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Abstract

This paper deals with the behavior at infinity of solutions to a class of wave equations with nonlinear damping
terms defined in a semi-infinite cylinder. The spatial behavior of solutions is studied and an alternative of
Phragmén-Lindel6f type theorems is obtained in the results. The main point in the contribution is the use of energy

method.
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1. Introduction

In recent years, several papers have been devoted to
the study of asymptotic behavior of end effects for
partial differential equations and systems. A great
number of these studies were motivated by the
desire to establish versions of Saint-Venant's
principle that was initiated by Toupin [1] and
developed by Horgan and Knowles [2] and the
updated articles by Horgan [3, 4]. The same kind of
results can be found in the studies by Knowles [5,
6], Oleinik [7], Flavin [8, 9-11] and Horgan [12]. A
number of rigorous mathematical works are
devoted to the study of such results for hyperbolic
equations. We may recall the pioneer studies by
Flavin et.al [13] and Chirita et.al [14-16]. The
common goal in these works has been to construct
an energy inequality.

When dissipative terms are present, alternative
results can be considered. Quintanilla in [17]
established spatial decay estimates for some classes
of hyperbolic heat equation and proved same results
in nonlinear viscoelasticity [18, 19]. In linear
viscoelasticity, Diaz and Quintanilla [20] proved
simillar results. In a recent work, Yilmaz [21]
obtained the spatial growth and decay estimates for
a class of quasilinear equations modelling dynamic
viscoelasticity.

The aim of the present work is to establish a
spatial decay and growth estimates for solutions to
a nonlinear wave equation with nonlinear damping
terms defined in a semi-infinite cylinder. We prove
some theorems of Phragmén-Lindel6f type when
the Neumann boundary condition (2) is imposed on
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the finite end of the cylinder and the Dirichlet
boundary condition (3) is considered on the lateral
surface. Our study is inspired by the results of [22],
in which Celebi and Kalantarov obtained growth
and decay estimates for a class of hyperbolic
equations under nonlinear boundary conditions.

More precisely, we are concerned with the initial-
boundary value problem

ey + auty — Au + J:g(t — DAu(T)dT + g P

= div(Vu|Vul?), (x,t) € Q2 x (0,T), €))
2 @,0,6) = h(x',t), (¢,) €Dy x (0,T), ()
uCe,t) =0, (x,t) €Sy x (0,T), 3)
u(x,0) = u,(x,0) =0, x€Q, (4)

where a is a positive constant, p = 1,v is the
outward normal to the boundary and

h(.,t) € C1(Dy),
for all t € (0,T). Q is the cylinder
Q= {x € R™:x, €ER",(x",x,) €Dy ,n = 2},
where
D, ={(x",xp) €Q: x, =2z},
and
S;={x€R": x'€0dD, ,z<x, <o }.

We also assume that dD,, is sufficiently smooth to
apply the divergence theorem. In the sequel we use
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Q,=0n{x€ER":0<x, <z},
R,=QNn{x €€R™:z< x, < oo},

and assume that the function g satisfies

1—-J g(s)ds =1>0, (5)
and
gs)=0, g'(s)<0, vs=0. (6)

In addition, we assume that for functions
v € L0, T], the inequality

v(t) = (g * v)(0), (7
holds for g, where

t

(g*v)(t) = f gt —1v(r)dr.
0

2. Spatial estimates

For the solutions of the problem (1)-(4) if
h(x',t) = 0, we introduce the energy function E(z)
given by

T
E(z) = j (2 + |Vul? + [ [P*2
0 Ja,

+ |Vu|P*?) dxdt
T
n f (g o Vi), (t)dt, ®)
0

where

t

(g o Vo (t) = f 9t — DIIVu®) - Vu@ .
0

Multiplying (1) by u, and integrating over 1, we
obtain

1 2 1 2
L3 lluellg, + > IVullg,

1
+—— | |VulP*2dx ]+ g
P+2LZ| ulP*dx ]+ allullg,

g
a,

=J- utuxndx’+J- Uy |VulPdx’
D D

Z Z

—f J-tg(t — D) u(Duy, (Ddrdx’. 9
D, Y0

|ug|P+2 — f J-tg(t — 1) Vu, (£)Vu(r)drdx
Q, Jo

It is not difficult to see

f ftg (t — 1) Vu (t)Vu(r)drdx
Qz Jo

1d
= 1—35 [ fg o Vu)q, (t) |
t3a | 9@ 1T, ]
1 1
+3(g 0 V), ) — 39N, (10)

Therefore, (9) can be rewritten in the form

1 1
TS [ §||ut||?zz+§||vu||?zz

1 1
=(ge°V t)+—— Vul|Pt2d
+30e V00,0 4 oo | i

1 t
— [ 9@arivul, 1 +alul,
0

1 1
+59@IVullg, =5 (9" o Vg, ()

+f |u )P 2dx
Q

Z

=f utuxndx’+f Uy, |VulPdx’
D D

z Z

—J- ftg(—‘r) u (Ouy, (v)drdx’. (1D
p, Jo

By taking the scalar product of (1) with eu for
€ > 0, integrating over ), and adding to (11), we
find

1 ae
7 [ lhelh, + 5 lellf, + e, u,

1 1 t
- p+2 : 2 _
+p n zfﬂz [VulP*2dx + > ||Vu||Qz <1 Lg(r)dr)
1
+5 (g oV, ® 1 +(a—olluclld,

1
+(300 + €)Ivulls, + | lulr*2ax
Qg

+ef uu, |u |Pdx + EJ- |[Vu|P+2dx
Q Q

Z Z

1
~5(g' e Vwq, (©)

t
—Ef f gt — ) Vu(t)Vu(r)drdx = (us ,uy )p
a, o n/lz

+e(u,uxn)DZ+f Uy, [VulPdx’
Dy

+€f uuy,, |VulPdx’
D

Z

—f ftg(t — 1) u (Duy, (v)drdx’
D, Jo

—€ fDZ J:g(—‘r)u(t)uxn(r)drdx’. (12)
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Using the Holder and Young's inequalities, for
the last integral in the right hand side of (12) we
have

t
f f gt — D u(u,, (r)drdx’
p, Jo
t
= [ [ 9t - 0u@lu,@ - u® 1dwax
p, Jo
t
+[ gt~ Iul dr
0
1 t 2
Z—E [ J-g(t—‘[) ||uxn(‘[)—u(t)||Dsz
t 0 t
+ [ g@driut, 1 + [ g@drlul,  (13)
0 0
Analogously,
t
f f gt — ) u(Du,, (r)drdx’
p, Jo
1 t
>3 [ [ 9=0lhu,@ - wO, de
t 0 t
+[g@artuly, 1+ [ g arliuls, a9
0 0

Also, the last integral in the left hand side of (12)
can be written in the form

t

f f g(t — 7) Vu(t)Vu(t)drdx

Qz 70
t t

= %( [s@ dr) vl + 3 [ ¢~ DIV, dx
0 0

1
—5 (g °Vu)g, (). (15)

After integrating (12) with respect to t over (0, T)
and using (13)-(15), the conditions (5)-(6) and the
inequality

1
e(u,up)q, = —€*|lullg, —leutllﬁz,
taking € < %, one can find
T el T
@0 [ el de+5 [ 19ul, de
0 0
T T
+j |u P*2dx dt + ef j [Vul|P*2dx dt
0 Ja, 0 Jo
e (T T
+—f (g o Vu)g, (t)dt + ef f uu; |u [Pdxdt
2Jo 0 Ja,
e (T ¢
] (nwnaz - [ g-v ||Vu(r)||ézdr) dt
0 0

T T
< J- (ug yuy,)p,dt + ef (u,uy,)p,dt
0 0

T
+f f Uy, |VulPdx' dt
o Jb,
T
+ef j uuxn|Vu|pdx’dt
1 TDZt )
+§f J’ 9(t = 1) ||ur, (@ — w, O] ) drde
0 J0 'z
e (Tt ,
+5 [ [ 9= s, @ = u; e
1-1" 2 2
2 [l + ellul,) . 16)
0

Using Young and Poincaré inequalities, we obtain
the following estimates

T
ffuutlutlpdxdt
0 Ja,

T
2—C(5)f J’ |ue P2 dxdt
0 Ja,

T
—6[ f |u|P*2dxdt
0 Ja,

T
2—c(6)f f |u P 2dxdt
0 Ja,

T
—6Cpf f |Vu|P*2dxdt, 17)
0 Ja,

T
f J- uu,, |VulPdx’'
D,

p+2J- j |u|P*2dx'dt

+1
Z+2f f [Vul|P*2dx'dt

Cp+p+1
< p+2 1
_< ) )j f [Vu|P*2dx'dt, (18)

T
f J’ Uy |VulPdx’
D,

p+2J- f |ue|P+2dx'dt

+1
4P jfwuw“dxdt (19)

where C,, and C, are positive constants depending
on 1, and D, and § is an arbitrary positive
constant. Now, using the estimates (17)-(19) and
(7) we find from (16) that

T T
cE(2) < f (U , Uy, )p,dt + ef (u,uy,)p,dt
0 0

1—1 (7 ) )
[l + el ae
0
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p+2f f [u P 2dx’'dt

+M1j f |VulP*2dx'dt
o Jp,

1 T pt )
+§f J’ g(t = 1) [|ur, (@) — O] ) drde
0 Jo z
€ T rt 5
+—f fg(t—f) lux, @) —u@)|’. dedt,  (20)
2Jy Jo " D,
where
el
€7, 1—ec(d), e(1-46C,) 3

¢ =min {a—

e+ (p+1)(e+ 1)
a p+2

]

and the constant & is chosen such that § < ci and
P

€< %5). For the last integral in the right hand side
of the inequality (20) we have

1 T rt )
o [ 9¢ =0l @ - u@I, drae
0 YO z
T
< f (g ° Vu)p, (O)dt
0
T
+201-0 [ (IVullg, + lullg,)de,  21)
0
and similarly
1 T ,t )
2 [ 9= lhu, @ - w @ drat
0 YO Z
T
< [ (o vy, 0ae
0
T
420 -0 [ (Iullg, + lulip)ae.— @22)
0

Using the Poincaré and Young inequalities and
the estimates (20), (21) and (22), we obtain

cE(2) < —f f |u |P*2dx'de
+M1J- |[Vu|P*2 dx'dt
D;
+(1+ e)f (g o Vu)p, (t)dt
0

6 — 51 T
)| e
T
+M, j 1Vull3, dt, @3)
0

where

1
M, = 3 [(14+6e)(5—4D) +er1(6-5D],
In which A =inf, A, where A, is the Poincaré
constant. Finally, due to (23) we can summarize the

result in the following theorem.

Theorem 1. Let u be a nontrivial solution of (1)-(4)
under the conditions (5)-(7) and h(x’,t) = 0. Then

c
lim inf E(z) exp (——z) >0,
Z—00 y

where

51

1 6—
y = max{ 21+eM1, > ,M, }.

Theorem 2. Let u be a nontrivial solution of (1).
Under the hypotheses of Theorem 1 with

Z—:(x’, 0,t) = h(x',t) for x, =0, if E(+o0) is
finite then there is a > 0 such that

T
lim exp(az) f (a3, + IVul3,) de

r 0

+f |ug[PH2dxdt
o R,
T

+j |[Vu|P*2dxdt
0o /R,

+ f (goVwp (Odt } =0.  (24)
0

Proof: Using the Young and Poincaré inequalities,
we find

f J-tg(t — 1) u(tuy, (v)drdx’
i o
<5 = Dlull3,

1 t
+3), [ o=@ - u,©

+uy, (8)|*drdx’
-1

<(1-10 (1 +%> IVull3,
+(g o Vu)p, (0), (25)

and

J. ftg(t — 1) u (Duy, (r)drdx’
Dy o

1
< 5 (1= Dlluell, + (1 = DIIvull3,
+(1 = D(g ° Vu)p, (). (26)

With the same manner followed in Theorem 1
and using (18), (19), (25) and (26) we deduce
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E'(2), (27)

where

T
E(2) = f (2 + |Vul? + [ [P*2
o JRr,

T
+|Vul|P*?)dxdt + f (g o Vg, (t)dt,
0

el -
o =min {a— 6,?, 1-— ET),E(l — c(n)Cp)},

and

2—-1 B-2DA+e(r+1) 1
— > , My 3,
p+2

¥ = max {

where Cp is a positive constant which depends on
the domain R, and 7 is an arbitrary positive
constant. We select 7 such that ¢(17) < 1/C,. Then
by choosing

€ < min{n~1,a},

(24) follows from (27).
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