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Abstract 

In this paper, we shall define and study the concept of  -statistical convergence and  -statistical Cauchy in 

random 2-normed space. We also introduce the concept of  -statistical completeness which would provide a 
more general frame work to study the completeness in random 2-normed space. Furthermore, we also prove some 
new results. 
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1. Introduction 

In many branches of science and engineering we 
often come across different types of sequences and 
certainly there are situations where either the idea 
of ordinary convergence does not work or the 
underlying space does not serve our purpose. So to 
ideal with such situations some new types of 
measures must be introduced which can provide a 
better tool and a suitable frame work. 

The probabilistic metric space was studied by 
Menger [1], which is an interesting and important 
generalization of the notion of a metric space. The 
theory of probabilistic normed (or metric) spaces 
was initiated and developed in [2-6] and, it was 
further extended to random/probabilistic 2-normed 
space by Golet [7] using the concept of 2-norm 
which is defined by Gahler [8, 9] and Gürdal and 
Pehlivan [10] studied statistical convergence in 2-
normed spaces. Also, statistical convergence in 2-
Banach spaces was studied by Gürdal and Pehlivan 
in [11]. 

The notion of statistical convergence was 
introduced by Fast [12] and Schoenberg [13] 
independently. Numerous developments have been 
made in this area after the works of Salat [14], and 
Fridy [15]. Over the years and under different 
names statistical convergence has been discussed in 
the theory of Fourier analysis, ergodic theory and 
number theory. Quite recently in [16],  -statistical 
convergence was studied for double sequence 
spaces in probabilistic normed space by Savas and 
Mohiuddine. 
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The notion of statistical convergence depends on 
the density of subsets of N, the set of natural 
numbers. Let K be a subset of N. Then the 
asymptotic density of K denoted by ( K ) , is 

defined as 
 

 1
n( K ) lim k n : k N

n
    , 

 
where the vertical bars denote the cardinality of the 
enclosed set. 

A single sequence kx ( x )  is said to be 

statistically convergent to l if for every 0   the 

set  kK( ) k n : x l      has asymptotic 

density zero, i.e. 
 

 1
0n klim k n : x l .

n
      

 
In this case we write 

kS lim x l  or  x l( S )   , 

(see [12], [15]). 

2. Definitions and preliminaries 

Definition 2.1. A function of :    is called 

distribution function if it is non-decreasing and left 

continuous with 0tinf f ( t )   and 

1tsup f ( t )  . By D
, we denote the set of all 

distribution functions such that 0 0f ( )  . If 

oa  , then aH D , where 
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1

0a

, if t a;
H ( t )

, if t a.


  

 

 

It is obvious that oH f  for all f D . 

A t-norm is a continuous mapping 
0 1 0 1 0 1* : [ , ] [ , ] [ , ]   such that 

0 1([ , ],*)  is abelian monoid with unit one and 

c* d a* b  if c a  and d b  for all 

0 1a,b,c,d [ , ] . A triangle function   is a 

binary operation on D
, which is commutative, 

associative and o( f ,H ) f   for every 

f D . 

In [8], Gahler introduced the following concept of 
2-normed space. 

 
Definition 2.2. A 2-normed space is a pair 

 X , .,. , where X is a linear space of greater than 

one and .,. : XxX R  such that  

(1) 1 2 0x ,x   if and only if 21, xx  are linearly 

dependent, 
(2) 21, xx  is invariant under the permutation, 

(3) 2121 ,, xxxx   , for any   , and  

(4) 
1 2 1 2 2 1 2x x,x x ,x x,x ,  for all x,x ,x X .     

A trivial example of a 2-normed space is 
2X   , equipped with the Euclidean 2-norm 

E
xx 21, = the area of the parallelogram spanned by 

the vectors 1 2x ,x  which may be given expicitly by 

the formula 
 

)),(det()det(, 21  jiijE
xxabsxxx  

 

where 
2

1 2i i ix ( x ,x )   for each .2,1i  

Recently, Golet [7] used the idea of 2-normed 
space to define the random 2-normed space. 

 
Definition 2.3. Let X be a linear space of dimension 

1d  (d may be infinite),   a triangle, and 
 DXX:Y . Then Y  is called a 

probabilistic 2-norm and  ,,YX  a probabilistic 

2-normed space if the following conditions are 
satisfied: 

(P2N1) )();,( tHtyx oY  if x and y are linearly 

dependent, where );,( tyxY  denotes the value of 

),( yxY  at t . 

(P2N2) )();,( tHtyx oY  if x and y are linearly 

independent, 
(P2N3) );,();,( txytyx YY  , for all Xyx , , 

(P2N4) );,();,(  txytyx YY  , for every 0t , 

0  and x,y X ,  

(P2N5)  );,(),;,();,( tzytzxtzyx YYY  , 

whenever Xzyx ,, . 

If (P2N5) is replaced by (P2N6) 
);,(*);,();,( 2121 tzytzxttzyx YYY   for 

all Xzyx ,,  and 1 2 ot t   ; then  ,*,YX  

is called a random 2-normed space (for short, 
R2NS). 
 
Remark 2.1. Note that every 2-normed space 
 .,.,X  can be made a random 2-normed space in a 

natural way, by setting 
||),||();,( yxtHtyx o Y , for every Xyx , , 

0t  and ];1,0[,  },,min{*  bababa  

||,||
);,(

yxt
ttyx Y , for every x,y X , 0t  

and ]1,0[,  ,*  baabba . 

We have  
 
Definition 2.4. A sequence )( kxx   in a random 2-

normed space  ,*,YX  is said to be convergent 

(or Y -convergent) to Xl  with respect to Y  if 

for every 0t ,  0 1( , ),   there exists an 

positive integer N  such that 1k( x l ,z;t )   Y , 

whenever k N  and for non zero Xz . In this 
case we write lxk klim-Y , and l  is called the 

Y -limit of )( kxx  . 

 
Definition 2.5. A sequence )( kxx   in a random 2-

normed space  ,*,YX  is said to be Cauchy with 

respect to Y  if for each 0t ,  0 1( , ),   there 

exists an positive integer N N( )  such that 

1k m( x x ,z;t )   Y , whenever k ,m N  

and for non zero Xz . 
In [17], Mursaleen studied the concept of 

statistical convergence of sequences in random 2-
normed space. 

 
Definition 2.6. [17]. A sequence )( kxx   in a 

random 2-normed space  ,*,YX  is said to be 

statistical-convergent (or NRS 2 -convergent) to 
some l X  with respect to Y  if for each 

0t , 0 1( , ),   and for non zero Xz  such 

that 
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   1 0kk N : x l ,z;t     Y . 

 
In other words, we can write the sequence )( kx  

statistical converges to l  in random 2-normed 
space  ,*,YX  if 
 

  1 1 0m klim k m : x l ,z;t
m

     Y . 

 
or equivalently 

 

   1 1kk N : x l ,z;t     Y , 

 
i.e. 

 

  1k kS lim x l ,z;  Y . 
 

In this case we write lxS NR  lim2  and l  is 

called the NRS 2 limit of x. Let )(2 XS NR  denote 

the set of all statistical convergent sequences in 
random 2-normed space  ,*,YX . 

Quite recently, Mohiuddine and Aiyub [18] 
introduced the concept of lacunary statistical 
convergence in random 2-normed space. 

In this paper we study  -statistical convergence 
in random 2-normed space, which is an interesting 
new idea. We show that some properties  -
statistical convergence of real numbers also hold 
for sequences in random 2-normed spaces. We 
establish some relations related to statistical 
convergent and  -statistical convergent sequences 
in random 2-normed spaces. 

3.  -Statistical convergence in random 2-

normed space 

Now we shall define  -statistical convergence in 
random 2-normed space  ,*,YX . Also, we get 

some basic properties of this notion in random 2-
normed space. 

Let  n   be a non-decreasing sequence of 

positive numbers tending to   such that 
 

1 1n n ,    1 1.   
 

Let K   . The number ( K )  if  
 

 1 1
nn nlim n k n : k K       

 

is said to be  -density of K. If n n   for every n, 

then  -density is reduced to the asymptotic 
density. 
 
Definition 3.2. A sequence )( kxx   is said to be 

 -statistical convergence or S - convergent to the 

number l  if for every 0  , the set N( )  has 

 -density zero, where 
 

 n kN( ) k I :| x l |     , 
 
and  1n nI n ,n   . In this case, we write 

st lim x L   , (for details see [19]). 

Now we are ready to define  -statistically 
convergent in random 2-normed space. 
 
Definition 3.3. A sequence )( kxx   in a random 2-

normed space  ,*,YX  is said to be  -

statistically convergent or S -convergent to 

l X  with respect to Y if for every  

0t , 0 1( , ),   and for non zero z X  such 

that 
 

   1 0kk N : x l ,z;t     Y  

 
or equivalently 
 

   1 1kk N : x l ,z;t     Y . 

 

In this case we write 
2R NS lim x l    or 

2R N
kx l( S ) and 

 

 2 2R N R N
kS ( X ) x ( x ): l ,S lim x l .        

 

Let 
2R NS ( X )  denote the set of all  -

statistical convergent sequences in random 2-
normed space  ,*,YX . 

If n n   for every n then  -statistical 

convergent sequences in random 2-normed space 
 ,*,YX  reduce to statistical convergent 

sequences in random 2-normed space  ,*,YX . 

The above definition immediately implies the 
following Lemma. 
 
Lemma 3.1. Let  ,*,YX  be a random 2-normed 

space. If )( kxx   is a sequence in X, then for every 
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0t , 0 1( , ),   and for nonzero Xz , then the 

following statements are equivalent. 

(i) lxS kk
NR  lim2 . 

(ii)    1 0m kk I : x l ,z;t     Y . 

(iii)    1 1m kk I : x l,z;t     Y . 

(iv)   1k kS lim x l ,z;t   Y . 

 
Theorem 3.2. Let  ,*,YX  be a random 2-

normed space. If )( kxx   is a sequence in X such 

that 
2R N

kS lim x l    exists, then it is unique. 

 
Proof: Suppose that 
 

2 2
1 2

R N R N
k k k kS lim x l , S lim x l      . 

 
Given 0   and 0p   such that 
 
1 1 1( p )* ( p ) .                                 (3.1) 

 
Then, we define the following sets as: for any 

0t  and non zero Xz ,  
 

 1 1 2 1t
n kK ( p,t ) k I : ( x l ,z; ) p ;    Y  

 

 2 2 2 1t
n kK ( p,t ) k I : ( x l ,z; ) p .    Y  

 
Since 

 
2 2

1 2
R N R N

k k k kS lim x l , S lim x l      ,  
 
we have 
 

 1 0K ( p,t )   and  2 0K ( p,t )   
 
for all 0t . 

Now let 1 2K( p,t ) K ( p,t ) K ( p,t )  , then 

it is easy to see that   0K( p,t )   which 

implies   1cK ( p,t )  . 

Now, if ck K ( p,t )  then we have 
 

1 2 1 2

2 2 1 1

t
k

t
k

( l l , z ; t ) x l , z ; )

* x l , z ; ) ( p )* ( p ).

  

   

Y Y;

Y;
 

 
It follows by (3.1) that 

 

1 2 1( l l ,z;t )   Y . 
 

Since 0   was arbitrary, we get 
0);,( 21  tzllY  for all 0t  and non zero 

Xz  which yields 21 ll  . This completes the 

proof of the theorem. 
We have, 
 
Theorem 3.3. Let  ,*,YX  be a random 2-

normed space, and )( kxx   and )( kyy   be two 

sequences in X. 

(a) If 
2 0R N

kS lim x l  and   c( )     , 

then 
2R N

kS limcx cl      . 

(b) If 2
1

R N
kS lim x l    and 2

2
R N

kS lim y l   , 

then 
2

1 2
R N

k kS lim( x y ) l l     . 

Proof is easy and omitted. 
 
Theorem 3.4. Let  ,*,YX  be a random 2-

normed space. If )( kxx   be a sequence in X such 

that lim kx l Y , then 2R N
kS lim x l .    

But the converse need not be true in general.  
 

Proof: Let klim x l.   Y  Then for every 

0  , 0t  and non zero Xz , there is a 
positive integer N  such that 
 

1kx l ,z;t ) ( )  Y;  
 
for all k N . Since the set 
 

 1n kK( ,t ) k I : ( x l ,z;t )     Y  
 
has at most finitely many terms. Since every finite 
subset of N has density zero, we have 

0( K( ,t ))   . This shows that 
2R N

kS lim x l.     

This completes the proof of the theorem. 
The following example shows that the converse 

need not be true. 

 

Example 3.6. Let 2X   , with the 2-norm 
||||,|| 1221 zxzxzx  , ),( 21 xxx  , ),( 21 zzz   and 

abba *  for all ]1,0[, ba . Let 
t

t ||x ,z||x,z;t ) Y; , for all Xzx , , 0z  , and 

0t . We write a sequence )( kxx   by 
 

0 1

0 0
n

k

( k , ), if   n [ ] k n,
x

( , ), otherwise.

     

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It is easy to observe that, this sequence is 
2 0R N

kS lim x ,      while it is obvious that 

0klim x .   Y  

Now we are in a position to present the following. 
 
Theorem 3.7. Let  ,*,YX  be a random 2-

normed space. If )( kxx   be a sequence in X, then 
2R N

kS lim x l      if and only if there exists a 

subset 1 2K { k k ,...}     such that 

1( K )   and lx
nkn  limY . 

 
Proof: Necesssity: Suppose that 2R N

kS lim x l .    

Then for any 0t , 1 2 3p , , ,...  and non zero 

Xz , let 
 

 11n k pA( p,t ) k I : ( x l ,z;t )    Y  

 
and 

 11n k pK( p,t ) k I : ( x l ,z;t )    Y . 

Since 
2R N

kS lim x l      it follows that 

0( K( p,t ))  . 

Now for 0t , 1 2 3p , , ,... , we have that 

1A( p,t ) A( p ,t )   

and 
 

1( A( p,t ))  .                                            (3.2) 
 

Now we have to show that, for k A( p,t ) , 

klim x l. Y  Suppose that for some 

k A( p,t ) , )( kx  is not convergent to l  with 

respect to Y . Then there exists some 0s  and a 
positive integer 0k  such that 
 

 stzlxIk kn  1);,(: Y  
 
for all 0kk  . Let 
 

1k( x l ,z;t ) s  Y  
 
for all 0kk   . Then  
 

 1 0n kk I : ( x l ,z;t ) s      Y . 
 

Since 
 

1 1 2 3ps ,  p , , ,...  .   
 
we have 
 

0( A( p,t ))  , 
 

which contradicts (3.2) as 1( A( p,t ))  . 

Hence lxk  limY . 

Sufficiency: Suppose that there exists a subset 

1 2K { k k ...}      such that 1( K )   

and lx
nkn  limY , i.e. there exists N   

such that for every 0s  , 0t  and non zero 
Xz  

 
1kx l ,z;t ) s  Y;  

 
for all k N . If we take 
 

 1n kK( s,t ) k I : ( x l ,z;t ) s    Y  

then it is easy to see that 
 

 1 2k kK( s,t ) N ,N ,...    
 
and therefore 
 

1 1( K( s,t )) .    
 

This completes the proof of the theorem. 
Now we establish the Cauchy convergence 

criteria in random 2-normed spaces. 
 
Definition 3.4. A sequence )( kxx   in a random 2-

normed space  ,*,YX  is said to be  -statistical 

Cauchy with respect to Y  if for every   t>0, 
0 1( , ),   and non zero Xz  there exists a 

positive integer N N( )  such that 

 

  1 0n k Nk I : ( x x ,z;t ) .     Y  

 
or equivalently 
 

  1 1n k Nk I : ( x x ,z;t )     Y . 

 
Theorem 3.8. Let  ,*,YX  be a random 2-

normed space. Then a sequence )( kx  is 

  statistically convergent if and only if it is 
  statistically Cauchy. 
 
Proof: Let )( kx  be a   statistically convergent 

to l  with respect to random 2-normed space, i.e. 
2R N

kS lim x l.      For a given 0  , choose 

0p   such that (3.1) is satisfied. For 0t  and for 

non zero Xz  define 
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 2 1t
n kA( p,t ) k I : ( x l ,z; ) p .    Y  

 
Hence 

 

 2 1c t
n kA ( p,t ) k I : ( x l ,z; ) p .    Y  

 

Since 2R N
kS lim x l      it follows that 

0( A( p,t ))   and consequently 1c( A ( p,t ))  . 

Let 
cq A ( p,t ) . Then 

 

2 1t
q( x l ,z; ) p  Y .                              (3.3) 

 
If we take 

 

 1n k qB( ,t ) k I : ( x x ,z;t )     Y , 

 
we need to show that B( ,t ) A( p,t )  . 

Let 
ck B( ,t )\ A ( p,t ) , then for non zero 

Xz  we have 
 

1k q( x x ,z;t )   Y and                        (3.4) 
 

2 1t
k( x l ,z; ) p  Y . 

 
Now from (3.1), (3.3) and (3.4) we get 

 
2 21 t t

k q k q( x x ,z;t ) ( x l ,z; )* ( x l ,z; )     Y Y Y  
 

1 1 1( p )*( p ) ( )      
 
which is not possible. Hence B( ,t ) A( p,t )  . 

Since 0( A( p,t ))  , it follows that 

0( B( ,t ))   . This shows that )( kx  is 

  statistically Cauchy. 
Conversely, suppose that )( kx  is   statistically 

Cauchy but not   statistically convergent with 
respect to Y . Then for a given 0  , 0t  and 
for non zero Xz , there exists a positive integer 
N N( )  such that 
 

 1n k NE( ,t ) k I : ( x x ,z;t )     Y  
 

then 
 

0( E( ,t ))    
 
and evidently 
 

1c( E ( ,t ))   .                                           (3.5) 
 

For 0t , choose 0p   such that (3.1) is 

satisfied, and we take 
 

 2 1t
n kB( p,t ) k I : ( x l ,z; ) p .    Y  

 
If N B( p,t ) , then 

2 1t
N( x l ,z; ) p.  Y  

Since 
 

2

2 1 1 1

t
k N k

t
N

( x x , z ;t ) ( x l , z ; )

* ( x l , z ; ) ( p )* ( p ) ,
  

     

Y Y

Y
 

 
then we have 
 

  1 0n k Nk I : ( x x ,z;t )     Y  

i.e., 0c( E ( ,t ))   , which contradicts (3.5) as 

1c( E ( ,t ))   . Hence )( kx  is 

  statistically convergent. This completes the 
proof of the theorem 
 
Definition 3.5. A random 2-normed space 
 ,*,YX  is said to be complete if every Cauchy 

sequence is convergent in  ,*,YX . 

We define the following definition in random 2-
normed space as a consequence of the Theorem 3.8. 
 
Definition 3.6. A random 2-normed space 

 X , ,*Y  is said to be S  complete if 

every S  Cauchy sequence is S  convergent 

in  X , ,*Y . 

 
Theorem 3.9. Every random 2-normed space 

 ,*,YX  is S  complete but not complete in 

general. 
 
Proof: First part of the proof of the theorem 
follows from the Theorem 3.8. To observe that 
random 2-normed space  ,*,YX  is not complete 

in general, we consider the following example: 
 
Example 3.10. Let ]1,0(]1,0( X  with the 2-

norm ||||,|| 1221 zxzxzx  , ),( 21 xxx  , 

),( 21 zzz   and abba *  for all ]1,0[, ba . Let 
t

t ||x ,z||x,z;t ) Y; , for all Xzx , , 0z  , and 

0t . Then  ,*,YX  is a random 2-normed space 

but not complete, since the sequence ),( 11
mn

 is 

Cauchy with respect to Y  but not convergent. 
This completes the proof of the theorem. 

We get the following Corollary by combining the 
theorems 3.7, 3.8 and 3.9. 
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Corollary 3.11. Let  ,*,YX  be a random 2-

normed space and )( kxx   be a sequence in X . 

Then the following statements are equivalent: 
(a) x  is  -statistically convergent with respect to 

the random 2-normed spaces. 
(b) x  is  -statistically Cauchy with respect to the 

random 2-normed spaces. 
(c) random 2-normed space  ,*,YX  is 

S complete  . 

(d) there exists a subset 1 2nK { k : k k ...}     

such that 1( K )   and the subsequence 

)(
nkx  is S  Cauchy with respect to the 

random 2-normed spaces. 
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