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Abstract

In this paper, we shall define and study the concept of A -statistical convergence and A -statistical Cauchy in

random 2-normed space. We also introduce the concept of A -statistical completeness which would provide a
more genera frame work to study the completeness in random 2-normed space. Furthermore, we also prove some

new results.
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1. Introduction

In many branches of science and engineering we
often come across different types of sequences and
certainly there are situations where either the idea
of ordinary convergence does not work or the
underlying space does not serve our purpose. So to
ideal with such situations some new types of
measures must be introduced which can provide a
better tool and a suitable frame work.

The probabilistic metric space was studied by
Menger [1], which is an interesting and important
generalization of the notion of a metric space. The
theory of probabilistic normed (or metric) spaces
was initiated and developed in [2-6] and, it was
further extended to random/probabilistic 2-normed
space by Golet [7] using the concept of 2-norm
which is defined by Gahler [8, 9] and Gurdal and
Pehlivan [10] studied statistical convergence in 2-
normed spaces. Also, statistical convergence in 2-
Banach spaces was studied by Giirdal and Pehlivan
in[11].

The notion of datistical convergence was
introduced by Fast [12] and Schoenberg [13]
independently. Numerous developments have been
made in this area after the works of Salat [14], and
Fridy [15]. Over the years and under different
names statistical convergence has been discussed in
the theory of Fourier analysis, ergodic theory and
number theory. Quite recently in [16], A -statistical
convergence was studied for double sequence
spaces in probabilistic normed space by Savas and
Mohiuddine.
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The notion of statistical convergence depends on
the density of subsets of N, the set of natura
numbers. Let K be a subset of N. Then the

asymptotic density of K denoted by o(K), is
defined as

. 1
S(K)=lim,_, =[{k<n:keN},
n
where the vertical bars denote the cardinality of the

enclosed set.

A single sequence X=(X,) is sad to be
statistically convergent to | if for every £ >0 the
set K(g):{ks n:|Xk—||28} has asymptotic
density zero, i.e.

Iirr}]%%‘{kgn:|xk—l|25}‘:0.

In this case we write S—limx=1 or x, —1(S),
(see[12], [19]).

2. Definitions and preliminaries

Definition 2.1. A function f : R - R " iscaled
distribution function if it is non-decreasing and left
continuous ~ with  inf_; f(t)=0  and

sup,_, f(t)=1.By D", we denote the set of all
distribution functions such that f(0)=0. If
aeR," then H, e D", where
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1, ift>a;

Ha(t):{o, ift<a.

Itisobviousthat H, > f foral f eD".

A tnorm is a continuous mapping
*:[01] x[01] —»[01] such that
([0,1]%) is abelian monoid with unit one and
c*d>a*b if cza and d>b for al
a,b,c,de[01] . A triangle function 7 is a
binary operation on D", which is commutative,
associative and  7( f,H, )="f for every
feD".

In[8], Gahler introduced the following concept of
2-normed space.

Definition 2.2. A 2-normed space is a pair
(X,”.,“),Wherexisalinearspaceof greater than

one and ||,|| XXX — R such that

(1) ||X1,X2||:0 if and only if x,x, are linearly
dependent,

(2 [%4.%,|| isinvariant under the permutation,

() [, x| =|ex1. %], forany e € R, and

@ [x+ x5 <% ]+ x| for all xx,.x, € X.
A trivial example of a 2-normed space is

X =R?, equipped with the Euclidean 2-norm
X, %o|| ¢ = the area of the parallelogram spanned by

the vectors X;,X, which may be given expicitly by
the formula

I % e = |o|et(xij )| = abs(det(< X, X; >))

where X = (X,,X,) e R foreach i =1,2.

Recently, Golet [7] used the idea of 2-normed
space to define the random 2-normed space.

Definition 2.3. Let X be alinear space of dimension
d>1 (d may be infinite), ¢ a triangle, and
T XxX—>D". Then 7 is cdled a
probabilistic 2-norm and (X,.7,7) a probabilistic
2-normed space if the following conditions are
satisfied:

(P2N1) 7 (x, y;t) = Hy(t) if xand y are linearly
dependent, where .7 (X, y;t) denotes the value of
T(xy) ateR.

(P2N2) 7 (x,y;t) = Hy(t) if x and y are linearly
independent,
(P2N3) 7 (x, ¥;t) =7 (y,xt) ,foral x,ye X,

(P2N4) ~]/"(aX.y;t)=J/»‘(y,x;@),for every t>0,

a=0and X,y € X,
(P2NS) 7 (x+y,zt) > o(7 (x,zt), 7 (y,71)),
whenever X,y,ze X .

If (P2N5) is replaced by (P2N6)
T X+ Y,y +t) =27 (X zt)* 7 (y,zt,)  for
dl xy,zeX and t,+t,eR"; then (X, 7 *)

is caled a random 2-normed space (for short,
R2NS).

Remark 2.1. Note that every 2-normed space
(X,]}) can be made arandom 2-normed spacein a
natural way, by setting

T (XY 2 Ho(t= I x y[), for every xyeX,
t>0 and a*b=min{a,b}, a,be[0]];

,?(x,y;t)zm, for every X,yeX, t>0

and a*b=ab, a,be[0]].
We have

Definition 2.4. A sequence x = (x,) inarandom 2-
normed space (X,.7,*) is said to be convergent
(or .7 -convergent) to | € X with respect to .7~ if
for every t>0, £€(0,1), there exists an
positive integer N such that 7~(x, -1,zt)>1-¢,
whenever k> N and for non zero ze X . In this
case we write .7 -lim,x, =1, and | is called the
T -limit of x=(x) .

Definition 2.5. A sequence x = (x,) inarandom 2-
normed space (X,.7,*) is said to be Cauchy with
respect to .7 if for each t >0, £¢e(0,1), there
exists an positive integer N = N(¢&) such that
T (X —X,,Z;t)>1-¢g, whenever K,m>N
and for non zero ze X .

In [17], Mursaeen studied the concept of

statistical convergence of sequences in random 2-
normed space.

Definition 2.6. [17]. A sequence x=(X/) in a
random 2-normed space (X,.7*) is said to be

SR2N _convergent) to

statistical-convergent  (or
some | € X with respect to .7 if for each
t>0,£€(0,1), and for non zero ze X such

that
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5({keN:7 (% -1.zt)<1-£})=0.

In other words, we can write the sequence (x)

statistical converges to | in random 2-normed
space (X,.7,*) if

lim,,, | {k<m:7 (x-1,zt)<1-¢} [0
or equivalently
5({keN::f’(xk—l,z;t)zl—g}):l,
i.e
S-lim_,, .7 (% —-l,z¢)=1.

In this case we write S?N —limx=1 and | is
called the SN — limit of x. Let S?N(X) denote
the set of all statistical convergent sequences in
random 2-normed space (X,.7,*).

Quite recently, Mohiuddine and Aiyub [18]
introduced the concept of lacunary datistical
convergence in random 2-normed space.

In this paper we study A -statistical convergence
in random 2-normed space, which is an interesting
new idea. We show that some properties A -
statistical convergence of real numbers also hold
for sequences in random 2-normed spaces. We
establish some relations related to statistical

convergent and A -statistical convergent sequences
in random 2-normed spaces.

3 A-Statistical convergence in random 2-
normed space

Now we shall define A -statistical convergence in
random 2-normed space (X,.7*). Also, we get

some basic properties of this notion in random 2-
normed space.

Let 2 =(4,) be a non-decreasing sequence of
positive numberstending to oo such that

Ava SA+L A =1
Let K < N. Thenumber §,(K) if

lim 2| {n—4,+1<k<n:keK} |

issaid to be A -density of K. If A, =n for every n,
then A -density is reduced to the asymptotic
density.

Definition 3.2. A sequence Xx=(x) is said to be
A -statistical convergence or S, - convergent to the

number | if for every £ >0, the set N(&) has
A -dendity zero, where

N(e)={kel,:|% —I]> &},

and |, =[n—A4,+1n]. In this case, we write
st, —limx = L, (for details see[19]).

Now we are ready to define A -statistically
convergent in random 2-normed space.

Definition 3.3. A sequence x = (x,) inarandom 2-
normed space (X,.7*) is sad to be A-
statistically convergent or S, -convergent to
le X with respect to 7 if for every
t>0,£€(0,1), and for non zero Z€ X such
that

51({ke N:7 (% | ,z;t)sl—g}):o
or equivaently

51({ke N:7 (% -1 ,z;t)>1—g})=1.

In this case we write S, —limx=1 or

X, —>1(S,"" ) and

S,PN(X)={x=(%): 31 R, S ~limx=1}.
R2N

Let S, (X) denote the set of al -
statistical convergent sequences in random 2-
normed space (X,.7,*).

If A,=n for every n then A -statistica

convergent sequences in random 2-normed space
(X,7*) reduce to satistica convergent

sequences in random 2-normed space (X,.7,*).

The above definition immediately implies the
following Lemma.

Lemma 3.1. Let (X,.7,*) be arandom 2-normed
space. If x=(x,) isasequencein X, then for every
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t>0, £€(0,1), and for nonzero ze X, then the
following statements are equivalent.
(i SN —lim,, % =1.

(i) &,({kel,: 7 (% ~1,zt)<1-¢})=0.
(iii) &, ({kel,: 7 (% —1,zt)>1-¢}) =1.
(iv) S, -lim__ .7 (x —1,zt)=1.

Theorem 3.2. Let (X,.7*) be a random 2-
normed space. If x=(x,) is asequencein X such

that S,"*N —limx_ =1 exists, thenit isunique.
Proof: Suppose that

SN —lim_, x =1,S™" -lim__x =1,.
Given £ >0 and p > O such that
(1-p)*(1-p)>1-e¢. (3.1

Then, we define the following sets as: for any
t>0 andnon zero ze X,

Ki(pt)={kel, : 7 (% —1,,z%)<1-p};
Ky(pt)={kel, : 7 (% —1,z1)<1-p}.
Since
SN —lim__ x =1, S™" ~lim__x =1,
we have
5, (Ky(pt))=0and 5, (K,(pt))=0

foral t>0.
Now let K( p,t)=K,(p,t)UK,(p,t),then

it is easy to see that &, (K(p,t))=0 which
implies 0, (KC( p,t)) =1
Now, if kK e K°('p,t) then we have
T (l=1,,z;t)y270x, —1,,2;%)
*TCX —,,2;%5)>(1-p)* (1-p).
It follows by (3.1) that
T, -L,zt)>1-¢.

Since &>0 was abitrary, we get
F(,-15,,zt)=0 for dl t>0 and non zero

ze X which yields |, =1,. This completes the

proof of the theorem.
We have,

Theorem 3.3. Let (X,.7,*) be a random 2-

normed space, and x=(x) and y=(y,) betwo

sequencesin X.

@ 1f S —limx =I and ¢(#0)eR,
then S,"*N —limcx, = cl

(b) If SN —limx, =1, and S,"*" —limy, =1,,

then SN —lim(x + vy, )=1,+1,.
Proof is easy and omitted.

Theorem 34. Let (X,.7*) be a random 2-
normed space. If x=(x,) be asequencein X such

that .7 —limx, =1, then SF* —limx, =1.
But the converse need not be true in general.

Proof: Let .7 —limx, =1. Then for every
£>0, t>0 and non zero ze X, there is a

positiveinteger N such that
TCx —1,z;t)>(1-¢)
forall k > N . Since the set
K(et)={kel, : 7 (x-l,zt)<1l-¢}

has at most finitely many terms. Since every finite
subset of N has density zero, we have

0,(K(e,t))=0. This shows that
S,FN —limx, =1.
This completes the proof of the theorem.

The following example shows that the converse
need not be true.

Example 3.6. Let X =R?, with the 2-norm
| % zIF %2z, =%z |, X= (X, %), 2=(7,2,) and
a*b=ab for al a,be[0]]. Let
TUXZ) =ty > foral x,ze X, z# 0, and
t>0. Wewrite asequence x=(x.) by

_[(k0), if n-[J2,1+1<k<n,
%= (0,0), otherwise.
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It is easy to observe that, this sequence is
SN —limx, =0, while it is obvious that
7 —limx, #0.

Now we are in a position to present the following.

Theorem 3.7. Let (X,.7*) be a random 2-
normed space. If x=(x,) beasequencein X, then

S, —limx, =1 if and only if there exists a
subset K ={k <k,,.}cN such tha
O,(K)=1and .7 -lim,, % =I.

Proof: Necesssity: Suppose that S ** —limx, =1.
Then for any t>0, p=1, 2, 3,... and non zero
ze X, let

ACpt)={kel, 17 (% -1,zt)>1-1]

and
K(pt)={kel, : 7 (x-l,zt)<1-1}.
since S," —limx =1 it follows that

5,(K(p;t))=0.
Now for t >0, p=1,2,3,..., we have that

ACp.t) > Alp+1t)
and
5,(Alpt))=1 32
Now we have to show that, for ke A(p,t),
7 —limx, =1. Suppose that for some

ke A(p,t), (x) is not convergent to | with
respect to .7~ . Then there exists some s>0 and a
positive integer K, such that

kely,: 7 (% —1,zt)<1-s}
foral k>k,. Let
T (x-l,zzt)>1-5s
foral k<ky . Then
5,{ kel,: 7(x-l,zt)>1-s }=0.
Since
s>+, p=123,... .

we have

5A(A( p,t))zo,

which contradicts (3.2) as J,( A(p.t))=1.
Hence 7 —limx, =1.

Sufficiency: Suppose that there exists a subset
K={k <k,<..} N such that 0,(K)=1
and .7 —lim,_, % =I,i.e there exists N € N
such that for every s>0, t>0 and non zero
ze X

TCx —l,z;t)>1-s
foral k> N . If wetake

K(st)={kel,: 7 (x —1,zt)<1-s}
then it is easy to seethat

K(st)c N —{NM,NM,...}
and therefore
5,(K(st))<1-1.

This completes the proof of the theorem.
Now we establish the Cauchy convergence
criteriain random 2-normed spaces.

Definition 3.4. A sequence x = (x,) inarandom 2-
normed space (X,.7,*) is said to be A -statistical
Cauchy with respect to .77 if for every t>0,
£€(0,1), and non zero ze X there exists a

positiveinteger N = N( &) such that

5, ({kel,: 7 (% —%y,zt)<1-¢})=0.
or equivalently

5, ({kel, 7 (% —%.zt)>1-¢})=1.

Theorem 3.8. Let (X,.7*) be a random 2-
normed space. Then a sequence (x) is
A — datigticaly convergent if and only if it is
A — statigtically Cauchy.

Proof: Let (x,) bea A — statistically convergent
to | with respect to random 2-normed space, i.e.
S, —limx, =I. For agiven £ >0, choose

p > O such that (3.1) is satisfied. For t >0 and for
non zero ze X define
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Alpt)={kel, : 7 (% -1,zi)<1-p}.
Hence

A(pt)={kel,: 7 (x-l,z;5)>1-p}.

Snce SN -limx =1 it follows that
8,(A(p.t))=0 and consequently 5, (A(p,t))=1.
Let e A°(p,t). Then

T (x,—1,z3)>1-p. (33)
If we take
B(g,t):{ke In:‘%‘(xk—xq,z;t)ﬁl—g},

we need to show that B(&,t) < A( p,t).
Let KeB(&,t)\A°(p,t), then for non zero
ze X wehave

T (% —%pzt)<1l-gand (3.4)
T (x-1,z5)>1-p.

Now from (3.1), (3.3) and (3.4) we get

l-e2 7 (X —X%,Zt) 2 7 (X =1,2,3)* 7 (%, -1.2.%)

>(1-p)*(1-p)>(1-¢)

which is not possible. Hence B(&,t) < A(p,t).
Since J,(A(p,t))=0, it follows that
0,(B(&,t))=0. This shows that (x) is
A — statigtically Cauchy.

Conversely, suppose that (x) is A — statistically

Cauchy but not A —dtatistically convergent with

respect to .7~ . Then for agiven £ >0,t>0 and
for non zero ze X, there exists a positive integer

N =N(&) such that

E(et)={kel,: 7 (% —X%,zt)<1l-¢&}

then
0,(E(et))=0

and evidently

0,(E°(et))=1. (3.5)

For t>0, choose P>0 such that (3.1) is
satisfied, and we take

B(pt)={kel,: 7 (x—1,z%)>1-p}.

If NeB(pt),then 7 (x,-1,z,1)>1-p.
Since

T (X =XyZ5t) 27 (x, =12, %
*T(xy—1,2;5) >(1-p)* (1-p) >1-¢,

then we have
S, ({kel, 7 (% —x%y,zt)>1-¢})=0
i.e, 0,(E°(&,t))=0, which contradicts (3.5) as

O0,(E°(et))=1. Hence (%) is

A — dtatigtically convergent. This completes the
proof of the theorem

Definition 35. A random 2-normed space
(X,.7 ) is said to be complete if every Cauchy
sequenceis convergent in (X,.7*).

We define the following definition in random 2-
normed space as a conseguence of the Theorem 3.8.

Definition 3.6. A random 2-normed space
(X, 7 ) is sad to be S, —complete if

every S, — Cauchy sequence is S, — convergent
in (X, 7 ).

Theorem 3.9. Every random 2-normed space
(X,7 ) is S, — complete but not complete in
general.

Proof: First part of the proof of the theorem
follows from the Theorem 3.8. To observe that
random 2-normed space (X,.7,*) is not complete

in general, we consider the following example:

Example 3.10. Let X = (01 (0] with the 2-
norm 1%zl %2, — %z |, X= (%, %) ,
z=(z,2,) and a*b=ab for al a,be[0]]. Let
TUXZ) =ty » forall x,ze X, z# 0, and
t>0. Then (X,.7,*) is arandom 2-normed space
but not complete, since the sequence (+,--) is

Cauchy with respect to .7~ but not convergent.
This completes the proof of the theorem.

We get the following Corollary by combining the
theorems 3.7, 3.8 and 3.9.
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Corollary 3.11. Let (X,.7*) be a random 2-
normed space and x=(X,) be a sequence in X.

Then the following statements are equivalent:

(@ x is A -statistically convergent with respect to
the random 2-normed spaces.

(b) x is A -statistically Cauchy with respect to the
random 2-normed spaces.

(c) random 2-normed space (X,.7*) s

S, —complete.

(d) there exists asubset K ={k, :k <k,..} cN
such that 0,(K)=1 and the subsequence
(%, ) is S, —Cauchy with respect to the
random 2-normed spaces.
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