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Abstract 

This paper studies the perturbed Klein-Gordon equation by the aid of several methods of integrability. There are 
six forms of nonlinearity that are considered in this paper. The parameter domains are thus identified. 
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1. Introduction 

The nonlinear Klein-Gordon equation (KGE) 
appears in Theoretical Physics in the context of 
relativistic quantum mechanics. There have been 
several studies conducted with this equation by 
Physicists and Applied Mathematicians across the 
globe [1-10]. One of the most important tasks is to 
carry out the integration of the perturbed KGE. This 
paper will focus on obtaining the solution of the 

perturbed KGE by the aid of /'G G  method, exp-
function method and, finally, the traveling wave 
solution will be obtained. There are six types of 
nonlinearities of the KGE that will be considered in 
this paper. 

2. Mathematical Analysis 

The dimensionless form of the nonlinear KGE that 
studied in this paper is given by [4] 
 

2 ( ) = 0tt xxq k q F q  .                                    (1) 
 

Here, in (1), the dependent variable q  represents 

the wave profile, while x  and t  are the 
independent variables that represent the spatial and 
temporal variables respectively. Also, k  is a real 

valued constant.The function ( )F q  represents the 

nonlinear function. The mathematical analysis of  
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the nonlinear function will now be related to the 
nonlinear function of the sine-Gordon equation 
(SGE).This will allow us to justify the study of 
perturbation terms that arise in the theory of long 
Josephson junctions that are modeled by the SGE. 

2.1. Six Forms of Nonlinearity 

There are six types of nonlinearity to be 
considered. They are labeled as Forms I through VI. 
For each of these forms, the connection to SGE will 
be illustrated in the next six subsections. In each of 
the following forms of nonlinearity, a , b  and c  
are real valued constants. The exponent n  is a 
positive integer. 

2.1.1. Form-I 

In this case, the nonlinear function ( )F q  is 

given by 
 

2( ) =F q aq bq                                                (2) 
 
Equation (2) can be approximated by  
 

2
1 2sin cos cos 2 = 0tt xxq k q a q b q b q       (3) 

 
for small values of q , where 1b  and 2b  must be 

chosen such that there is no constant term and the 
quadratic term has coefficient b . For better 

approximations, higher terms such as sin 2q  must 

be added. 
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2.1.2. Form-II 

In this case, 
 

3( ) =F q aq bq                                                (4) 
 
and KGE with this form is sometimes known as the 

4  equation . This form can be approximated by 
 

2
1 2sin sin 2 = 0tt xxq k q a q a q                (5) 

 
for small values of q , where 1a  and 2a  must be 

chosen such that the linear coefficient is a  and the 

cubic coefficient is b . For better approximations, 

higher terms such as sin 3q  must be added. 

2.1.3. Form-III 

Here, 
 

( ) = nF q aq bq                                                (6) 
 

This encompasses the previous two forms in a 
generalized format. The special case is when = 1n  

and = 2n  collapses to the previous two forms. If 
n  is odd, then this can be approximated by 
 

2
1 2sin sin 2tt xxq k q a q a q                       (7) 

1

2

1
sin = 0

2n

n
a q

         
  

 
for small values of q , where 1a  through ( 1)/2na   

must be chosen such that only the linear term and 
nq  survive and have coefficients a  and b  

respectively. For better approximations, higher 
terms must be added. If n  is even, then this can be 
approximated by 
 

2
1 2sin sin 2tt xxq k q a q a q     

1
1

2

sin 1 cos
2n

n
a q b q



         
 

2
1

2

cos 2 cos 1
2n

n
b q b q



        
 = 0     (8) 

 
for small values of q , where 1a  through /2 1na   

must be chosen such that only the linear term 

survives with coefficient a , and 1b  through /2 1nb   

must be chosen such that there are no even terms 

until the nq  term and it has coefficient b . For 

better approximations, higher terms must be added. 

2.1.4. Form-IV 

Here, 
 

2 1( ) = n nF q aq bq cq                                   (9) 
 

In this case, if n  is odd, then this can be 
approximated by 
 

2
1 sintt xxq k q a q   

2 sin 2 sin = 0na q a nq                       (10) 
 
for small values of q , where 1a  through na  must 

be chosen to exactly satisfy the coefficients of q , 
nq , and 2 1nq  . For better approximations, higher 

terms must be added. If n  is even, then this can be 
approximated by 
 

2
1 2sin sin 2tt xxq k q a q a q    

1 2sin cos cos 2na nq b q b q       

1
2

cos 1 = 0
2n

n
b q



       
                             (11) 

 
for small values of q , where 1a  through na  must 

be chosen to exactly satisfy the coefficients of q  

and 2 1nq  , and 1b  through /2 1nb   must be chosen 

such that there are no even terms until the nq  term 

and it has coefficient b . For better 
approximations, higher terms must be added. 

2.1.5. Form-V 

For this form, 
 

1 1( ) = .n nF q aq bq cq                              (12) 
 

This is similar to the other forms, and can be 
approximated by a series of sine and cosine terms. 

2.1.6. Form-VI 

This is the logarithmic form of nonlinearity. In 
this case [6], 
 

( ) = lnF q aq bq q                                        (13) 
 
Define 
 

2( ) = logf x x x                                                (14) 
 

It is clear that f  is an odd function, thus the 

Fourier series collapses to just the sine terms 
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=1

( ) = sin( )n
n

f x b nx


                                       (15) 

 
where the coefficients are defined by 
 

1
= ( )sin( )nb f x nx dx



                              (16) 

 
Solving these coefficients leads to the sine 

expansion of 2logx x  
 

1
2

=1

( 1)
log = 4 [ log( )

n

n

x x
n


   

2

1
( )]sin( )Si n nx

n



                                    (17) 

 
where Si  is the sine integral defined by 
 

0

sin
( ) =

x t
Si x dt

t                                           (18) 

2.2. Perturbation Terms 

The perturbed KGE that will be studied in this 
paper is given by [4] 
 

2 ( ) =tt xx t xq k q F q q q q       

xt tt xxt xxxxq q q q                               (19) 
 

These perturbation terms typically arise in the 
study of long Josephson junction in the context of 
sine-Gordon equation (SGE). Since SGE can be 
approximated by KGE as seen in the previous sub-
section, an exact solution of the perturbed KGE will 
make sense in this context [9]. 

For the perturbation terms,   represents losses 

across the junction,   accounts for dissipative 

losses in Josephson junction theory due to tunneling 
of normal electrons across the dielectric barrier,   

is generated by a small inhomogeneous part of the 
local inductance,   represents diffusion and   is 
the capacity inhomogeneity. Finally,   accounts 
for losses due to a current along the barrier [9]. 

In this paper, therefore the perturbed KGE, given 
by (19) for the six forms of nonlinearity as defined 
in (2)-(13), will be integrated in the subsequent 
three sections. 

3. Traveling Wave Solutions 

In this section, the traveling wave solutions will be 
obtained. This is the most fundamental approach to 

the solution of the perturbed KGE. The saerach will 
be for soliton solutions only, in this section. After a 
general description of the method, the six forms of 
nonlinearity will be considered in separate 
subsections. 

3.1. Description of the method 

The perturbed KGE with general form of 
nonlinearity is given by Equation (19). For 
traveling wave solution the hypothesis 
 

( , ) = ( )q x t g x vt                                           (20) 
 
is substituted into the (19) where v  represents the 

velocity of the wave and ( , )g x t  represents the 

wave profile. Thus equation (19) reduces to 
 

 2 2 2 ( )''v k v v g F g g        

  = 0' ''' ''''v g vg g                       (21) 
 

where = /'g dg ds , 2 2= /''g d g ds  and so on. 

Here, 
 

=s x vt                                                           (22) 
 

In order to solve (21) by the traveling wave 
hypothesis, it is necessary to set 
 

= = = = 0                                             (23) 
 

Thus equation of study given by (19) reduces to 
 

2 ( ) =tt xx xt ttq k q F q q q q              (24) 
 
and hence (21) reduces to 
 

 2 2 2 ( ) = 0.''v k v v g F g g         (25) 

 

Multiplying both sides by 'g  and choosing the 

integration constant to be zero, since the search is 
for soliton solution, gives 
 

  22 2 2 'v k v v g     

22 ( ) = 0.'g F g ds g                               (26) 

 
Separating variables and integrating leads to 

 

2 2 2

x vt

v k v v 


  

1
2 2

= .

2 ( )'

dg

g g F g ds  




                        (27) 
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This expression will be evaluated for the six 
different functions F  that will be studied in the 
following subsections. 

3.1.1. Form-I 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2 =tt xx xt ttq k q aq bq q q q            (28) 
 
for the nonlinearity that is given by (2). This is the 
quadratic form of nonlinearity and hence (28) is the 

perturbed 4  equation. In this case (27) reduces to 
 

2 2 2

x vt

v k v v 


    
1

2

= 3
3( ) 2

dg

g a bg  
   (29) 

 
which gives, upon integration 
 

2 2 2

x vt

v k v v 


  
 

12 2
= 1tanh

3( )

bg

aa 

       

          (30) 

 
which leads to the soliton solution 
 

2( ) = ( , ) = [ ( )],g x vt q x t Asech B x vt    (31) 
 
where the amplitude A  and the inverse width B  
of the soliton are given by 
 

3( )
=

2

a
A

b


                                                  (32) 

 
and 
 

2 2 2

1
= ,

2

a
B

v k v v


 


  
                        (33) 

 
respectively. The width of the soliton forces the 
constraint  
 

 2 2 2( ) > 0a v k v v                       (34) 

3.1.2. Form-II 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 3 =tt xx xt ttq k q aq bq q q q            (35) 
 

which is from the nonlinearity that is given by (4). 
Thus, in this case, using (27) we obtain 
 

2 2 2

x vt

v k v v 


  
 

2
11

= 1tanh
2( )

bg

aa 

       

          (36) 

 
which leads to the soliton solution 
 

( ) = ( , ) = [ ( )],g x vt q x t Asech B x vt      (37) 
 
where the amplitude of the soliton is given by  
 

 2
=

a
A

b


                                              (38) 

 
and 
 

2 2 2

1
=

2

a
B

v k v v


 


  
                         (39) 

 
is the width of the soliton. Hence the constraint (34) 
is still valid and it is additionally necessary that 
 

( ) < 0b a                                                      (40) 
 
must also hold. 

3.1.3. Form-III 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 = .n
tt xx xt ttq k q aq bq q q q           (41) 

 
Here equation (27) yields 

 

2 2 2

x vt

v k v v 


  

2
=

( 1)n a
 

 
 

1
1 2

1 .   tanh
( 1)( )

nbg

n a



      

                  (42) 

 
After simplification, this implies that the 1-soliton 

solution to (41) is given by 
 

2

1( , ) = ( ) = [ ( )],nq x t g x vt Asech B x vt    (43) 
 
where the amplitude of the soliton is given by 
 

1

1( 1)( )
=

2

nn a
A

b

   
  

                                (44) 
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and the width B  is 
 

2 2 2

( 1)
=

2

n a
B

v k v v


 

 
  

                (45) 

 
which again requires the same constraint in (34). 

3.1.4. Form-IV 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2 1 = .n n
tt xx xt ttq k q aq bq cq q q q           (46) 

 
In this case, equation (27) gives 

 

2 2 2

x vt

v k v v 


  
 

11
= ln ,

( 1)

ng

Gn a

 
 

   
                         (47) 

 
where 
 

12
= 2

( 1)( )
nb

G g
n a

 
 

                          (48) 

1 2 22
2 1

( 1)( ) ( )
n nb c

g g
n a n a 

   
  

 

 
which finally leads to 
 

( , ) = ( )q x t g x vt

 
1

1

= ,
1 cosh[ ( )] n

A

C B x vt  

  (49) 

 
where 
 

1

1( 1)( )
=

nn a
A

b

     
                            (50) 

 

2 2 2
= ( 1)

a
B n

v k v v


 



  

                 (51) 

 
2( 1)( )

=
n a

C
b

 
                                    (52) 

 
with the constraints (34) and 
 

( ) < 0b a                                                      (53) 
 

2

2 2

4 4
= 1.

( 1) ( ) ( )

b c

n a n a 


  
                (54) 

3.1.5. Form-V 

For this form, the perturbed KGE that will be 
studied is given by 
 

2 1 1n n
tt xxq k q aq bq cq      

= xt ttq q q                                              (55) 
 

Here, equation (27) reduces to give 
 

2 2 2

x vt

v k v v 


  
 1= ,sinh

A
i C D

B
   (56) 

 
where 
 

2
= 2

1 1 4
n J

A i g
JK


 

2

1 1 4
n J

g
JK

 
 

                                   (57) 

 

= 1 n nB n Jg Kg 
2

1 1 4

nJg

JK


 
    (58) 

 

2
2

=
1 1 4

n J
C g

JK



 
                               (59) 

 

1 1 4
=

1 1 4

JK
D

JK

 
 

                                          (60) 

 
2

=
(2 )( )

b
J

n a 
                                         (61) 

 
2

=
(2 )( )

c
K

n a 
                                        (62) 

 
and   is the elliptic integral of the third kind that 
is defined as 
 

( ; | )n k
 

sin

2 2 2 20
= .

1 (1 )(1 )

dt

nt t k t



  
  

3.1.6. Form-VI 

For this form, the perturbed KGE that will be 
studied is given by 
 

2 ln =tt xx xtq k q aq bq q q q     .ttq    (63) 
 

Here, from (27) we get 
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2 2 2

x vt

v k v v 


  

1

22
= ln

2

b
a b g

b
      
  

  (64) 

 
Upon simplifying (64), the Gaussons for the 

perturbed KGE are given by 
 

2 2( )( , ) = ( ) = ,B x vtq x t g x vt Ae                (65) 
 
where the amplitude A  and width B  of the 
Gausson are given by 
 

1
= exp

2

a
A

b

   
 

                                    (66) 

 
and 
 

2 2 2

1
=

2

b
B

v k v v   
                         (67) 

 
which forces the constraint condition given by 
 

 2 2 2 > 0b v k v v                                (68) 

 
to hold in order for the Gaussons to exist. 

4. /'G G  Method 

In this section, the /'G G  method will be adopted 
to carry out the integration of the perturbed KGE. 
This study will be divided into the following six 
subsections based on the types of nonlinearity that 
are being studied. 

4.1. Description of the method 

The objective of this section is to outline the use 

of the /'G G -expansion method for solving certain 
nonlinear partial differential equations (PDEs). 
Suppose that we have a nonlinear PDE for ( , )u x t , 

in the form of 
 

( , , , , , ) = 0x t xx xt ttP q q q q q q                            (69) 
 
where P  is a polynomial in its arguments, which 
includes nonlinear terms and the highest order 
derivatives. The wave transformation 
 

( , ) = ( ), = ( ),q x t Q B x vt                        (70) 
 
reduces Eq. (69)  to the ordinary differential 

equation (ODE) 
 

2 2( , , , , ,' ' '' ''P Q BQ vBQ B Q vB Q   

2 2 , ) = 0''v B Q                                                (71) 
 
and restricts the general solutions on travelling 
wave solutions, where = ( )U U  , and prime 

denotes the derivative with respect to  . We 

assume that the solution of Eq. (71)  can be 

expressed by a polynomial in /'G G  as follows: 
 

=0

( ) = , 0
l'm

ml
l

G
Q a a

G


 
 

 
                         (72) 

 
where , = 0,1, ,la l m  are constants to be 

determined later and ( )G   satisfies a second order 

linear ordinary differential equation (LODE): 
 

2

2

( ) ( )
( ) = 0.

d G dG
G

d d

   
 

                (73) 

 
where   and   are arbitrary constants. Using the 

general solutions of Eq. (73) , we have 
 

2 2

2 1 2
2

2 2

1 2

2 2

2 1 2
2

2 2

1 2

1

1 2

4 4
cosh( ) sinh( )4 2 2 , 4 > 0,

2 24 4
sinh( ) cosh( )

2 2

4 4
cosh( ) sinh( )4 2 2= , 4 < 0,

2 24 4
sinh( ) cosh( )

2 2

,
2

'

c c

c c

c cG

G
c c

c

c c

        
    

        
    




  
     

  
 

 
  

     
  

 
 




2  4 = 0 














 




 

 
where 1c  and 2c  are arbitrary constants. 

To determine q  explicitly, we take the following 

four steps: 
 
Step 1. Determine the integer m  by substituting 

Eq. (72)  along with Eq. (73)  into Eq. (71) , and 

balance the highest order nonlinear term(s) and the 
highest order partial derivative. 
 
Step 2. Substitute Eq. (72)  with the value of m  

determined in Step 1, along with Eq. (73)  into Eq. 

(71)  and collect all terms with the same order of 

/'G G  together, the left-hand side of Eq. (71)  is 

converted into a polynomial in /'G G . Then set 
each coefficient of this polynomial to zero to derive 
a set of algebraic equations for v , B ,  ,   and 

la  for = 0,1, , .l m  
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Step 3. Solve the system of algebraic equations 

obtained in Step 2, for v , B ,  ,   and la , for 

= 0,1, ,l m  by using Maple. 

 
Step 4. Use the results obtained in the above 
mentioned steps to derive a series of fundamental 
solutions ( )Q   of Eq. (71)  depending on /'G G , 

since the solutions of Eq. (73)  are well known to 

us, then we can obtain the exact solutions of Eq. 
(69) . 

4.2. Applications to Perturbed KGE 

In this section, we will demonstrate the /'G G  -
expansion method on several forms of the perturbed 
KGE. 

4.2.1. Form-I 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2 =tt xx t xq k q aq bq q q q        

xt ttq q                                                       (74) 
 
which by the wave transformation (70)  is 

converted to 
 

2 2 2 2( ) ( )''v k v v B Q a Q        
2 ( ) = 0,'bQ v BQ                                (75) 

 
where k , a , b ,  ,  ,  ,   and   are 

constants. According to step 1, we get 
2 = 2 ,m m  hence = 2m . 

We then assume that Eq. (21) has the following 
formal solutions: 
 

2

2 1 0= ,
G G

Q a a a
G G

        
   

                     (76) 

 
where 0 1, ,a a  and 2a  are constants which are 

unknown to be determined by solving the set of 
algebraic equations obtained by step 2 by use of 
Maple, we get the following results: 
 

2 2 2
0 2

1
= (3 ( ))

2
a B z a

b
  




                (77) 

 

1

6
= (5 )

5
a B By v

b
  

                            (78) 

 

2

2

6
=

B y
a

b


                                                    (79) 

 
2 2 2

2

( )
= .

4

a z

B z

     
                              (80) 

 
where 
 

2 2 2 2 2 2 2= , = .z k y k v v v             
 

When 
2

2
2

( )
= 4 = > 0

a

B z

   
   we obtain 

hyperbolic function solutions: 
 

2
0 1 2( , ) = ( ) = ( ) ( ) ,q x t Q d d f d f     (81) 

 
where 
 

1

6 ( )
= ,

5

B v
d

b

  
                                        (82) 

 
2

2

6
= ,

B y
d

b


                                                  (83) 

 
2 2 2

0 2

15 ( 5( ) 6 ( ))
= ,

10

B a B v
d

b

      


         (84) 

 

1 2

1 2

( sinh( ) cosh( ))
( ) = ,

( cosh( ) sinh( ))

c c
f

c c

  
 




      (85) 

 

and 2 2 2 2= ( 1)( ) ,v v            

2

2

1 ( )
=

2

a

B z

  
 and = x vt  , = .v




 

When 
2

2
2

( )
= 4 = < 0

a

B y

   
   we obtain 

trigonometric function solutions: 
 

2
0 1 2( , ) = ( ) = ( ) ( ) ,q x t Q d d f d f     (86) 

 
where 
 

1 2

1 2

( sin( ) cos( ))
( ) = . 

( cos( ) sin( ))

c c
f

c c

  
 

 


       (87) 

 

When 
2

2
2

( )
= 4 = = 0

a

B y

   
  , the 

rational function solutions obtained as: 
 

2
0 1 2( , ) = ( ) = ( ) ( ) ,q x t Q d d f d f          (88) 

 
where 
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2

1 2

( ) = .
c

f
c c




                                            (89) 

 
and 0d , 1d , 2d ,   in (86) and (88) have the same 

values as Eq. (82), (83), (84) and 1 2, , ,c c B  are 

arbitrary constants. 

4.2.2. Form-II 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 3 =tt xx t xq k q aq bq q q q        

xt ttq q                                                       (90) 
 
where by the wave transformation (70)  is 

converted to 
 

2 3( ) ( )'' 'yB Q a Q bQ v BQ       = 0.    (91) 
 

Balancing ''Q  and 3Q  gives 2 = 3 ,m m  

hence = 1m . Then assuming 
 

1 0=
G

Q a a
G


                                                  (92) 

 

where 0

2 (3 )
=

6

by By v
a

by

    
        (93) 

 

1

2
=

byB
a

b


                                               (94) 

 
2 2 2

2

2 ( )
= .

4

B z a

zB

    
                           (95) 

 

Here, 2 2 2=y v k v v      

and 2 2 2 2= .z k         

Therefore, 
 

2 ( )
( , ) = ( ) =

6

2
( )

by v
q x t Q

by

byB
f

b

 





 





 

 

1 2

1 2

2 2
2

1 2

1 2

2
2

2

2
21

2
1 2

sinh( ) cosh( )
,

cosh( ) sinh( )

2 ( ) > 0
4 =

,

sin( ) cos( )
,( ) =

cos( ) sin( )

2 ( )
4 = < 0,

2 ( )
, 4 = = 0,

c c

c c

a zB

c c
f

c c

a

zB

c a

c c zB

 
 

  

 


 

  

  



 
  



  
 
  



  




 

 

and 
2

2

( )
= , = .

2

a
x t

zB

   



  

4.2.3. Form-III 

In this case, the perturbed KGE to be studied is 
given by 
 

2 =n
tt xx t xq k q aq bq q q q        

xt ttq q                                                        (96) 
 
and, by the wave transformation (94)  is reduced 

to 
 

2 ( ) ( )'' n 'yB Q a Q bQ v BQ       = 0,   (97) 
 

where 2 2 2= .y v k v v     

Balancing nQ  and ''Q  yields 2 =m nm  and 

hence 
2

=
1

m
n 

. We use 
2

1= nQ W  , so we have 

 

 2 4 2( 1) ( )n bW a W     

22 ( 1) ''y n B W W   222 ( 3) = 0.'y n B W    (98) 

 
According to step 1, we get 2 2 = 4 ,m m  

hence = 1m .We therefore assume that 
 

1 0= ,
G

W a a
G

   
 

                                          (99) 

 

where 0

2 (3 )
=

6

by By v
a

by

    
      (100) 

 

1

( )
=

b a
a

b


                                          (101) 

 



 
 
 
439                     IJST (2012) A4: 1-12 

2 2 24 4
= , = 0,

2( 1)

k k
v

   


  


 = 0.        (102) 

 

2 (3 )
= [

6

by By v
Q

by

    
  

2

1( )
( ) ]

2

nb a
f

b

        
 

 and  

21 2

1 2

21 2

1 2

21

1 2

sinh( ) cosh( )
, 4 > 0,

cosh( ) sinh( )

sin( ) cos( )
, 4 < 0,( ) =

cos( ) sin( )

, 4 = 0,

c c

c c

c c
f

c c

c

c c

   
 

   
 

 


  

    


  

 

with 
2 4

= ,
2

 



 

2 2 24 4
= .

2( 1)

k k
x t

  


  



 

5. Exp-Function Method 

This section will integrate the perturbed KGE by 
the exponential function technique that is 
abbreviated as exp-function approach. The details 
are in the following subsection below. 

5.1. Description of the method 

The exp-function method is based on the 
assumption that traveling wave solutions of Eq. 
(21) can be expressed in the following form: 
 

=

=

( ) = ,

d
n

n
n c

q
m

m
m p

a e
Q

b e




 






                                      (103) 

 
where c , d , p , and q  are positive integers 

which are unknown to be further determined, na  

and mb  are unknown constants. To determine the 

values of c  and p , we balance the linear term of 

highest order in Eq. (21) with the highest order 
nonlinear term. Similarly, to determine the values 
of d  and q , we balance the linear term of lowest 

order in Eq. (21) with the lowest order nonlinear 
term. 

5.1.1. Form-I 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2 =tt xx t xq k q aq bq q q q        

xt ttq q                                                     (104) 
 
which by the wave transformation, (102)  is 

converted to 
 

 2 2 2 2 ( )''v k v v B Q a Q        

2 ( ) = 0,'bQ v BQ                              (105) 
 
where k , a , b ,  ,  ,   and   are arbitrary 

constants. Using the ansatz (101), for the linear 

term of highest order 2Q  by simple calculation, we 

have 
 

( 3 )
1

4
2

=
c p

''
p

c e
Q

c e





 


                                      (106) 

 
and 
 

(2 2 )
2 3

4
4

= ,
c p

p

c e
Q

c e





 




                                  (107) 

 
where ic  are determined coefficients only for 

simplicity. Balancing highest order of exp-function 

in 2Q  and ''Q , we have 
 
2 2 = 3 ,c p c p                                          (108) 
 
which leads to the result 
 

= .p c                                                               (109) 
 

Similarly, to determine values of d  and q , we 

balance the linear term of lowest order in Eq. (105) 
 

(3 )
1

4
2

=
q d

''
q

d e
Q

d e





 








                                   (110) 

 

and        
(2 2 )

2 3
4

4

= ,
d q

q

d e
Q

d e





 









                 (111) 

 
where id  are determined coefficients only for 

simplicity. Balancing lowest order of exp-function 
in Eqs. (110) and (111), we have 
 

(3 ) = (2 2 ),q d d q                                (112) 
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which leads to the result 
 

= .d q                                                               (113) 
 

Since the final solution does not strongly depend 
upon the choice of values of c  and d , for 

simplicity, we set = = 1p c  and = = 1d q , the 

trial function, Eq. (101) becomes 
 

1 0 1

1 0 1

( ) = .
a e a a e

Q
b e b b e

 

 







 
 

                        (114) 

 
Substituting Eq. (114) into Eq. (105), and 

equating to zero the coefficients of all powers of 
ne   yields a set of algebraic equations for 1a , 0a , 

1a , 1b , 0b , v , B  and 1b . Solving the system of 

algebraic equations with the aid of Maple, we 
obtain the following several sets of solutions. 
 
Set 1.  
 

0
1 1 0

3 ( )
= 0, = 0, = ,

b a
a a a

b





 

2
0

1
1

= , = , = ,
4

b
b v B h

b

 
                          (115) 

 
so 
 

0
2
0

1 0
1

3 ( )
( , ) = ( ) = ,

1
( )

4

b a
q x t Q

b e
b b e b

b




 



 

    (116) 

 

where b ,  , 1 0b  , = x t



  and h  are the 

root of 
 

 2 2 2 2 2k Z a          = 0.   (117) 

 
and 0b , 1b  are free parameters, Here and the 

following cases a , b , k ,  ,  ,  ,   are free 

parameters. 
 

Set 2. 1 1 1= = = 0, = ,a a b v h   

0
0

( )
= , = ,  

b a a
a B

b h

 
 

 
 

               (118) 

 
so 
 

0

1 0

( )
( , ) = ( ) = ,

( )

b a
q x t Q

b b e b

 


          (119) 

 

where in the second, third and fourth set of 
solutions h  is the root of 
 

2 2( 1 ) = 0Z Z k                               (120) 
 
and 0 1,b b  are free parameters with 0b   and 

0h     conditions. 

 
Set 3.  
 

1
1 0 1 1

( )
= = = 0, = ,

b a
a a b a

b




 = ,v h  (121)  

 
so that  
 

1

1 0

( )
( , ) = ( ) = ,

( )

b a e
q x t Q

b b e b
















              (122) 

 
where 0b , 1b  are free parameters and 0b  . 

 

Set 4. 1 1 1= = = 0, = ,a a b v h  
 

0
0

( )
= .

b a
a

b


                                            (123) 

 

So 0

1 0

( )
( , ) = ( ) = ,

( )

b a
q x t Q

b b e b

 





         (124) 

 
where 0b , 1b  are free parameters and 0b  . 

5.1.2. Form-II 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 3 =tt xx t xq k q aq bq q q q        

xt tt xxt xxxxq q q q                             (125) 
 
which by the wave transformation (70)  is 

converted to 
 

2 3( ) ( )'' 'yB Q a Q bQ v BQ        
3 4 = 0,''' ''''v B Q B Q                               (126) 

 
where 
 

2 2 2=y v k v v     
 
and k , a , b ,  ,  ,  ,  ,   and   are all 

arbitrary constants. Using the ansatz (101) and 
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balancing highest order of exp-function in 3Q  and 
''Q  leads to the result 

 
= .p c                                                               (127) 

 
Similarly, balancing the linear term of lowest 

order in 3Q  and ''Q  leads to the result which leads 

to the result 
 

= .d q                                                               (128) 
 

Since the final solution does not strongly depend 
upon the choice of values of c  and d , for 

simplicity, we set = = 1p c , = = 1d q , the trial 

function, Eq. (101) becomes 
 

1 0 1

1 0 1

( ) = .
a e a a e

Q
b e b b e

 

 







 
 

                        (129) 

 
Substituting Eq. (129) into Eq. (126), and 

equating to zero the coefficients of all powers of 
ne   yields a set of algebraic equations for 1a , 0a , 

1a , 1b , 0 ,b  and 1b . Solving the system of 

algebraic equations with the aid of Maple, we 
obtain the following several sets of solutions. 
 

Set 1. 1 0 1 1= = 0, = = 0,a a b b   
 

1 1 0 0= , = , = .
h

a a b b v
B

                                (130) 

 
So 
 

1

0

( , ) = ( ) = ,
a e

q x t Q
b



                                 (131) 

 
where b , 0 0b   and h  is a root of 
 

2 2( 1) ( )Z B B Z a          
2 2 4 = 0,B k B B        (132) 

 
where 1 0,a b  are free parameters. 

 
Set 2.  
 

1 1 1= = = = = 0, = ,a a b c v h                (133) 
 

0 0

3( )
= , = ,

2( )

b a
b a B

a h


  

 


 
            (134) 

 

where 1 0, 0b a   and h  is the root of  
 

 2 29( 1)( ) 2a Z       

2( 4 9 ( )) 2a Z      
29 ( ) = 0k a       (135) 

 

and 0, 0.
b

h
a

 

  


                          (136) 

 
So, 
 

0

0 1

( , ) = ( ) = .
a

q x t Q
b

a b e
a








 


       (137) 

 
Set 3. 
 

2
0

1 1 0 1
1

= = = 0, = , = 0, = 0
8 ( )

ba
a a b b

b a
 

  
     (138) 

 

= , = ,v B h
 


                                            (139) 

 
where 0 1,a b  are free parameters and h  is the root 

of 
 

 2 2 2 2 2 = 0,k Z a              (140) 

 
and 
 

0
2
0

1
1

( , ) = ( ) = .

8 ( )

a
q x t Q

ba
b e e

b a
 








  (141) 

 
Set 4. 1 1 1= = = = = 0, = ,a a b c v h  
 

0 0=
b

b a
a 




                                           (142) 

 
3( )

= ,
2( )

a
B

h


 

 


                                            (143) 

 
where 
 

 2 2= 9( 1)( ) 2h a Z       

2 2( 4 9 ( )) 2 9 ( )a Z k a              (144) 
 
and 0a , 0b , 1b  are free parameters. So 
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0

0 1

( , ) = ( ) = .
a

q x t Q
b

a b e
a








 


   (145) 

 
Set 5. 1 1= = = = 0,a b c  
 

0
0 = ,

( )

a b
b

b
a

a



 



                               (146) 

 

1 1= , = .
b h

b a v
a B 


                        (147) 

 
Here h  is the root of  

 
2( 1 ) ( )Z B Z        

2 2 2 2 = 0B k B a                             (148) 
 
and 0 1,a a  are free parameters and 
 

( , ) = ( )q x t Q   

0 1

0
1

= . 

( )

a a e

bab
a e

a b
a

a


















 





    (149) 

5.1.3. Form-III 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 =n
tt xx t xq k q aq bq q q q        

xt ttq q                                                     (150) 
 
and by ( ), = ( )q Q B x vt                      (151) 
 
is reduced to 
 

 2 2 2 2 '' nv k v v B Q aQ bQ       

= .' 'Q v BQ BQ                                (152) 
 

By 
2

1= ,nq W   this is converted to  
 

2 2 22 ( 1) 2 ( 3 )y n B W W y n B W      
4 22( )( 1) ( 1)v n BWW bW n         

2 2( 1) ( ) = 0,W n a       (153) 
 
here 

 
2 2 2= .y k v v v                                  (154) 

 
and , , , , , ,k a b      and   are arbitrary 

constants. Using the ansatz (101) and balancing 
highest order of exp-function in WW  and 

4W leads to the result 
 

= .p c                                                               (155) 
 

Similarly, balancing the linear term of lowest 

order in WW   and 4W  leads to the result which 
leads to the result 
 

= .d q                                                               (156) 
 

Since the final solution does not strongly depend 
upon the choice of values of c  and d , for 

simplicity we set = = 1p c , = = 1d q , the trial 

function, Eq. (101) becomes 
 

1 0 1

1 0 1

( ) = .
a e a a e

Q
b e b b e

 

 







 
 

                        (157) 

 
Substituting Eq. (157) into Eq. (152), and 

equating to zero the coefficients of all powers of 
ne   yields a set of algebraic equations for 1a , 0a , 

1a , 1b , 0b , and 1.b  Solving the system of 

algebraic equations with the aid of Maple, we 
obtain the following several sets of solutions. 
 

Set 1. 1 1 0= = = 0,a a b  
 

2
0

1
1

=
2( 1)( )

ba
b

n a b  
                               (158) 

 

= , = ( 1) .v B h n
 


                                  (159) 

 
Here h  is root of  

 

 2 2 2 2 24 4 4 4k Z        

= 0.a                                                      (160) 
 

So, 
2

1( , ) = nq x t W   
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2

1

0
2
0

1
1

=

2( 1)( )

n

a

ba
b e e

n a b
 







 
  
 
 
   

          (161) 

 
where 0a  and 1b  are arbitrary constants. 

 

Set 2. 1 1 0 0= = 0, = , = ,
a

a b v a b
b

 



  

1
1

( )
= ,

a b
a

a
b

b







 


 (162) and 
2

1( , ) = nq x t W   

2

1

1
0

0 1

( )

=

n

a ba
b e

b a
b

b
b b e















 
  

 
 
  
 
 
 

      (163) 

 

Set 3. 0
1 1 0= = 0, = , = ,

( )

bah
a b v b

B b
a

a









 

 

1 1= ,
b

b a
a  


                                       (164)  

 
and 
 

2

1( , ) = nq x t W   
 

2

1

0 1

0
1

=

( )

n

a a e

ba b
a e

ab
a

a


















 
 
 

 
 
  
 

 
 

   (165) 

 
where h  is the root of 
 

2( 1) ( ) ( )( 1)Z B Z a n            
2 2 = 0,k B B                                            (166) 

 

and 0a  and 1a  are free parameters. 

5.1.4. Form-IV 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2 1 =n n
tt xxq k q aq bq cq q      

t x xt ttq q q q                                     (167) 
 

which, by 
1

1= nq W   is reduced to  

 2 2 3 4( 1) ( )n a W bW cW     

2 2 ( 2) ( )'B W n BWW v       
2( 1) ( 1) = 0,''n y n B WW                   (168) 

 
here 2 2 2=y v k v v      and , , , , , , ,k a b c     

and   are arbitrary constants. Using the ansatz 
(101) and balancing highest order of exp-function 

in ''WW  and 4W  leads to the result 
 

= .p c                                                               (169) 
 

Similarly, balancing the linear term of lowest 

order in ''WW  and 4W  leads to the result which 
leads to the result 
 

= .d q                                                               (170) 
 

Since the final solution does not strongly depend 
upon the choice of values of c  and d , so for 

simplicity, we set = = 1p c , = = 1d q , the trial 

function, Eq. (101) becomes 
 

1 0 1

1 0 1

( ) =
a e a a e

Q
b e b b e

 

 







 
 

                          (171) 

 
Substituting Eq. (171) into Eq. (168), and 

equating to zero the coefficients of all powers of 
exp( )n  yields a set of algebraic equations for 

1 0 1 1 0, , , , ,a a a b b  and 1.b  Solving the system of 

algebraic equations with the aid of Maple, we 
obtain the following several sets of solutions. 
 
Set 1.  
 

1 1= = 0, = ,a a v

                                     (172) 

 

0
0

( )( 1)
= ,

a n b
a

b

 
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2 2 2
0

1 2
1

( ( 1) ( ) )
= ,

4( )

c n a b n b
b

nb b




  
  

= ( 1)B n  
2 2 2 2

.
a

k


   


   

 

So 
1

1( , ) = =nq x t W   
1

1

0

2 2 2
0

0 12
1

( )( 1)

( ( 1) ( ) )

4( )

n

a n b

b
c n a b n b

e b b e
nb b

 









  
  
      
  

 (173) 

 
where 0b  and 1b  are free parameters. 

5.1.5. Form-V 

For this form, the perturbed KGE that will be 
studied is given by 
 

2 1 1
1 =n n

tt xx tq k q aq bq c q q q         (174) 

x xt tt xxt xxxxq q q q q                   (175) 
 
by ( , ) = ( ), = ( )q x t Q B x vt                 (176) 
 
is converted to 
 

 2 2 2 2 ''B v k v v Q aQ      

1 1 ( )n n 'bQ cQ Q B v Q         
3 4 = 0.''' ''''v B Q B Q                               (177) 

 
By 
 

4

= nQ W                                                           (178) 
 

is reduced to 2 3 212 ( 4)n v n B W W W     
2 4 2 4 416 ( 4) ' '''n n B W W W an W    

4 4 4 4 8n W bn cn W    

 338 ( 2)( 4) 'vn n n B W W    

 3 2 2 2 2 34 ''n v k v v B W W       

3 3 3 3 4 34 4'' ''''vn B W W n B W W    

 2448 ( 2)( 4) ' ''n n n B W W W           (179) 

 

 448 ( 2)(3 4)( 4) 'n n n B W     

 2 2 2 2 2 24 ( 4)n v k v v n B W        

 2 3 34 ( )' 'W n v BW W     

 22 4 212 ( 4) = 0.''n n B W W   

 
Here k , a , b ,  ,  ,  , c ,  ,   and   

are arbitrary constants. Using the ansatz (101) and 
balancing highest order of exp-function in WW   

and 4W  leads to the result 
 

= .p c                                                               (180) 
 

Similarly, balancing the linear term of lowest 

order in ''WW and 4W  leads to the result, which 
leads to the result 
 

= .d q                                                               (181) 
 

Since the final solution does not strongly depend 
upon the choice of values of c  and d , for 

simplicity, we set = = 1p c , = = 1,d q  the trial 

function, Eq. (101) becomes 
 

1 0 1

1 0 1

( ) =
a e a a e

Q
b e b b e

 

 







 
 

                          (182) 

 
Substituting Eq. (182) into Eq. (177), and 

equating to zero the coefficients of all powers of 
ne   yields a set of algebraic equations for 1a , 0a , 

1a , 1b , 0b  and 1b . Solving the system of 

algebraic equations with the aid of Maple, we 
obtain the following set of solutions. 
 

1 1 1 1 0 0= = = = 0, = ,a a b b b ha              (183) 
 
where h  is root of 
 

8 42 ( ) = 0,bZ c a Z                            (184) 
 
where 0a  is an arbitrary constant. 

5.1.6. Form-VI 

For this form, the perturbed KGE that will to be 
studied is given by  
 

2 ln =tt xx tq k q aq bq q q q      

x xt ttq q q                                            (185) 
 
with ( , ) = ( ), = ( )Q x t Q B x vt    is converted to 
 

 2 2 2 2 ( )''B v k v v Q a Q        
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ln ( ) = 0'bQ Q v BQ                         (186) 
 
and by ln =q u  it is reduced to 
 

    22 2 2 2 '' 'B v k v v u u      

( ) ( ) = 0,'a bu B v u                   (187) 
 
here k , a , b ,  ,  ,  ,   and   are arbitrary 

constants. Using the ansatz (101) and balancing 

highest order of exp-function in ''WW  and 4W  
leads to the result 
 

= .p c                                                               (188) 
 

Similarly, balancing the linear term of lowest 

order in ''u  and  2'u  leads to the result, which 

leads to the result 
 

= .d q                                                               (189) 
 

Since the final solution does not strongly depend 
upon the choice of values of c  and d , for 

simplicity, we set = = 1p c , = = 1d q , the trial 

function, Eq. (101) becomes 
 

1 0 1

1 0 1

( ) = .
a e a a e

Q
b e b b e

 

 







 
 

                        (190) 

 
Substituting Eq. (190) into Eq. (186), and 

equating to zero the coefficients of all powers of 
ne   yields a set of algebraic equations for 1a , 0a , 

1a , 1b , 0b  and 1b . Solving the system of 

algebraic equations with the aid of Maple, we 
obtain the following set of solutions. 
 
Set 1. 
 

0
1 1 1 0

( )
= = = 0, = , = ,

a b
a b b v h a

b




 
 

= .
b

B
h 

                                                  (191) 

 
Here h  is the root of 

 
2 2( 1 ) = 0Z Z k                               (192) 

 
and 1a  and 0b  are arbitrary constants. So 

( ) 0
1

0( )( , ) = ( ) = = . 

a b
a e

b
b

uq x t Q e e

 



   

(193) 

 
Set 2. 
 

1 1 0= = = 0, = , = ,
b

a b b v h B
h 

 

1
1

( )
= .

a b
a

b

 


 
                                       (194) 

 
Here 0 1,a b  are arbitrary constants and h  is the 

roots of 
 

2 2( 1 ) = 0.Z Z k         (195) 
 

So 

( ) 1
0

1( )( , ) = ( ) = = ,

a b
a e

b

b e
uq x t Q e e

 




  




  (196) 
 
where 0b   and .h   

6. Mapping Methods 

Now, we solve eq. (19) by a mapping method and a 
modified mapping method which generates a 
variety of periodic wave solutions (PWSs) in terms 
of squared Jacobi elliptic functions (JEFs) and we 
subsequently derive their infinite period 
counterparts in terms of hyperbolic functions which 
are solitary wave solutions (SWSs), shock wave 
solutions or singular solutions. For solving by these 
methods, we set in eq. (21) = = = =0    . Thus 

eq. (21) reduces to 
 

 2 2 2 ( )''v k v v g F g     =0.g      (197) 

6.1. Form-I 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2 = .tt xx xt ttq k q aq bq q q q        (198) 
 

Using the travelling wave hypotheses (20) and 
(22), eq. (198) reduces to 
 

2 =0,''Ag Bg C g                                        (199) 
 
where 
 

2 2 2= ,A v k v v    = , = .B a C b       (200) 

6.1.1. Mapping Method 

Here, we assume that eq. (199) has a solution in 
the form 
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0 1= ,g A A f                                                   (201) 
 
where 
 

2= ,''f P Q f R f   

 2 2 32
=2 .   

3
'f P f Q f R f                     (202) 

 
Eq. (201) is the mapping relation between the 

solution to eq. (199) and that of eq. (202). We 
substitute eq. (201) into eq. (199), use eq. (202) and 
equate the coefficients of like powers of f  to zero 

so that we arrive at the set of equations 
 

2
1 1 =0,AA R C A                                             (203) 

 

1 1 0 12 =0,AA Q B A C A A                           (204) 
 

2
1 0 02 =0.AA P B A C A                                (205) 

 

From eqs. (203) and (204), we obtain 1=
AR

A
C

  

and 0 = .
2

AQ B
A

C


  Eq. (205) gives rise to the 

constraint relation 
 

2 2 2( 4 )= .A Q PR B                                       (206) 

 

Case 1. 2 2=2, = 4(1 ), =6 .P Q m R m   Now eq. 

(202) has two solutions 2( )=sn ( )f s s  and 
2( )=cd ( )f s s . So, we obtain the PWSs of eq. 

(199) as 
 

2 2 2 24(1 )( )
( )=

2

a m v k v v
g s

b

       
 

2 2 2 2
26 ( )

sn ( ),
m v k v v

s
b

   
            (207) 

 
and 
 

2 2 2 24(1 )( )
( )=

2

a m v k v v
g s

b

       
 

2 2 2 2
26 ( )

cd ( ).
m v k v v

s
b

   
            (208) 

 
When 1m , the eq. (207) gives rise to the SWS 

2 2 28( )
( )=

2

a v k v v
g s

b

      
 

2 2 2
26( )

tanh ( ).
v k v v

s
b

   
            (209) 

 

Case 2. 2 2 2=2(1 ), = 4(2 1), = 6 .P m Q m R m     

In this case, eq. (202) has the solution 
2( )=cn ( )f s s . Thus we obtain the PWS of eq. 

(199) as 
 

2 2 2 24(2 1)( )
( ) =

2

a m v k v v
g s

b

       

2 2 2 2
26 ( )

cn ( ).
m v k v v

s
b

   
            (210) 

 
When 1m , the eq. (210) gives rise to the SWS 

(209). 
 

Case3. 2 2= 2(1 ), =4(2 ), = 6.P m Q m R     

Here, eq. (202) has the solution 2( )=dn ( )f s s . 

So, we obtain the PWS of eq. (199) as 
 

( ) =g s
2 2 2 24(2 )( )

2

a m v k v v

b

       
 

2 2 2
26( )

dn ( ).
v k v v

s
b

   
                  (211) 

 
When 1m , the SWS (209)  is retained. 

 

Case 4. 2 2=2 , = 4(1 ), =6.P m Q m R   Now, eq. 

(202) has two solutions 2( )=ns ( )f s s  and 
2( )=dc ( )f s s .In this case, we obtain the two 

PWSs of eq. (199) as 
 

( ) =g s
2 2 2 24(1 )( )

2

a m v k v v

b

       
 

2 2 2
26( )

ns ( ),
v k v v

s
b

   
  (212) and  

( ) =g s
2 2 2 24(1 )( )

2

a m v k v v

b

         

2 2 2
26( )

dc ( ).
v k v v

s
b

   
                  (213) 

 
When 1m , eq. (212) leads us to the singular 

solution 
 

2 2 28( )
( )=

2

a v k v v
g s

b

      
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2 2 2
26( )

coth ( ).
v k v v

s
b

   
              (214) 

 

Case5. 2 2 2= 2 , =4(2 1), =6(1 ).P m Q m R m    

So, eq. (202) has the solution 2( )=nc ( )f s s . 

Thus we obtain the PWS of eq. (199) as  
2 2 2 24(2 1)( )

( ) =
2

a m v k v v
g s

b

       

2 2 2 2
26(1 )( )

nc ( ).
m v k v v

s
b

    
   (215) 

 

Case 6. 2 2= 2, =4(2 ), = 6(1 ).P Q m R m     

Here, eq. (202) has the solution 2( )=nd ( )f s s . 

So, we obtain the PWS of eq. (199) as 
 

2 2 2 24(2 )( )
( )=

2

a m v k v v
g s

b

       

2 2 2 2
26(1 )( )

nd ( ). 
m v k v v

s
b

    
 (216) 

 

Case 7. 2 2=2, =4(2 ), =6(1 ).P Q m R m   Here, 

eq. (202) has the solution 2( )=sc ( )f s s . Thus the 

PWS of eq. (199) is 
 

( ) =g s
2 2 2 24(2 )( )

2

a m v k v v

b

         

2 2 2 2
26(1 )( )

sc ( ).
m v k v v

s
b

    
    (217) 

 

Case8. 2 2 2=2, =4(2 1), = 6 (1 ).P Q m R m m    

In this case, eq. (202) has the solution 
2( )=sd ( )f s s . Thus the PWS of eq. (199) is 

 
2 2 2 24(2 1)( )

( ) =
2

a m v k v v
g s

b

       

2 2 2 2 2
26 (1 )( )

sd ( )
m m v k v v

s
b

    
   (218) 

 

Case 9. 2 2=2(1 ), =4(2 ), =6.P m Q m R   Here, 

eq. (202) has the solution 2( )=cs ( )f s s . Thus the 

PWS of eq. (199) is 
 

( )=g s
2 2 2 24(2 )( )

2

a m v k v v

b

       
 

2 2 2
26( )

cs ( ).
v k v v

s
b

   
                  (219) 

 
When 1,m  the PWS (219) will give rise to 

the singular solution (214). 
 

Case10. 2 2 2= 2 (1 ), =4(2 1), =6.P m m Q m R    

Thus eq. (202) has the solution 2( )=ds ( )f s s . So, 

the PWS of eq. (199) is 
 

2 2 2 24(2 1)( )
( ) =

2

a m v k v v
g s

b

       

2 2 2
26( )

ds ( ).
v k v v

s
b

   
                  (220) 

 
When 1,m  the PWS (220) leads to the same 

singular solution (214). 
It is evident from the constraint relation (206) that 
2 4Q PR  should always be positive with our 

choices of ,P Q  and R  for real solutions to exist. 

In all the cases considered, we can see that 
2 4Q PR  is equal to 4 216 16 16m m   which is 

always positive for 0 1.m   Thus all our solutions 

are valid with the constraint relation (206).  

6.1.2. Modified Mapping Method 

In this case, we assume that eq. (199) has a 
solution in the form 
 

1
0 1 1= ,g A A f B f                                     (221) 

 
where f  satisfies eq. (202). Eq. (221) is the 

mapping relation between the solution to eq. (202) 
and that of eq. (199). 

We substitute eq. (221) into eq. (199), use eq. 
(202) and equate the coefficients of like powers of 
f  to zero so that we will obtain a set of equations 

giving rise to the solutions 
 

0 1= , = ,
2

AQ B AR
A A

C C


  1

3
= ,

P A
B

C
   (222) 

 
and the constraint relation 
 

2 2 2( 16 )= .A Q PR B                                     (223) 

 

Case 1. 2 2=2, = 4(1 ), =6 .P Q m R m   

Here, eq. (202) has two solutions 
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2( )=sn ( )f s s  and 2( )=cd ( )f s s . 
 
The PWSs of eq. (199) are 
 

2 2 2( )
( ) =

2 2

a v k v v
g s

b b

     
  

2 2 2[4(1 ) 12 sn ( )m m s   2 212 ns ( )],m s    (224) 
 
and 
 

2 2 2( )
( ) =

2 2

a v k v v
g s

b b

     
         (225) 

2 2 2 2 24(1 ) 12 cd ( ) 12 dc ( ) .m m s m s       

 
When 1m , eq. (224) degenerates to the 

solution 
 

2 2 2( )
( ) =

2 2

a v k v v
g s

b b

     
  

 2 28 12 tanh ( ) coth ( ) .s s                  (226) 

 

Case 2. 2 2= 2(1 ), =4(2 ), = 6.P m Q m R     

In this case, eq. (202) has the solution 
2( )=dn ( )f s s . So, the PWS of eq. (199) is 

 
2 2 2( )

( ) =
2 2

a v k v v
g s

b b

     
  

2 2[4(2 ) 12dn ( )m s   2 212(1 )nd ( )].m s     (227) 
 

When 1m , eq. (227) leads us to the SWS 
 

2 2 22( )
( ) =

2

a v k v v
g s

b b

     
  

21 3sech ( ) .s                                            (228) 

 

Case 3. 2 2=2, =4(2 ), =6(1 ).P Q m R m   

Thus eq. (202) has the solution 2( )=sc ( )f s s . So, 

the PWS of eq. (199) is 
 

2 2 2( )
( ) =

2 2

a v k v v
g s

b b

     
  

2 2 2 24(2 ) 12(1 )sc ( ) 12cs ( ) .m m s s          (229) 

 
When 1m , eq. (229) degenerates to the 

singular solution (214). 

6.2. Form-II 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 3 = .  tt xx xt tt xxxxq k q aq bq q q q q           (230) 
 

Using the travelling wave hypotheses (20) and 
(22), eq. (230) reduces to 
 

3 =0,''Ag Bg C g                                        (231) 
 
Where, 
 

2 2 2= , = ,A v k v v B a      = .C b      (232) 

6.2.1. Mapping Method 

Here, we assume that eq. (231) has a solution in 
the form 
 

0 1= ,g A A f                                                   (233) 
 
where 
 

3= ,''f P f Q f 2 2 41
= .

2
'f P f Q f r       (234) 

 
Eq. (233) is the mapping relation between the 

solution to eq. (231) and that of eq. (234).We 
substitute eq. (233) into eq. (231), use eq. (234) and 
equate the coefficients of like powers of f  to zero 

so that we arrive at the set of equations 
 

3
1 1 =0,Q AA C A                                             (235) 

 
2

0 13 =0,C A A                                                   (236) 
 

2
1 0 1( ) 3 =0,P A B A C A A                              (237) 

 
3

0 0 =0,B A C A                                                (238) 
 
from which we obtain 
 

0 1=0, = ,
QB

A A
PC

   =0.PA B                (239) 

 
Case 1. = 2, =2, =1.P Q R  

In this case, the solution of eq. (234) is 
( )=tanh( )f s s . So, we have the shock wave 

solution of eq. (231) as 
 

( )= tanh( ).
a

g s s
b


                             (240) 

 
Case 2. =1, = 2, =0.P Q R  
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So, the solution of eq. (234) is ( )=sech( )f s s . 

Thus the SWS of eq. (231) is 
 

2( )
( )= sech( ).

a
g s s

b


                       (241) 

 

Case 3. 2 2= (1 ), =2 , =1.P m Q m R   

Here, the solutions of eq. (234) are ( )=sn( )f s s  

and ( )=cd( )f s s . So, the PWSs of eq. (231) are 
 

2

2( )
( )= sn( ),

(1 )

a
g s m s

b m





                      (242) 

 
and 
 

2

2( )
( )= cd( ).

(1 )

a
g s m s

b m





                      (243) 

 
When 1m , eq. (242) reduces to the shock 

wave solution (240). 
 

Case 4. 2 2=2 , = 2, = 1.P m Q R m    

In this case, the solution of eq. (234) is 
( )=dn( )f s s . Here, the PWS of eq. (231) is 

 

2

2( )
( )= dn( ).

(2 )

a
g s s

b m





                         (244) 

 
When 1m , the SWS (241) is recovered from 

eq. (244). 
 

Case 5. 2 2= (1 ), =2, = .P m Q R m   

The solutions of eq. (234) are ( )=ns( )f s s  and 

( )=dc( )f s s . So, the PWSs of eq. (231) are 
 

2

2( )
( )= ns( ),

(1 )

a
g s s

b m





                          (245) 

 
and 
 

2

2( )
( )= dc( ).

(1 )

a
g s s

b m





                          (246) 

 
When 1m , eq. (245) degenerates to the 

singular solution 
 

( )= coth( ).
a

g s s
b


                             (247) 

6.2.2. Modified Mapping Method 

Now, we use the modified mapping method in 
which we assume a solution of eq. (231) in the form 
 

1
0 1 1=g A A f B f                                        (248) 

 
where f  satisfies eq. (234). 

We substitute eq. (248) into eq. (231), use eq. (234) 
and equate the coefficients of like powers of f  to 

zero to arrive at a set of equations fro which it can 
be found that 
 

0 1=0, =
Q A

A A
C

                                      (249) 

 

1

2
= ,

R A
B

C
  1 13 =0.P A B C A B         (250) 

 
Thus for real solutions of eq. (231) to exist, when 

Q  and R  are both positive, A  and C  should be 

of opposite signs and when Q  and R  are both 

negative, A  and C  should be of the same signs. 
 
Case 1. = 2, =2, =1.P Q R  

In this case, the solution of eq. (234) is 
( )=tanh( )f s s . So, we have the solution of eq. 

(231) as 
2 2 22( )

( )=
v k v v

g s
b

   
 

 tanh( ) coth( ) .s s                                  (251) 

 

Case 2. 2 2= (1 ), =2 , =1.P m Q m R   

Here, the solutions of eq. (234) are ( )=sn( )f s s  

and ( )=cd( )f s s . Thus the PWSs of eq. (231) are 
 

2 2 22( )
( )=

v k v v
g s

b

   

 sn( ) ns( ) ,m s s                                       (252) 
 
and 
 

2 2 22( )
( ) =

v k v v
g s

b

   
 

 cd( ) dc( ) .m s s                                       (253) 
 

When 1m , eq. (252) gives the same solution 

(251). 
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Case 3. 2 2=2 , =2, =1 .P m Q R m   

So, the solution of eq. (234) is ( )=cs( )f s s . Thus 

we have the PWS of eq. (231) as 
 

2 2 22( )
( ) =

v k v v
g s

b

   
 

 2cs( ) 1 sc( ) .s m s                              (254) 

 
When 1m , eq. (254) leads to the singular 

solution 
 

2 2 22( )
( )=

v k v v
g s

b

   
 csch( ).s  (255) 

 

Case 4. 2 2=2 , = 2, = (1 ).P m Q R m     

Here, the solution of eq. (234) is ( )=dn( )f s s . 

So, we have the PWS of eq. (231) is 
 

2 2 22( )
( ) =

v k v v
g s

b

   
  

 2dn( ) 1 nd( ) .s m s                           (256) 

 
When 1m , eq. (256) gives rise to the SWS 

 
2 2 22( )

( )=
v k v v

g s
b

   
  sech( ).s    (257) 

7. Lie Group Analysis 

In this section, we study some forms of the 
perturbed KGE by the aid of Lie group analysis. 
Initially, the method will be described in a succinct 
manner and will subsequently be applied to solve a 
couple of forms of the perturbed KGE. 

7.1. Description of the method 

The partial differential equation 

( , , , , , , , ) = 0t x tt tx xxE t x q q q q q q  admits the 

symmetry generator X  in the form of prolongation 
given by 
 

1 2= ( , , ) ( , , ) ( , , )t x qX t x q t x q t x q        

1 2 1 2

,i q i i qi i i
                                             (258) 

 
if =0| = 0,EXE                                                 (259) 
 
where the summation convention is used whenever 
appropriate. In (258), the additional coefficients 

1 2
,i i i   are determined uniquely by the 

prolongation formulae = ( ) ,j
i i ijD W q   

 

1 2 1 2 1 2
= ( ) , , = 1,2, j

i i i i ji iD D W q i j      (260) 

 
in which W  is the Lie characteristic function 

defined by = i
iW q  . Here the differential 

operators tD  and xD  are given by 

1 = =t t t qD D q    and 
2 = =x x x qD D q    . 

7.1.1. Form-I 

In this case, the perturbed KGE that will be 
studied is given by 
 

2 2
tt xx t xq k q aq bq q q        

= 0.xtq                                                          (261) 
 

The equation (261) admits the following two Lie 
point symmetries 
 

1 2= ,   = .t xX X                                        (262) 
 

The group-invariant solution corresponding to the 

combination of symmetries 1 2X cX , where c  is 

a constant is given by 
 

= ( ),q h                                                         (263) 
 
where = x ct  . The group-invariant solution 

(263) reduces the equation (261), choosing 
= c  , to the following nonlinear second-order 

ordinary differential equation (ODE) 
 

2 = 0,h Ah Bh                                         (264) 
 
where 
 2 2 2 2:= /( ),  := /( )A a c k c B b c k c     
 
and `prime' denotes differentiation with respect to 
 . Integrating the equation (264) with respect to 

  again and letting the constant of integration be 

zero we obtain the following nonlinear first-order 
ODE 
 

2 2 32
= .

3

B
h Ah h                                       (265) 

 
The equation (265) has the following solution 

after substituting the values of A  and B  
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2
2 2

3
( ) = s ,

2 4( )

a a
h ech d

b k c c
 


 

    
  (266) 

 
where d  is a constant of integration. Hence we 
obtain the following solitary wave exact group-
invariant solutions for the equation (261), in which 

= c  , given by 
 

2
2 2

3
( , ) = s (

2 4( )

a a
q x t ech d

b k c c


 
 

( )).x ct                                                        (267) 

7.1.2. Form-IV 

For this form, the perturbed KGE that will be 
studied is given by 
 

2 2 1n n
tt xxq k q aq bq dq      

= 0,  > 1.xt ttq q n                                 (268) 
 

Again the equation (268) admits the following 
two Lie point symmetries 
 

1 2= ,   = .t xX X                                        (269) 
 

The 1 2X cX -group-invariant solution 

corresponding to the combination of symmetries 

1X  and 2X , where c  is a constant is given by 
 

= ( ),q h                                                         (270) 
 
where = x ct  . 

The reduced nonlinear second-order ODE 
resulting from substituting the group-invariant 
solution (270) into the equation (268) is given by 
 

2 1 = 0,n nh Ah Bh Ch                           (271) 
 
where 
 

2 2 2

2 2 2

2 2 2

:= /( ),  

:= /( ),  

:= /( )

A a c c k c

B b c c k c

C d c c k c

 

 

 

  

  

  

 

 
and `prime' denotes differentiation with respect to 
 . Integrating the equation (271) with respect to 

  and letting the constant of integration be zero 

yields the following nonlinear first-order ODE 
 

2 2 1 22
= .

( 1)
n nB C

h Ah h h
n n

  


              (272) 

Further integration of the equation (253) and then 
substituting the values of A , B  and C  we obtain 
the following solution for the equation (272) 
 

1

1

( ) = ,

[ cosh( )]n

D
h

E e F


  

                (273) 

 
where e  is a constant of integration, 
 

1

1

2 2

( 1)
= ,

[ ( 1) ]

nan n
D

n nb ad n

  
   

            (274) 

 

2 2
= ,

[ ( 1) ]

bn
E

n nb ad n 
                       (275) 

 
and 
 

2 2 2
= ( 1) .

( )

a
F n

c c k c 


  
         (276) 

 
Thus we get the following solitary travelling 

wave exact group-invariant solutions for the 
equation (268) given by 
 

1

1

( , ) = ,

[ cosh( ( )]n

D
q x t

E e F x ct   
    (277) 

 
where the constants ,D E  and F  are given by the 

equations (274), (275) and (276), respectively. 

8. Conclusions 

This paper studied the KGE with six forms of 
nonlinearity including the log law nonlinearity. The 
perturbation terms are taken from the theory of long 
Josephson junctions, modeled by the sine-Gordon 
equation and its type, and we were justified in 
studying them in the context of KGE. Thus, the 
perturbed KGE was integrated in the presence of 
these strong perturbation terms by the aid of several 
integration tools. In particular, the traveling wave 

solutions were obtained, /'G G  method approach 
was used, exp-function method was carried out, 
mapping method and its versions were also applied 
and finally the Lie symmetry approach was also 
utilized to extract several forms of solution to the 
perturbed KGE. 

In addition to soliton solutions, cnoidal waves, 
snoidal waves, other PWS and rational solutions 
were obtained. The limiting cases of these PWS are 
also given. These solutions are going to be 
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extremely useful in the context of relativistic 
quantum mechanics where KGE arises. 
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