the number 
of bands of the input FMNF cleaned data; Rb is the 
reflectance value of the cyanobacteria in band b for 
VNIR bands; Mi,j,b is the pixel DN value of the 
input FMNF cleaned image in band b which is in 
[0,255] domain; Ni,j is the output calculated DN 
value of the grayscale image which is in [0.00,1.00] 
domain; i, j is the number of row and column of a 
pixel from the input or output image. M is the input 
FMNF cleaned data; N is the output gray scale 
image. 

The output of applying MEM is a gray scale 
image, in which the DN values correlate with the 
percentage of the cyanobacteria (i.e. M. Vaginatus 
and Nostoc) present. For example a pixel DN value 
of 36% (0.36) for a cyanobacteria show a high 
occurrence of the microorganism living in the 
region of interest. For a pixel Mi, j, 1:3 from input 
image Mm×n×3, the output gray scale image Nm×n 
with a DN value of Ni,j will be as the above 
mathematical formula. 

The following criteria are used for the 
interpretation of the Ni, j amounts:  

A pixel DN value  11.000.0 , jiN  Very low 
(trace) amount of a cyanobacteria and is shown 
with black color; A pixel DN value 

 30.011.0 , jiN  Low (minor) amount of a 
cyanobacteria and is shown with gray color; A pixel 

DN value  400.030.0 , jiN  High (major) 
amount of a cyanobacteria and is shown with white 
color. 

The cyanobacteria component which is present in 
the greatest amount is shown with brighter pixels; 
these pixels indicate a greater amount of a 
cyanobacterium. 

The human eye responds more readily to rainbow 
color than gray scale, so the MEM is presented as a 
pseudocoloured image in rainbow colors (Fig. 4c). 
In this transform, subsetting data was done by using 
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the MEM file. High pass kernel and low pass sizes 
are 36 and 11 are derived from DN contents of 
major and trace amounts of cyanobacteria, 
respectively. The saturation value is 0.5 and dark 
and pale pink colors correspond to major amounts 
(DN=0.3-0.36) of the microorganisms, while, 
green, yellow, cyan, and blue colors represent 
minor amounts (DN=0.11-0.30), and trace amounts 
(DN=0.00-0.11) are represented in dark red color. 

 

 
Fig. 4(c) 

 
Fig. 4(a-c). Inverse MNF image (bands 3, 2, 1) of 
Chadormalu desert and Chadormalu iron deposit. (b) 
Detected cyanobacteria soil crust (MEM 3 2 1) in 
Chadormalu desert and iron mine (*area). (c) MEM321 
pseudo color display, dark and pale pink colors 
correspond to major amounts (DN=0.3-0.36) of the 
microorganisms, while green, yellow, cyan, and blue 
colors represent minor amounts (DN=0.11-0.30) and 
trace amounts (DN= 0.00-0.11) are represented in a dark 
red color 

 
2.4. Ground control 
 
2.4.1. Field study 

 
Field study (ground control) was carried out in 

late April (18-24 April) in dry conditions, thus dry 
crust SRC was performed on the ASTER image 
data. Before performing SRC the metrological data 
was checked to make sure that there was no rainfall 
in the days preceding data capture. 

As a first step 14 sampling stations were selected 
by the authors in white, gray and black pixels (Fig. 
5). Their coordinates were determined from the 
georeferenced ASTER data using ENVI 4.7 SP1 
(Cursor location/value window) (Fig. 5, Table 3). 
The data is orthocorrected, which was 
georeferenced and processed by AGARSS Ltd 
Company, Australia (to an accuracy of ± 45m~ 3 
pixels). The selection of sampling stations was done 
on areas with a high density of white and gray 
pixels (major and minor amounts). In other words, 

the selection of soil sampling stations was carried 
out in a way that the soil sampling errors would be 
decreased. 

In the field, the location of every sampling station 
was confirmed by GPS instrument (etrex, Vista 
Garmin) (Table 3) However, the horizontal error of 
the instrument is about 10m; hence soil sampling is 
an approximation within a 15m2 domain (soil 
samplings were done from thick soil covers). 

 

 
 

Fig. 5. Soil sampling stations at Chadormalu desert.  
Each sampling station is shown by a dark red spot.  

 
Table 3. Coordination and culturing results of cyanobacteria soil 
crust at Chadormalu desert area 

 

 
ND=Not determined 

 

Sample code 
Culturing result 

Coordination 
Genus and 

Species 
Cyb1              

+ 
N32 21 1.71, E55 

30 18.5 
Microcystis 

Cyb2              
+ 

N32 19 56.42, E55 
30 30.5 

M. vaginatous 

Cyb3              
+ 

N32 19 57.5, E55 
30 16.8 

Chroococcidiopsis 

Cyb4              
+ 

N32 20 36.8, E55 
29 28.7 

Nostoc. spp 

Cyb6              
+ 

N32 22 12.1, E55 
28 30.1 

Microcystis 

Cyb8              
+ 

N32 21 23.4, E55 
29 9.1 

M. vaginatous 

Cyb9              
+ 

N32 21 49.6, E55 
29 25.3 

Nostoc. spp 

Cyb10             
- 

N32 20 22.3, E55 
29 13.9 

- 

Cyb12             
+ 

N32 21 33.7, E55 
28 13.0 

very small, ND 

Cyb13             
+ 

N32 21 5.7, E55 28 
8.1 

Nostoc. spp 

Cyb15             
+ 

N32 17 55.1, E55 
30 46.1 

Nostoc. spp 

Cyb19             
- 

Cyb20             
- 

Cyb18             
- 

N32 21 14.63, E55 
30 59.2 

N32 21 12.02, E55 
31 50.6 

N32 20 36.07, E55 
31 55.6 

 

- 
- 
- 
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At each station, soil was picked up (3cm thick) 
and retained in plastic bags and then transported (in 
darkness, 25°C) over a period of days with no 
apparent loss of viability. Castenholze [44] protocol 
was followed in this study. 
 

2.4.2. Culturing, isolation and purification 

 
In the laboratory, BG-11 media was used as 

culture media as described by Hughes et al. [45] 
and modified by Allen [46]. Medium BG-11 has 
been widely used for isolation and maintenance of 
many cyanobacteria (about 300 axenic strains), and 
is a general media culture of cyanobacteria.  

Medium BG-11 has low phosphate content, is 
poorly buffered, and has the following composition 
(in grams per liter of deionized distilled water): 
NaNO3, 1.5; K2HPO4, 0.04; MgSO4.7H2O, 0.075; 
CaCl2.2H2O, 0.036; Citric acid, 0.006; Ferric 
ammonium citrate, 0.006; EDTA (disodium 
magnesium salt), 0.001; Na2CO3, 0.02; Trace-metal 
mix A5, 1ml/lit. Trace-metal mix A5 is included: 
H3BO3, 2.86 g/liter; MnCl2.4H2O, 1.81 g/liter; 
ZnSO4.7H2O, 0.222 g/liter; Na2MoO4.2H2O, 0.39 
g/liter; CuSO4.5H2O, 0.079 g/liter; Co(NO3)2.6H2O, 
0.0494 g/liter (after autoclaving and cooling, pH of 
medium was 7.1) [47]. Solid media were prepared 
by mixing equal volumes of separately autoclaved 
double strength solutions of the mineral salts 
medium and either purified agar or agarose after 
cooling to 50°C (autoclave sterilization 
temperature) to give a final concentration of 0.6% 
[44, 48]. In other words, we simulate field climatic 
and seasonal conditions. 

After soil solution preparation in deionized 
distilled water, a two stage serial dilution was 
performed on the (original) solution. The final soil 
solutions (final types) were cultured in the solid 
mediums (BG-11). During isolation and 
purification, cultures were incubated in a light-dark 
cycle with a 14-h light period and a 10 dark period 
for one to two weeks. The temperature of 
incubation was 20-30°C or room temperature [44, 
47, 48, 17]. 

3. Results 

3.1. Image interpretation  

MEM (bands 3, 2, 1) show white and gray pixels or 
high (major) to low (minor) amounts of 
cyanobacteria (Fig. 4b) in the Chadormalu desert. 
Elsewhere in the area, white and gray pixels are 
interpreted to represent thick soil cover (Fig. 11a-c) 
and black pixels represent thin soil cover (Fig. 11 d, 
e). At Chadormalu iron mine (Fig. 4b and Fig. 11f) 

there are no white or gray pixels. According to 
Belnap [49], just as plants increase or decrease with 
livestock grazing, many biological soil crust 
components (e.g. cyanobacteria) are good 
indicators of a lack of physical disturbance, such as 
by livestock, human foot traffic, motorized vehicles 
and mining activity (e.g. Fig. 4a and Fig. 11g). 
Thus, the black pixels in this area are taken to 
indicate the degree of disturbance in the area caused 
by mining. 

3.2. Microbiology laboratory studies 

The cyanophytes in fully propagated colonies 
were identified in the solid BG-11 culture media 
after 1 to 2 weeks. The cultures were then examined 
by a phase-contrast microscope to determine genus 
and species. They mostly included: Microcoleous 
vaginatus (Fig. 6a-d), Nostoc.sp (Fig. 7a-d), 
Microcystis.sp (Fig. 7e), Ocillatoria.sp (Fig. 8a), 
Chroococcuss.sp (Fig. 8b) and Chroococcidiopsis 
(Fig. 8c, d). They were found to correspond with 
the black pixels, especially; sampling stations 1, 2, 
4, 6 and 8 (Fig. 5). In the station 6, an artificial 
pond was found to contain Ocillatoria.sp, 
Chroococcuss.sp and Green float Microcystis.sp 
colonies (Fig. 8e, f). No cyanophytes were found to 
propagate in the cultures media of black pixels (e.g. 
stations 18, 19, 20) (Fig. 9c, l, and k). Station 10 is 
located in gray pixels, however, soil contamination 
by gasoline, foot traffic and motorized vehicles 
disturb cyanobacteria soil crust (Fig. 9i and Fig. 
11h-i). Fig. 9 a-n illustrates culture media after 2 
weeks. Fig. 10 a-d illustrates the natural 
environments of Microcoleous vaginatus, Nostoc.sp 
and Chroococcidiopsis at Chadormalu soil desert 
(e.g. stations 2, 8, 4 and 3).  

 

 
Fig. 6(a) 
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Fig. 6(b) 

 
Fig. 6(c) 

 
Fig. 6(d) 

 
Fig. 6(a-d). Microcoleous vaginatus in 4x, 10x, 40x and 
40x magnification, respectively  

 

 
Fig. 7(a) 

 
 

 
Fig. 7(b) 

 
Fig. 7(c) 

 
Fig. 7(d) 

 
Fig. 7(e) 

 
Fig. 7(a-e). a Nostoc filamentous with 10x, 40x, 60x 
magnifications (phase microscope). (d) Nostoc 
filamentous in 40x magnifications (TM). (e) Microcystis 
colony under TEM (28000x). TM= Transmitted 
microscope, TEM=Transmitted Electron Microscope 
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Fig. 8(a) 

 
Fig. 8(b) 

 
Fig. 8(c) 

 
Fig. 8(d) 

 
Fig. 8(e) 

 
Fig. 8(f) 

 
Fig. 8(a-f). Ocillatoria.spp filamentous (40x); (a) were 
prepared by phase microscope. (b) unicellular 
Chroococcuss.spp (40x, phase microscope). (c) and (d) 
Endolithic cyanobacteria (Chroococcidiopsis). (e) and (f) 
an artificial pond and green float Microcystis.spp colonies 

 

 
Fig. 9(a) 

 
Fig. 9(b) 

 
Fig. 9(c) 
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Fig. 9(d) 

 
Fig. 9(e) 

 
Fig. 9(f) 

 
Fig. 9(g) 

 
Fig. 9(h) 

 
Fig. 9(i) 

 
Fig. 9(j) 

 
Fig. 9(k) 
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Fig. 9(l) 

 
Fig. 9(m) 

 
Fig. 9(n) 

 
Fig. 9(a-n). Cyanobacteria growth after 2 weeks (Ref to 
Fig.4b, Fig. 5 and table. 3). (a) Microcoleous vaginatus 
colony at station-8 (cyb8). (b) Nostoc.spp colony at 
station-4 (cyb4). (c) negative result at station-18 (cyb18). 
(d-f) Nostoc.spp colonies at stations 13 (cyb13), 9 (cyb9) 
and 15 (Cyb15) respectively. (g) Microcystis at station-1 
(cyb1). (h) very small cyanobacteria colony. (i) negative 
result at station-10 (cyb10). (j) Microcoleous vaginatus 
colony at station-2 (cyb2). (k-l) negative results at 
stations 20(cyb20), 19 (cyb19). (m) and (n) Microcystis 
colony at station-6, artificial pond (Fig. 8f) and soil 
respectively 

 

 
Fig. 10(a) 

 
Fig. 10(b) 

 
Fig. 10(c) 

 
Fig. 10(d) 

 
Fig. 10(a-d). Manifestation of soil at stations 2, 8, 4 and 3 
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Fig. 11(a) 

 
Fig. 11(b) 

 
Fig. 11(c) 

 
Fig. 11(d) 

 

 
Fig. 11(e) 

 
Fig. 11(f) 

 
Fig. 11(g) 

 
Fig. 11(h) 

 



 
 

IJST (2011) A1: 13-28       26 

 
Fig. 11(i) 

 
Fig. 11(a-i). (a, b) Rich soil area in Cyb1 soil sampling 
station with high vegetation cover (c) Rich soil area in 
Cyb9 soil sampling station with higher vegetation cover 
than Cyb1 (d, e) Barren area at Cyb19 soil sampling 
station (f) mining activity at Chadormalu iron deposit (g) 
motorized vehicles activity at Chadormalu iron deposit 
(h) soil contamination by gasoline (i) Foot traffic and 
motorized vehicles activity at Cyb10 soil sampling 
station 

4. Discussion 

The extent of cyanobacterial blooms has been 
mapped using different satellite sensors [e.g. 50-
55]. Gones et al. [50] used one of the first satellite 
sensors, MERIS (satellite-based digital imagining 
spectrometers with a less than 1-km spatial 
resolution and suitable spectral band width) that can 
be applied to map cyanobacterial distributions in 
inland waters (i. e. Lake Ijsselmeer, Netherlands). 
Based on retrieval algorithms to estimate 
phycocyanin, MERIS data can produce synoptic 
views of cyanobacterial bloom formation and 
dispersal. These authors suggested that airborne, 
spaceborne remote sensings and shipboard 
observation need to be exploited in concreted 
programmes of data acquisition, validation and 
reporting in summer time. The amount of 
chlorophyll-α is extremely variable spatially [53]. 
Simis et al. [55] have shown that their reflectance 
band-ratio algorithm for retrieval of cyanobacterial 
phycoyanin concentration (PC) decreased gradually 
with time in Lake Ijsselmeer throughout the period 
April–September (when cyanobacterial abundance 
is known to be high). Therefore, these studies did 
not capture the seasonal variability necessary for a 
more complete validation procedure [54]. 

Kutser et al. [51] show that MODIS band 1 
response to changes in the concentration of 
cyanobacteria is nonlinear. Band 1 response is 
strongest in the case of Nodularia spumigena, 
indicating that quantitative mapping of this species 
in bloom conditions is easier than in the case of the 

other species of cyanobacteria investigated. 
However, these researchers infer that quantitative 
mapping of cyanobacteria may be impossible by 
remote sensing sensors due to the opaqueness of the 
scum and variability in the properties of 
cyanobacteria within the scum.  

According to Kutser [52] quantitative detection of 
chlorophyll in cyanobacterial blooms by remote 
sensing has been less successful. This author 
demonstrates that, it is difficult to collect 
representative water samples from research vessels 
using standard methods because ships and water 
samplers destroy the natural distribution of 
cyanobacteria in the sampling process. Flow 
through systems take water samples from the 
depths at which the concentration of cyanobacteria 
is not correlated with the amount of phytoplankton 
that remote sensing instruments detect. Also, the 
chlorophyll estimation accuracy in cyanobacterial 
blooms by many satellites is limited because of 
spatial resolution, as significant changes in 
chlorophyll concentration occur, even at a smaller 
spatial scale than 30 m (e.g. ALI, ASTER and 
Hyperion). In other words, the chlorophyll 
estimation accuracy in cyanobacterial blooms by 
remote sensing satellites (e.g. SeaWiFS, MERIS 
and MODIS) is limited as a result of their coarse 
spatial resolution and the fine spatial phenomena 
present in a bloom. The real chlorophyll values in 
dense cyanobacterial blooms can only be estimated 
from remote sensing data. This, however, requires 
detailed knowledge about optical properties of the 
bloom, knowledge that is currently not available. 

In this research, for the first time, a mathematical 
evaluation method was applied on the ASTER 
imagery data of a solid environment (Chadormalu 
desert soil), in dry or extreme conditions. Also, it 
must be noted that ASTER bands (3, 2, 1 bands) 
have a higher spatial resolution (15m) than sensors 
used in the previous work. On the other hand, as 
mentioned above (Ref. to IARR concept), this 
method (MEM) is a relative estimation with a full 
scope view. On the basis of instrumental analysis 
limitation, especially the lack of a portable 
spectrometer, the obtained results must be 
considered approximations at their best. However, 
the proposed method is a fast technique that takes 
little time, is comparatively cheap, and is suitable 
for reconnaissance stages.  
 

5. Conclusion 

The above proposed MEM method, despite being 
approximate is suitable in detecting microorganisms 
(e.g. cyanobacteria) in inaccessible areas such as 
other planet surfaces or remote areas on earth, 
being most useful in extreme dry conditions. 
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