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Abstract 

In this paper, using the tools involving measures of noncompactness and Darbo fixed point theorem for 
condensing operator, we study the existence of solutions for a large class of generalized nonlinear quadratic 
functional integral equations. Also, we show that solutions of these integral equations are locally attractive. 
Furthermore, we present an example to show the efficiency and usefulness of our results. 
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1. Introduction 

In this paper, we discuss the problem of the 
existence of solutions for a generalized nonlinear 
quadratic functional equation of the form 
 

( )

0
( ) = ( ) ( , ( ( ))) ( ( , , ( ( ))) )

t
x t q t f t x t g t s x s ds


      (1) 

 
where , , ,f g    and   are appropriate given 

functions. Dhage and Bellale [1] investigated this 
problem, when ( ) =x x  and , , , ,f g     

satisfy the following conditions. 

1( )A  The functions ,  ,  :     are 

continuous and ( )t    as .t   

2( )A  The function :f       is 

continuous and there exists a bounded function 

:      with bound L  such that 
 

( , ) ( , ) ( )f t x f t y t x y                          (2) 
 

for any t   and for all , .x y  

3( )A  The function :F     defined by 

( ) = ( ,0)F t f t  is bounded on   with 

0 = sup ( ) .
t

F F t
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2( )B  The function :g         is 

continuous and there exist continuous functions 

, :a b     such that 
 

( , , ) ( ) ( )g t s x a t b s                                         (3) 
 
for , .t s   Moreover, assume that 
 

0
( ) ( ) = 0lim

t

t
a t b s ds

                                          (4) 

 
and 2 < 1K L  where 
 

2 0
= ( ) ( ) .

t

t
K Sup a t b s ds

 


                                   (5) 

 
They gave their main result under the above 

conditions as follows. 
 

Theorem 1.1. Assume that the hypotheses 1( )A  

through 3( )A  and 1( )B  through 2( )B  hold. Then 

the functional integral equation 
 

( )

0
( ) = ( ) ( , ( ( ))) ( , , ( ( )))

t
x t q t f t x t g t s x s ds


     (6) 

 
has at least one solution in the space ( )BC  . 

Moreover, solutions of this equation are uniformly 
locally attractive. 

The aim of this paper is to study the existence of 
solutions for Eq. (1)  under conditions that are 
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weaker than Conditions 1( )B  and 2( )B . Tools 

used in this paper are the technique of measure of 
noncompactness and Darbo fixed point theorem for 
condensing operators. In 1930,  Kuratowski [2] 

introduced the concept of measure of 
noncompactness. Later, Banas  and Goebel [3] 
generalized this concept axiomatically which is 
more convenient in application and will be accepted 
in this paper. They also presented applications of 
their results (see [4-8]. Subsequently, applications 
of the measure of noncompactness and many other 
techniques to nonlinear integral equations were 
considered by many investigators and some basic 
results have been obtained (see [9-19] and 
references cited therein). Finally, we give an 
example to validate our main results in this work. 

2. Preliminaries 

In this section, we recall some notations, definitions 
and theorems to obtain all the results of this work. 

In what follows, let E  be a real Banach space 

and X  be a subset of E . We denote by 
_

X  the 
closure of X  and by ( )co X  the closed convex 

hull of X  in E . Also, let 
_

rB  be the closed ball in 
E  centered at zero and with radius r  and we write 

0( , )B x r  to denote the closed ball centered at 0x  

with radius .r  Moreover, we symbolize by EM  

and EN  the family of all nonempty bounded 

subsets and its subfamily consisting of all relatively 
compact subsets of ,E respectively. 

 

Definition 2.1. ([3]) A mapping : 0, )E  M  

is said to be a measure of noncompactness in E if it 
satisfies the following conditions. 

1( )H  The family = { : ( ) = 0}EKer X X M  

is nonempty and Ker E N . 

2( )H ( ) ( )X Y X Y    , 

3( )H  ( ) = ( )X X  , 

4( )H  ( ) = ( ),CoX X   

5( )H  ( (1 ) ) ( ) (1 ) ( )X Y X Y           

for 0,1)  , 

6( )H  If ( )nX  is a sequence of closed sets from 

EM  such that 1n nX X  , ( 1)n   and if 

( ) = 0limn nX , then the intersection set 

=1
= nn

X X


   is nonempty. 

The family Ker  described in 1( )H  said to be 

the kernel of the measure of noncompactness  . 

Observe that the intersection set X  from 6( )H  

is a member of the family Ker . In fact, since 

( ) ( )nX X    for any n, we infer that 

( ) = 0X  . This yields that X Ker  . 

In section 2  we will apply the the following 
theorem: 
 
Theorem 2.1. (Darbo [4]) Let   be a nonempty, 
bounded, closed, and convex subset of a Banach 
space E  and let :G   be a continuous 
mapping. Assume that there exists a constant 

0,1)k   such that 
 

( ( )) ( )G X k X                                           (7) 
 
for any .X   Then G  has a fixed point. 

Throughout this paper, ( )BC   is the set of all 

real functions defined, bounded and continuous on 

.  Let X  be a nonempty, bounded subset of 

( ).BC   For any , > 0x X T  and 0,   let 
 

 = sup ( ) : 0x x t t   

 
and 
 

 ( , ) = sup{ ( ) ( ) : , 0, , },L x x t x s t s L t s        (8) 
 

 ( , ) = sup ( , ) : ,L LX x x X      

0
0

( ) = ( , ),lim
L LX X


  


 

0 0
L

( ) = ( )lim
LX X 


 
Moreover, for t 

 
 

( ) = { ( ) : },X t x t x X  
 

 ( ) = sup ( ) ( ) : , ,diamX t x t y t x y X   

 
and 
 

0( ) = ( ) ( ).limsup
t

X X diamX t 


                (12) 
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Bana s  and Goebel proved that ( )X  is a 

measure of noncompactness in the sense of the 
above accepted definition (for details see [3]). 

Now let ( )BC     and F  be a map from 

  into itself and consider the equation 
 

( ) ( ( )).x t F x t                                               (13) 

 
Definition 1.2. ([7]) Solutions of equation (13)  

are locally attractive if there exists a ball 0( , )B x r  

in the space ( )BC   such that for arbitrary 

solutions = ( )x x t  and = ( )y y t  of equation 

(13)  belonging to 0( , )B x r   we have 
 

( ( ) ( )) = 0.lim
t

x t y t


                                       (14) 

 
When the limit in (14) is uniform with respect to 

0( , )B x r  , solutions of equation (13) are said 

to be uniformly locally attractive. 

3. Main results and Examples 

In this section, we are going to study the existence 
and uniform local attractivity of solutions of the 
integral equation (1).  

 

Theorem 3.1. Let the hypotheses 1 3( ) ( )A A  

hold. If we replace the assumptions 1( )B  and 

2( )B  of Theorem 1.1 by the following 

assumptions, 

1( )
'

B  The function :q     is continuous 

and bounded. 

2( )
'

B  Suppose that 
 

( )

0
lim ( , , ( ( ))) ( , , ( ( ))) = 0

t

t
g t s x s g t s y s ds


 


   (15) 

 
uniformly with respect to , ( )x y BC    and 

2 < 1
'

K L  where 
 

( )

2 0

, ( )

= sup ( ( , , ( ( ))) ) .
t'

t

x y BC

K g t s x s ds


 
 

 




 (16) 

 
Furthermore, suppose that :    is a 

continuous function and there exist some positive 
constants , p  such that 

 

( ) ( )
p

x y x y                                  (17) 
 
for any ,x y . 

Then equation (1)  has at least one solution in the 

space ( ).BC   Also, these solutions are 

uniformly locally attractive. 
 
proof: Define the function Q  by 
 

( )

0
( ) = ( ) ( , ( ( )) ( ( , , ( ( ))) )

t
Qx t q t f t x t g t s x s ds


       (18) 

 
where = ( )x E BC   . By definition (18)  of 

,Q  for any x E  and ,t   we have 
 

( )

0
( ) ( ) ( , ( ( ))) ( ( , , ( ( ))) )

t
Qx t q t f t x t g t s x s ds


      

1

( )

0

( ( , ( ( ))) ( ,0)

( ,0) ) ( ( , , ( ( ))) )
t

K f t x t f t

f t g t s x s ds




 

  

 
 

( )

1 0 0
( ( ) ( ( )) ) ( ( , , ( ( ))) )

t
K t x t F g t s x s ds


       

1 0 2( )
'

K L x F K   = r                               (19) 
 

where 1 0 2

2

=
1

'

'

K F K
r

LK




 and 1 = sup ( )

t
K q t

 
. 

Hence, Q  maps E  into .E  Moreover, from the 

inequality (19)  we conclude that 
_ _

( ) .r rQ B B  

Now, we shall show that the map 
_ _

: r rQ B B  is 

continuous. To prove this, assume that > 0  and 

pick 
_

, rx y B  with x y   . Then, using 

(2) , (16), (17)  and the triangle inequality, we 

get 
 

( )

0
( ) ( ) ( , ( ( ))) ( , ( ( ))) ( ( , , ( ( ))) )

t
Qx t Qy t f t x t f t y t g t s x s ds


      

( ) ( )

0 0
( , ( ( )) ( ( , , ( ( ))) ) ( ( , , ( ( ))) )

t t
f t y t g t s x s ds g t s y s ds

 
      

2( ) ( ( )) ( ( ))
'

t x t y t K    

( )

0
[ ( , ( ( )) ( ,0) ( ,0) ] ( ( , , ( ( )))

t
f t y t f t f t g t s x s ds


     

( )

0
( , , ( ( ))) )

pt
g t s y s ds
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( )

2 0 0

( , , ( ( )))
[ ( ( )) ] ( )

( , , ( ( )))

t' pg t s x s ds
L K L y t F ds

g t s y s

 
  


  


( )

2 0 0

( , , ( ( )))
[ ] ( ) .

( , , ( ( )))

t' pg t s x s ds
L K L y F ds

g t s y s

 
 


  

    (20) 

 
On the other hand, using (15),  there exists 

> 0T  such that 
 

1
( )

0
( , , ( ( ))) ( , , ( ( ))) ( )

t
pg t s x s ds g t s y s ds

  


    (21) 

 
for any > .t T  Now, we have two the following 
cases. 
( )i  If > ,t T  then from (20)  and (21) , we get 
 

2 0( ) ( ) ( ) .
'

Qx t Qy t K Lr F      
 

( )ii  If 0   t T , then, using uniform continuity 

of g  on [0, ] 0, ] , ],TT r r   we obtain 
 

0
( , , ( ( ))) ( , , ( ( ))) 0T g t s x s ds g t s y s ds


    

 
as 0  , where 
 

 = sup{ ( ) : 0, }.T t t T    
 

So Q  is continuous. In the sequel, we show that 

Q  satisfies the property (7)  of Theorem 2.1.  For 

this, suppose that X  is a nonempty subset of 
_

rB  

and fix > 0T  and > 0  arbitrarily. In addition ,  

assume that x X  and 1 2, [0, ]t t T  with 

1 2 .t t    Moreover, without loss of generality, 

we can assume that 1 1( ) < ( ).t t   Then from 

(16), (17), (18)  and the triangle inequality, we 

get 
 

1 2 1 2

( )1 1 1
10

2 2

( ) ( ) ( ) ( )

( , ( ( )))
( ( , , ( ( ))) )

( , ( ( )))

t

Qx t Qx t q t q t

f t x t
g t s x s ds

f t x t


 



  


 

 

( ) ( )1 2
2 2 1 20 0

( , ( ( ))) ( ( , , ( ( ))) ( ( , , ( ( ))) )
t t

f t x t g t s x s ds g t s x s ds
 

      

1 2 1 1 2 1( ) ( ) [ ( , ( ( )) ( , ( ( ))q t q t f t x t f t x t    
( )1

2 1 2 2 10
( , ( ( ))) ( , ( ( ))) ] ( ( , , ( ( ))) )

t
f t x t f t x t g t s x s ds


     

( )1
2 2 2 2 10

[ ( , ( ( ))) ( ,0) ( ,0) ] ( ( , , ( ( )))
t

f t x t f t f t g t s x s ds


     
( )2

20
( , , ( ( ))) )

pt
g t s x s ds


   

1 2 2 1 2 2( ) ( ) [ ( , ) ( ) ( ( )) ( ( )) ]
'T

rq t q t f t x t x t K       
( )1

2 2 0 10
[ ( ) ( ( )) ] ( ( , , ( ( )))

t
t x t F g t s x s ds


    

( )2
20

( , , ( ( ))) )
pt

g t s x s ds


                          (22) 

 
On the other hand, 
 

( ) ( ) ( )1 2 1
1 2 10 0 0

( , , ( ( ))) ( , , ( ( ))) ( , , ( ( )))
t t t

g t s x s ds g t s x s ds g t s x s
  

     
( )2

2 2( )1

( , , ( ( ))) ( , , ( ( )))
t

t
g t s x s ds g t s x s ds




   

( , ) ( , ),T TT
T r r rg G

                           (23) 
 
where 
 

 
 

1 2

1 2 1 2

( , , ) ( , , ) :

( , ) = sup , 0, , ,

0, , , [ , ]

T
r

T

g t s x g t s y

g t t T t t

s x y r r

  



 
 

   
    

 

 
and 
 

 1 2 1 2 1 2( , ) = sup{ ( ) ( ) : , 0, , }.T
r t t t t T t t          

 
Since x  was arbitrary, from (8), (9), (22)  and 

(23),  we obtain 
 

0 0 2( , ) ( , ) [ ( , ) ( , ( , ))]
'T T T T T

r r rQX q f L X K           

0( ) ( ( , ) ( , )) .T T pT
T r r rLr F g G

          (24) 
 
where 
 

 1 2 1 2 1 2( , ) = sup{ ( ) ( ) : , 0, , },T t t t t T t t        

 
1 2

1 2 1 2

( , ( , )) = sup{ ( ) ( ) :

, 0, , ( , )},

T T

T

x x t x t

t t T t t

   

  



  

 
1 2

1 2 1 2

( , ) ( , ) :
( , ) = sup ,

, 0, , , , ]
T
r

f t x f t x
f

t t T t t x r r
 



  
 

     

 
1 2

1 2 1 2

( , , ) ( , , ) :
( , ) = sup ,

, 0, , , , , ]
T
r

g t x y g t x y
g

t t T t t x y r r
 



  
 

     

 
0 1 2

1 2 1 2

( , ) = sup{ ( ) ( ) :

, 0, , }

T q q t q t

t t T t t

 





  
 

 
and 

   = sup{ ( , , ) : 0, , 0, , .[ , ]}.T
r TG g t s x t T s x r r   

Since ,q f  and g are uniformly continuous on the 

compact sets [0, ],T  [0, ] [ , ]T r r   and 

[0, ] [0, ] [ , ]TT r r    respectively, we have 
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0 ( , ) 0,T q    ( , ) 0T
r f    and 

( , ) 0T
r g    as 0.   Similarly, 

( , ) 0T     and ( , ) 0,T
r     as 0.   

Taking the limit from (24)  as 0   and by 

(10)  we get 
 

0 2 0( ) ( ).
'T TQX LK X                                  (25) 

 
Letting T   in (25),  then using (11),  we 

obtain 
 

0 2 0( ) ( ).
'

QX LK X                                    (26) 
 

Now let ,x y X  and .t   Then, using 

(2), (16), (17)  and the triangle inequality 
 

( )

0
( ) ( ) ( , ( ( ))) ( , ( ( ))) ( ( , , ( ( ))) )

t
Qx t Qy t f t x t f t y t g t s x s ds


      

( ) ( )

0 0
( , ( ( ))) ( ( , , ( ( ))) ) ( ( , , ( ( ))) )

t t
f t y t g t s x s ds g t s y s ds

 
      

2[ ( ) ( ( )) ( ( )) ]
'

t x t y t K    
( )

0
[ ( , ( ( ))) ( ,0) ( ,0) ] ( , , ( ( )))

t
f t y t f t f t g t s x s ds


     

( )

0
( , , ( ( )))

pt
g t s y s ds


   

( )

2 0 0
( ( )) [ ( ) ( ( )) ] ( ( , , ( ( )))

t'
LK diamX t t y t F g t s x s ds


      

( )

0
( , , ( ( ))) )

pt
g t s y s ds


   

2

( )

0 0

( ( ))

( , , ( ( )))
[ ] ( )

( , , ( ( )))

'

t p

LK diamX t

g t s x s ds
L y F ds

g t s y s









 




2

( )

0 0

( ( ))

( , , ( ( )))
[ ] ( ) .

( , , ( ( )))

'

t p

LK diamX t

g t s x s ds
Lr F ds

g t s y s











 


          (27) 

 
Since, ,x y  and t  were arbitrary in (27),  we 

obtain 
 

2

( )

0 0

( ) ( ( ))

( , , ( ( )))
[ ] ( ) .

( , , ( ( )))

'

t p

diamQX t LK diamX t

g t s x s ds
Lr F ds

g t s y s











 


  (28) 

 
Thus, taking the limit from (28)  and using 

(15) , we earn 
 

2lim sup ( ) lim sup ( ( )).
'

t t

QX t LK diamX t
 

     (29) 

 
Also, adding (26)  and (29),  we have 

 

0 2 0( ) ( )( ) ( ( )limsup

limsup ( ( ))).

'

t

t

QX diamQ X t LK X

diamX t

 






 


    (30) 

 
Now (12) and (30)  imply that 

 

2( ) ( ),
'

QX LK QX                                    (31) 
 

So, by applying Theorem 1.2 we conclude that 
the operator Q  has at least a fixed point and 

consequently the integral equation (1)  has a 

solution in ( ).BC   Now, we shall show the 

uniform local attractivity of solutions of equation 

(1).  To do this, we first consider the ball rB  with 

1 0 2

2

= .
1

'

'

K F K
r

LK




 From (19) we have obtained that 

Q  maps rB  into itself. Take 
 

= { ( ) : < , = ( )}.S x BC x r x Q x   
 

Define by induction 0 = ( ( ))rCo f B  and 

1= ( ( ))n nCo f    for any 1.n   It is easy to 

see that 
 

nS                                                                (32) 
 
for any 0.n   Furthermore, from (31),  we have 
 

2 0( ) ( ) ( )' n
n LK                                    (33) 

 
for any 1.n   Therefore, from (33),  

( ) 0n    as .n  Since { }n  is a 

decreasing sequence and n  is a bounded, closed, 

convex and nonempty subset in ( )BC   for any 

0,n   then 6( )H  implies that   =
=1 nn



  is 

nonempty and ( ) = 0  . Thus (12) implies that 
 
limsup ( ( )) = 0.

t
diamX t


                            (34) 
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On the other hand, S    by (32).  Hence, 

by (12)  and (34),  the solutions of the equation 

(1)  are uniformly locally attractive and the proof 

is complete. 
 
Corollary 3.1.  Theorem 1.1 can be deduced from 

Theorem 3.1. 
 
Proof: Set ( ) = .x x  Thus   is Lipschitz with 

constant 1.  On the other hand, using (3)  and (5),  

we get 
 

( )

2 0

( )

= sup ( ( , , ( ( ))) )
t'

t

x BC

K g t s x s ds


 
 

 




 

( )

0

( )

= sup ( , , ( ( )))
t

t

x BC

g t s x s ds



 

 




 

( )

20
sup ( ) ( ) = .

t

t
a t b s ds K



 

 
 

 

Hence 2 < 1.
'

K L  Moreover, from (3)  and (4)  

we have 
 

( )

0 0
lim ( , , ( ( ))) ( , , ( ( ))) 2 lim ( ) ( ) = 0

tT

t t
g t s x s ds g t s y s ds a t b s ds

 
 

 
  

 

 
uniformly with respect to , ( ).x y BC    Now, 

according to Theorem 3.1,  the equation (6)  has 

at least one solution in the space ( )BC  . 

At the end of this section, we present an example 
to show how Theorem 3.1 can be successfully 
applied, and is especially more general than 
Theorem 1.1. 
 
Examples: Let , > 2m n . Moreover, we assume 

that   is a positive constant such that 
1

( ) < 1.
3

e




 Consider the following generalized 

quadratic integral equation 

 

            

2
1 22222 2

2 20

2 3 ln(1 ( ) ) 3 (1 ( ))
( ) = ln(1 ( ) ) ( )

2(1 )(1 ( ))

m
n m n

tt t

m n

m s x s m s x s
x t e t e x t arctg ds

t x s





 
  

 
            (35) 

 
 

for t   and ( )x BC   . Comparing (35)  

with (1),  we have 
 

2
1 22

2 2

2 3 ln(1 ) 3 (1 )
( , , ) = ,

2(1 )(1 )

m
n m n

m n

m s x m s x
g t s x

t x


  

 
22( , ) = ln(1 ), ( ) = ( ),tf t x t e x arctg x   

2 2( ) = , ( ) = , ( ) = , ( ) = .tt t t t q t e s s    
 

Now we verify the assumptions of Theorem 3.1.  
Obviously ,   and   satisfy the assumption 

1( )A  of Theorem 1.1.  Also, f  is continuous on 

    and ( ,0)f t  is bounded with 
 

22

22

ln(1 ( ) )
( , ) ( , ) =

ln(1 ( ) )

t

t

t e x t
f t x f t y

t e x t












 
 

22

22

(1 )
= ln

(1 )

t

t

t e x

t e y












 

2 2 22 2 2

22

1
= ln( )

1

t t t

t

t e x t e y t e y

t e y

  



  



  


 

22

22
ln(1 )

1

t

t

t e x y

t e y










 


 

( )t x y   
 
for any t   and ,x y  where 

22( ) = .tt t e   Moreover, we can easily verify 

that 
1

= max ( ) = .
t

e
L t





 



 These mean that the 

Assumptions 2( )A  and 3( )A  are satisfied. It is 

easy to see that Assumption 1( )
'

B  is satisfied for 

.q  Since 
 

2

2 1

2 2 2

3 ln(1 ) 3
( , , ) =

(1 )(1 ) 2(1 )

m
n m

m n m

m s x m s
g t s x

t x t





  

    (36) 

 
and 
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2 2

2 22 2

2 2 2 20 0

3 ln(1 ) 3

(1 )(1 ) (1 )(1 )

m m
n n

t t

m n m n

m s x ms x
ds ds

t x t x

 




      

2 2

2 3
=

(1 ) (1 )

nm

m n

xmt

m t x 
 

2

3
.

(1 )

m

m

t

t



                                                      (37) 

 
Thus by (36)  and (37)  we obtain 

 
12 2

20 0

3
lim ( , , ) = lim

2(1 )

mt t

mt t

m s
g t s x ds ds

t



     

2

2

3
= lim

2(1 )

m

mt

t

t 
 

3
= .

2
 

 
This shows that assumption 2( )B  of Theorem 

1.1 does not hold. Therefore, Theorem 1.1 is 
inapplicable. But, using (36) , we have 
 

2

2 1 12 2

2 2 2 2 20 0

3 ln(1 ) 3 3 3

(1 )(1 ) 2(1 ) (1 ) 2(1 )

m
n m m m

t t

m n m m m

m s x m s t m s
ds ds

t x t t t


 

  
     

 

2

2

3 3

2 2 (1 )

m

m

m t

m t
 


 

3 3
= 3.

2 2
   

 
It follows that 

 
2

0
( , , ) 3

t
g t s x ds                                      (38) 

 
for any t   and uniformly with respect to 

, .x y  On the other hand, from (37)  we get 
2

2

2 22 2

20 0
2

2 2

3 ln(1 )

(1 )(1 )
( , , ) ( , , ) =

3 ln(1 )

(1 )(1 )

m
n

m n
t t

m
n

m n

m s x

t x
g t s x g t s y ds ds

m s y

t y







 





 

 

2 2

2 22

2 2 2 20

3 3
( )
(1 )(1 ) (1 )(1 )

m m
n n

t

m n m n

ms x ms y
ds

t x t y

 

 
   

2
2 3 .

(1 )

m

m

t

t



 

uniformly with respect to ,x y  for any 

t   and , .x y  This implies that 
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            (39) 

 
Also, using (38) , it is easy to check that 
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.  Therefore 
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 <1.                                                       (40) 

 
Furthermore,   is Lipshitz with constant 1.  

Hence, using (39)  and (40) , Assumption 2( )
'

B  

is satisfied. Then, we conclude that all of the 
Assumptions of Theorem 3.1 are satisfied. Hence 
the equation (35)  has at least one solution and all 

the solutions are uniformly locally attractive. 
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