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Abstract– Service reputation is a key factor for service selection and service composition in 
Service-Oriented Ambient Intelligence systems. Hence, service reputation computing should fully 
reflect the feature of multi-rating fusion and the utility value dynamic attenuation characters of the 
rating. The paper combines D-S evidence theory with dynamic attenuation and puts forward a 
service reputation computing algorithm based on multi-rating fusion, which is adapted to the 
Ambient Intelligence systems. First, a layered computing model of the service reputation is given. 
Then, a mechanism of dynamic attenuation based on time windows, an objective rating and 
advertisement honesty rating of service, and a user credibility computing algorithm are presented. 
Afterward, the rating information is combined with the D-S evidence theory to raise an 
aggregation algorithm of the service general reputation for the Ambient Intelligence environments. 
Finally, a prototype test is carried out to verify the effectiveness and availability of the model 
together with the algorithms.          
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1. INTRODUCTION 
 

The fusion of Ambient Intelligence (AmI) and Service-Oriented Computing (SOC) is the present research 
trend in AmI. From the point-of-system paradigm, AmI has evolved into an open and loose coupling 
service-oriented system. With the rapid increase of services on the web, more and more services with 
similar functions can be reached by hands. Hence, how to choose an appropriate service from a variety of 
candidates becomes a problem. Unfortunately, some service providers may publish false information. 
What’s worse, many service consumers are very likely to have no interactive information or prior 
knowledge about these services, except for those issued by the providers. Therefore, selecting an 
appropriate and trustworthy service is a key problem in AmI systems. An effective way of addressing this 
issue is to build a reputation/trust management mechanism for the services [1-4]. It can obtain the 
forecasting information from the past interactive activities and user rating based on reputation mechanism, 
and the information will influence the following operations in the future and provide trusted factors for the 
service selection. There have been many important works on reputation computing, but these works are 
not suitable for the AmI systems. Therefore, further study is essential to build a service reputation 
mechanism in AmI. 

In order to enable the service reputation computing to meet the needs of AmI environments, first the 
multi-dimensional representation of service reputation concept and its computing model are studied. Then 

                                                            
Received by the editors July 24, 2012; Accepted May 6, 2014. 
Corresponding author 
 
 



H. Zhang et al. 
 

IJST, Transactions of Electrical Engineering, Volume 38, Number E1                                                                            June 2014 

100

we design and implement related key algorithms adapted to the service-oriented AmI. Finally, we give 
some test results and analysis. To present our objectives, the paper is organized as follows. Related works 
are introduced in section 2. Section 3 presents the concept and model of reputation in AmI environment. 
Key algorithms of service rating and their implementation are discussed in section 4. Service reputation 
aggregation algorithm is detailed in section 5. Section 6 gives the analysis and test results of our study. 
Finally, Section 7 states the conclusions and some open issues. 

 
2. RELATED WORKS 

 
Reputation computing is an open problem. Several institutes have proposed some resolutions from their 
research domains. Audun [5] detailed relative works about the reputation and trust. In the following, we 
give a brief overview of the most recent research developments which are closely related to our work. 

In order to design and deploy context specific and reputation-based trust model in pervasive 
environments, Sheikh [6] proposed a multi-hops recommendation protocol and behavioral model to 
describe the interaction among devices. The model established the trust relationship by using devices’ 
interactive behavior information. Alexandre proposed the objective rating conceptual and its computing 
method in SOA environments, and then it provided a trustable services selection policy based on services 
reputation which were aggregated from the objective rating. Unfortunately, the service reputation value 
was for single QoS attribute, so it cannot provide an overall performance assessment for services. Chang 
and [7-9] adopted a temporal fading mechanism for the service reputation value. However, the fading for 
reputation value is a coarse granularity policy and is different from the human’s cognitive process. At the 
same time, both Chang and Malik studied the credibility of rating entity. The latter, especially, 
concentrated on the research of rater credibility and achieved good theoretical results. In order to evaluate 
the reliability of electric power system, Ehsani employed a Markov state space model [10]. 

In Yu [11], the Dempster-Shafer evidence theory was introduced into reputation computing. It 
considered the user rating as evidence and obtained the reputation value through evidence combination. 
This method had important theoretical value, but it had some limitations. First, it did not consider the 
temporal sensitivity of user rating. Second, only the user subjective rating information was used in the 
reputation and it also assumed all users had the same weight. Third, the conflict evidence combine method 
could be improved. Malik and Bouguettaya [12] presented a complete solution which was based on 
subjective evaluation to calculate the service reputation in SOA environment. It considered the evaluation 
credibility, mainstream evaluation, the history information of evaluation body, personal assessment 
preference, evaluation of time decline and so on. However, this paper only considers the effect the 
subjective rating information has on the reputation, and this makes the foundation which, when calculated, 
the reputation is single. Another question was whether its dynamic attenuation mechanism could fully 
reflect the user experience. 

 
3. REPUTATION COMPUTING MODEL 

 
The study of reputation mechanism has received great attention worldwide [13-16]. Based on [17,18], the 
reputation of service in AmI can be defined as a quintuple R= (subjective Rating, objective Rating, 
advertisement Honesty, time, context), where subjective Rating refers to the user’s comprehensive 
experience after using the service in different contexts; objective Rating refers to the deviation of actual 
performance monitoring value from user requirement; advertisement Honesty is the deviation of service 
advertisement value from the actual performance monitoring value; and time and context show that the 
rating information is obtained in a special situation.  The relationship of the quintuple can be shown in 
Fig. 1.   
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Fig. 1. Quintuple relationship of reputation 

 
From the definition, we can see that service reputation computing involves many interactions among 

algorithms. Figure 2 illustrates a model of reputation computing, it abstracts all key algorithms and their 
interactions at each tier. 
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Fig. 2. A computing model of reputation 

 
The current study focuses on the rating tier and reputation aggregation tier. The former is introduced 

to transform all kinds of raw data into corresponding ratings. Its core algorithms include advertisement 
honesty rating (HR), objective rating (OR), and user credibility assessment (UC). Additionally, a service 
clustering method is designed according to services’ QoS, which classifies the candidate services into 
some subclasses. 

The latter focuses the aggregate rating information into a corresponding reputation. Its main 
aggregation algorithms include user local reputation aggregation algorithm ψ, general reputation 
aggregation algorithm ξ, and bootstrap reputation algorithm ζ. Among these algorithms, only the user 
subjective rating is used to compute the user local reputation, whereas subjective rating, objective rating, 
service advertisement honesty, and user credibility information are used to compute the general reputation. 
The details of bootstrap reputation computing are discussed in [19, 20]. In addition, all kinds of rating 
information must be pre-processed by dynamic attenuation mechanism ρ. The attenuation mechanism 
transforms initial rating information into utility value, which attenuates with time. 

 
4. RATING ALGORITHM AND ATTENUATION MECHANISM 

 
a) Subjective rating and dynamic attenuation mechanism 

 
In society, the rating value is dynamically attenuated. That is, with time the contribution of a rating to the 
reputation becomes smaller until the utility value diminishes. In AmI, the timeliness of a user’s subjective 
rating on a service is significant. Every user gives his own subjective rating sr (R={0.1,0.2,0.3,0.4,0.5,0.6, 
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prejudice and malice of user’s subjective rating. The utility value of or and sah are also attenuated over 
time, and can be computed using formula 1. 

1
10 * 1 0.1 ( 1.0 )

(2)
1

10 * 1 0.1 ( 1.0)
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c) User rating credibility 
 
All the SRs are aggregated into reputation. However, not all of the SRs are fair and unbiased. Even for fair 
users, they may give different ratings for a same service due to the different contexts or professional 
background. Thus, the credibility of user rating should be assessed. Generally, user credibility can be 
computed by using some key factors in AmI systems, such as subjective rating fluctuation ( srf ), 
subjective and majority rating similarity ( sms ), and the similarity of subjective rating and objective rating 
( sos ). The user credibility is expressed as formula 4. 

ܿݑ     ൌ 1/ሺߙ ∗ ݂ݎݏ ൅ ߚ ∗ ݏ݋ݏ ൅ ߝ ∗   ሻ                                          (4)ݏ݉ݏ

where 0 , , 1    ， 1      and 0.3, 0.4, 0.3     . 

1. User rating fluctuations: For a service, the same user’s rating may fluctuate in different contexts. This 
fluctuation should be kept at a reasonable range. The ratings greatly fluctuate when the user behaves 
irrationally or lacks professional knowledge. In the current study, the standard deviation of the user 
subjective rating sequence was used to define the user rating discrete degree, as shown in formula 5. 

2

1
( ( ) )

w

tt
srf sr sr cw


                                                           (5) 

tsr  is the user subjective rating and 
1

( )
w

tt
sr sr cw


  . cw  represents a user rating reliability window. A 

higher srf  indicates lower user credibility, and vice versa.  

2. Similarity of subjective rating and objective rating: Subjective and objective ratings measure the 
performance of the services from different views. Therefore, the two rating sequences should be consistent 
or similar, the similarity between sr=(sr1,sr2,…, srn) and or=(or1, or2,…,orn) represented with Euclidean 
distance, as shown in formula 6. 

2 2 2
1 1 2 2( ) ( ) ... ( )n nsos sr or sr or sr or                                               (6)     
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sos  represents the reciprocal of similarity and or , sr  are the objective rating and subjective rating 
sequences respectively. 0 1isr sr   ，and 0 1ior or   . 
3. Similarity of subjective rating and majority subjective ratings: The ratings of users in a time 
window w  are clustered using the K-Means clustering algorithm. Then, the centroid of the majority cluster 
can be used as users’ majority rating in w , as shown in formula 7 [22]. 
 

    ( ( ( )))ksmr center max sr                                                      (7) 
 
smr denotes the subjective majority ratings. The majority of users’ ratings were assumed to be reasonable 
and credible. Therefore, taking smr as a reference, sms can be obtained by computing the Euclidean 
distance between the vectors sr  and smr  using formula 6. A smaller sms means a more credible 
subjective rating. 
 

5. DYNAMIC WEIGHTED REPUTATION AGGREGATION 
 
For meeting the needs of AmI, a novel D-S evidence theory based algorithm of service reputation 
aggregation is proposed. Compared with that of Yu, there are three advantages: first, the utility value was 
used instead of the original rating value in order to avoid the inaccuracy brought in by its time-dependent 
effect. Second, multi-ratings were introduced and detailed for reputation computing to revise single 
subjective rating, since information collected from a single subjective rating is usually unilateral due to 
biased or professional background. Third, the weighted evidence combined rules were adopted to 
aggregate the general reputation. Every subjective rating is supposed to assign a different weight to 
represent how important the rating is among the multi-ratings [23, 24]. 
 
a) D-S evidence theory 
 

Dempster and Shafer [25] proposed the evidence theory, which can be applied to uncertain decisions. 
The knowledge, experience, and feelings of a user in certain circumstances are advantageously used as the 
evidence of a decision. For any subset A in the frame of discernment  1 2, , , N     , ( )m A is assigned as 
a basic support degree, which is constrainted by the following conditions: 
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Every element of  is considered as an incompatible event or assumption, and m(A) is the basic 
probability assignment (BPS) indicating the support for set A. Different pieces of evidence iE and jE may 

have different BSP ( )i im A and ( )j im A for the same subset Ai. Hence, the basic D-S combining rule of multi-

evidences can be expressed as follows (suppose ( ) ( ) 1
i j
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The larger the value of K, the more conflict there is between the two evidences. The combined results 

are often insufficient and even lead to paradox. Moreover, the basic D-S combining rules take no account 

of the credibility of the evidence making the combined results different from the actual situation. To solve 

the conflicting evidences, some improved methods were proposed in [26]. 
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b) BPS of the rating 
 

BPS of the rating needs to be obtained to compute the service reputation. Contrary to that of Yu, we 
take the ratings utility values instead of the original ratings value as the computing evidence of BPS. It is 
assumed that the user ui invokes service sj n times in time window w and ui gives the subjective rating srl 
after using the service (ݎݏ௟ܴ߳, 0൑ ݈ ൑ ݊). Hence, its utility value is ݑݎݏ௟ ൌ ,௟ݎݏሺߤ ,ݐ  ሻ. Threshold Ʊ andݓ
Ω are introduced to divide the ratings into three parts: trust (ݑݎݏ௟ ൒ Ʊ), uncertainty (Ʊ ൏ ௟ݑݎݏ ൏ Ω), and 
distrust domains (ݑݎݏ௟ ൑ Ω). Function f(x) is used to map x as its probability in time window w. 
According to the D-S evidence theory, the BPS of ݑݎݏ௟	is assigned as follows:  

௪ሺሼܶሽሻݏ݉			 ൌ 	∑ ݂ሺݑݎݏ௟ሻ
ଵ
௦௥௨೗ୀƱ , 

௪ሺሼ൓ܶሽሻݏ݉	 ൌ ∑ ݂ሺݑݎݏ௟ሻ
௦௥௨೗ୀஐ
଴ ,and݉ݏ௪ሺሼ൓ܶ, ܶሽሻ 	ൌ 	∑ ݂ሺݑݎݏ௟ሻ

௦௥௨೗ୀƱ
௦௥௨೗ୀஐ

 ௪ሺሼ൓ܶሽሻandݏ݉ ,௪ሺሼܶሽሻݏ݉	 .
,௪ሺሼ൓ܶݏ݉ ܶሽሻrepresent the degree of trust, distrust, and uncertainty degrees respectively. Similarly, BPS 
of OR can be obtained as follows:	݉݋௪ሺሼܶሽሻ, ݉݋௪ሺሼ൓ܶሽሻand ݉݋௪ሺሼ൓ܶ, ܶሽሻand HR: ݄݉ܽ௪ሺሼܶሽሻ, 
݄݉ܽ௪ሺሼ൓ܶሽሻ and ݄݉ܽ௪ሺሼ൓ܶ, ܶሽሻ. 
 
c) General reputation aggregation 
 

General reputation (GRep) indicates the trustworthiness of service in AmI environment. It can be 
expressed as ݌ܴ݁ܩ ൌ ߞ ∙ ݎݏ݉ ൅ ߬ ∙ ݎ݋݉ ൅ ߪ ∙  where msr represents the combined multi-user ,ݎ݄ܽݏ݉
subjective rating, mor denotes the combined multi-objective ratings, msahr is the degree of combined 
multi-service honesty degree, and	,ߞ	,߬	ߪ represent the corresponding weights. 

User ui may call and rate a service repeatedly in a time window, and the ratings are listed in the 
sequence of srl	ሺݎݏ௟ ∈ ܴ, 0 ൑ ݈ ൑ ݊). For different users ui and uj (݅ ്j), the two rating sequences for the 
same service in an identical time window may differ. Hence, the corresponding		݉ݏ௪ሺሼܶሽሻ, 
,௪ሺሼ൓ܶݏ݉ and	௪ሺሼ൓ܶሽሻݏ݉ ܶሽሻare also different. Furthermore, each user has a credibility uc. The user 
credibility can be used as the weight of BPS to compute msr. Then the weighted average of BPS is 
computed [27]. Finally, the method in [28] was adopted to combine the evidences. The computing process 
as follows: 

i. Normalizing and obtaining the standard user credibility uci; 
ii. Computing the multi-user weighted average (mwa) for attenuation-based user rating: 

∑=ሺሼܶሽሻܽݓ݉		 ௜ܿݑ ∙
ே
௜ୀଵ  ,௜ሺሼܶሽሻݏ݉

∑=ሺሼ൓ܶሽሻܽݓ݉ ௜ܿݑ ∙
ே
௜ୀଵ  ,௜ሺሼ൓ܶሽሻݏ݉

∑=ሺሼܶ,൓ܶሽሻܽݓ݉ ௜ܿݑ ∙
ே
௜ୀଵ ,௜ሺሼܶݏ݉ ൓ܶሽሻ；  

iii. Combing mwa N-1 times, and obtaining the combined multi-user BPS msc; 
iv. Computing 		݉ݏሺሼܶሽሻ and ݉ݏሺሼ൓ܶሽሻ using msc. The general user comprehensive reputation value, 

msr, is 10*(	݉ݏሺሼܶሽሻ െ  .(ሺሼ൓ܶሽሻݏ݉
To prevent ratings (evidence) conflict caused by different contexts, Murphy’s multi-evidence 

combing rule was used to compute mor and msahr. Its computing process is similar to the msr 
computation. 

GRep can be easily worked out as soon as the values of msr, mor, and msahr are calculated. 
According to actual experience, the settings of corresponding weights are: ,0.4=ߞ	,0.4=߬	0.2= ߪ. The GRep 
is stored in the service register center and shared by all users. The service is continuously called and rated 
when the time window moves on, and the value of GRep is dynamically updated. 

6. TEST AND ANALYSIS 

To analyze the above algorithms, a prototype system based on AmI-space was designed [1]. A group of 
semantic web services (video player services, including QoS attributes: price, delay, jitter and image 
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1) Designing a service reputation computing model for AmI systems. The model is consistent with the 
basic information processing: data      information     knowledge, and it summarizes the core 
algorithms and their interactions. Researchers can concentrate on the core algorithms design and so 
simplify the complexity of reputation implementation. 

2) Designing and implementing the time window based dynamic attenuation mechanism, objective 
rating and user credibility algorithm, and also presenting a multi-ratings based service reputation 
aggregation algorithm. Based on these algorithms, the reputation value can better reflect the service’s 
historical information, effectively forecast the service future behavior, and thus provide more accurate 
and reliable information for the service selection and composition in AmI systems. 

3) Some algorithms, for instance dynamic attenuation mechanism and user credibility, are easily applied 
to other information systems. For example P2P, to improve the validity of reputation computing. 

In the future, the rating semantic model and rating conflict combining rules for AmI system will be 
further studied to enhance the practicality of the service reputation mechanism in AmI environment. 
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