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Abstract– Reverberation noise in active sonar leads to a very complicated situation for target 
detection. Reverberation is often modeled as the autoregressive model. In this paper, the 
autoregressive model is considered for reverberation and the Principal Component Inverse (PCI) 
algorithm is used to separate target echo signal from reverberation. This consideration helps us to 
propose a new method to improve computational complexity for the rank determination of the 
observation matrix via singular value decomposition. It is shown that this new method is efficient 
on real data to separate target echo signal from reverberation.          
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1. INTRODUCTION 
 

Target detection in the presence of reverberation for active sonar (especially in shallow water) is an 
important problem in underwater acoustic signal processing. Reverberation is caused mainly by the 
multiple reflections/diffusions/diffractions of the transmitted signal by the surface and bottom interfaces. 
Since the reverberation is strongly correlated with the signal, classical detection methods like matched 
filtering (MF) are inefficient [1].  Many works have been presented to reduce reverberation effect and 
improve target detection. Here, we present a number of them. 

A model is often considered for reverberation to improve detection. Some models have been 
introduced in [2-6]. Each introduced model in [2-6] uses some properties of reverberation to improve 
target detection. In this paper, we have considered the properties of reverberation using two of these 
models simultaneously and then solve the problem of reverberation cancellation from the received signal. 

In [2], a statistical model was considered for reverberation as nonstationary, colored noise. This 
model leads to elaborate detection algorithms which normalize and whiten reverberation. In [2], the 
prewhitener is based on an autoregressive model for the reverberation. At the output of the prewhitener a 
generalized likelihood ratio test detector is implemented. It was shown that algorithms based on this 
approach had some problems when the Doppler shifts of reverberation and target echo are similar. To 
improve this problem, reverberation was considered as a sum of undesirable echoes in [3]. The method for 
detection consists of estimating these echoes and deleting them before applying the classical MF. It is 
important to choose a metric to distinguish reverberation echoes from target echoes, and since the target 
echo power is often lower than reverberation power, echo power has been chosen as a metric and an 
algorithm which is able to separate echoes with different power has been used. This algorithm is the 
Principal Component Inverse (PCI) algorithm which has been introduced in [4] and [5]. This algorithm 
originally assumes that noise is completely different from the searched signal, but in [3], it has been 
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shown that PCI can be applied to detection in presence of reverberation. In particular, the importance of 
the rank of the observation matrix has been shown. PCI is a more robust method with regard to 
reverberation properties.  

In [1], a new algorithm Signal Subspace Extraction (SSE) based on this more real-life model has been 
presented. The SSE algorithm divides the reverberation with target echo into three parts: higher 
reverberation echoes, the target echo and lower reverberation echoes. 

It makes use of a low rank characteristic of target echoes subspace, and separates the signal subspace 
via the singular value decomposition (SVD) method. 

In this paper, the autoregressive model is considered for reverberation and the Principal Component 
Inverse (PCI) algorithm is used to separate target echo signal from reverberation. This consideration helps 
us to propose a new method to improve computational complexity of the rank determination of the 
observation matrix via singular value decomposition. So, the paper is arranged as follows: 

Section 2 quickly reviews the classical detection/testing hypothesis, the Block Normalized Matched 
Filter (BNMF), the whitening BNMF. Section 3 presents the PCI algorithm, and analyzes the critical point 
of matrix rank estimation. Section 4 presents the new algorithm for matrix rank estimation. In section 5, 
we give the results of reverberation reduction via this new algorithm using an example with real 
reverberation data and verify the conclusions.  
 

2. DETECTION PROBLEM IN PRESENCE OF REVERBERATION 
 
Let )(te  be the transmitted signal with duration ܶ. Now, the detection problem is 
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where n(t) is the reverberation noise, b(t)  is the white ambient noise, and s(t) is the target echo. Noises b 
and n are assumed Gaussian and independent. s(t)  differs from e(t) to a time delay ߬, a doppler shift 

஽݂and an amplitude attenuation A: 

                                      )2exp()()( tfitAets D  (2)  

All signals are complex valued and represent the sonar output after complex demodulation. We work with 
time sampled signals. Let x୲ be the sampled vector of  ݔሺݐሻ and ̅ݏ௧  be the sampled normalized signal  

                            )2exp(),( tfiAefs DtDt    (3) 

In sonar, the problem is not only to choose between 0H and 1H but also to estimate the attenuation A, the 
delay  , and the Doppler frequency Df . We use the classical generalized likelihood ratio test (GLRT) to 
build the different algorithms. As the reverberation n is nonstationary, its power is time varying. We 
propose building a block-by-block detector. The received signal is divided into blocks of length N (N is 
the transmitted signal length) which are shifted by d (shift of window) samples. The procedure allows us 
to obtain a set  itx (for block i) of length N. The statistic test of the BNMF is 
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)( Di fL  is computed on each block  itx  and for different Doppler shifts fkfD  . The parameter f is 

sampling rate for the estimation of Df . This measures the precision of the Doppler shift estimation. Let M 

be the number of blocks and K the number of Doppler samples. The BNMF algorithm allows one to obtain 

a matrix   kii fkL ,)(  . Hypothesis 1H  is chosen if )(max , fkLiki   is larger than a given threshold . In 

addition, this maximum estimates the block containing the target echo and the corresponding Doppler 

frequency. 

As reverberation is often considered to be colored noise, it is obvious that a whitening step will 
improve detection. We propose a detector be built from the BNMF and the whitening proposed by 
Carmillet [6]. The nonstationarity of reverberation involves developing an adaptive algorithm. In the first 
block assumed without target, reverberation is estimated by means of an AR model. In the following 
block, data are whitened by the corresponding MA (moving average) filter, and the BNMF is then applied 
on whitened data. This algorithm is called whitening BNMF [7].  

Simulations have shown that a whitening procedure is inefficient when target echo and reverberation 
echoes have similar Doppler properties. This situation appears most often when the transmitted signal is a 
hyperbolic frequency-modulated (HFM) signal because this signal is unaffected by Doppler, so 
reverberation and target echo have similar Doppler properties. This statistical model does not take into 
account the link between reverberation and transmitted signal and so we propose a combination of this 
model and another reverberation model which takes advantage of the connection between similar Doppler 
properties of the target and reverberation echoes. 
 

3. THE PCI ALGORITHM 
 
Let us consider now the reverberation as a sum of echoes from the transmitted signal. The method is based 
on the power contrast between reverberation echoes and target echo. The PCI algorithm [1, 3], which is a 
particular case of subspace methods, is used to separate reverberation echoes and the target echo by 
estimating the reverberation subspace. This algorithm was originally developed to detect a weak signal in 
high interference which is assumed to be different from the transmitted signal. 

Modeling reverberation as a sum of echoes issued from the transmitted signal implies that 
reverberation and the target echo have almost the same properties. A metric and a hypothesis are then 
needed in order to separate them. Power is used as a metric because we assume that reverberation echoes 
power is much greater than both signal and white noise power. Because of this assumption, the PCI 
algorithm estimates the reverberation subspace. As a consequence, the reverberation echoes can be deleted 
and classical treatments (like MF) can be used. The subspace methods require a generating matrix. 
Kumaresan et al. [4] proposed a matrix built from the received time signal by cutting ݔ into blocks iX . 
This matrix, denoted by 

k
iY on block i, is called the forward matrix 

                               

























)1()1()(

)2()()1(

)1()1()(

klxlxlx

xkxkx

xkxkx

iii

iii

iii

k
i 



Y  

  

(5)  

where l is the block length and k is chosen close to l/2. The choice of ݈ will be discussed in the next 
section. The PCI algorithm consists of decomposing k

iY  into two matrices r
iY  and o

iY  
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where r
iY  spans the reverberation subspace and o

iY  the signal plus white noise subspace. As 
reverberation echoes are assumed to be stronger than the target echo and white noise, 

r
iY  is built with the 

largest singular values of k
iY . Actually, if r is the reverberation subspace rank, 

r
iY  is the best r-rank 

approximation of k
iY and is obtained via the Singular Value Decomposition (SVD) of k

iY and by the 
Eckart and Young [1, 8] theorem: 
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where U  is the left singular vector matrix of k
iY , V  is the right singular vector matrix of k

iY , and   a 
diagonal matrix which contains the decreasing singular values of k

iY ,   ...21  i . A vector r
iX  

is then collected from r
iY . The subspace reverberation estimation is made for all the blocks in order to 

obtain a vector rX  which contains only reverberation. Finally, the detection processing is done on the 
vector rXX  and this vector only includes white noise and target echo (if occur). Two assumptions are 
necessary for a correct running of PCI: 
• s and b must be less powerful than n; 
• the rank r of r

iY  must be small. 
The first hypothesis is used to separate the reverberation subspace and the signal subspace [see (9)]. 

The second hypothesis is necessary to obtain good separation.  The rank of one or several echoes is often 
unknown. The rank estimation is the most difficult step of the algorithm, and very briefly has been 
described by Tufts and Kirsteins [7]. The rank is linked to the received signal power. It is estimated by 
computing the sum of the singular values of k

iY  and comparing it to a threshold P which is linked to our 
prior knowledge of the target echo and white noise power. If the sum is not greater than P, PCI does not 
treat block iX . If there exists an index M as follows (RY is the rank of k

iY ): 
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then PCI is applied to block iX  and r is equal to 1MRY . For setting up threshold for the procedure 
the sum of squares of all singular values under hypothesis 0H  (no signal case) is necessary. As it has 
been shown in [10], we need a mixture 2  distribution to calculate threshold P. Here, we are looking for a 
new method that finds threshold in a simpler way than before. So, an autoregressive (AR) model for the 
reverberation and using PCI to separate reverberation signal are considered.    
 

4. COMBINATION OF THE PCI ALGORITHM WITH THE AR MODEL 
 
In [2], an autoregressive model for the reverberation has been shown, through analysis of real data, to be 
an accurate model. Let )(te  be the transmitted signal with duration ܶ. Now, the detection problem is 
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Where n(t) is the reverberation noise, and s(t) is the target echo. The noise n, is modeled as a Gaussian AR 
process of order p 
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Where b(t) is zero-mean complex white Gaussian noise with variance 2 . Let k=p+1 in matrix 1p
iY , 

and define B' as follows: 
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where E is 
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1
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'
1  p   denote the ordered singular values of B' and 1p

iY , 
respectively. From (11), the first column of B' is a linear combination of the last p linearly independent 
columns. Thus, the rank of B' is p and ߚ௣ାଵᇱ =0. From the perturbation theory in [11, 12], it can be shown 
that   

                                   Lp plc   )(
21
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where 1  is largest SV of E, 
2

b  is 2-norm of b, and c(l-p) represents the percentile value of the Chi-
Square distribution ( 2

1   ) with l-p degree of freedom (from theory of statistical significance testing and 
bounds on the 2 norm of matrix, for a given level of significance  , 1  is bounded by L [11]). Thus, if 

  Lp
' , then ''

1 pp    and the order of the AR model can be derived correctly. In fact, the 
effective rank of reverberation subspace in matrix 1p

iY is identical to the order of the AR model n(.). 
The value of L  depends on the variance of noise 2 , which in practice is unknown. However, the 
variance of noise 2  can be estimated from residual error of least squares solution (which is denoted by

)(2 qS ) given by Karimi in [13] as follows: 
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where k is the supposed order for the AR model.  
The following algorithm for rank determination of reverberation subspaces is useful as follows: 

1) Consider an autoregressive model for the reverberation.  
2) Suppose that x is the vector of received time signal. Under hypothesis 0H  (no signal case), create 

a matrix from the received time signal by cutting ݔ into blocks iX . This matrix, noted k
iY on 

block i, is defined above in (5) and k is chosen to be larger than the estimated order. 
3) Find the singular values ''

2
'
1 ,,, k   of k

iY . 
4) Use (14) to obtain an estimate of the variance of noise 2 . 
5) Obtain L   in equation (13) to determine r such that ''

1 rr   . 
6) Repeat 2-5 with k=r+1, to find new rank r' of k

iY . 
 If r'<r and r'>1, then set r=r' and repeat 6, else the order is equal to r. 

7) A vector r
iX  is then collected from 

Hrrrr
i VΣUY  . The subspace reverberation estimation is 

made for all the blocks in order to obtain a vector rX  which contains only reverberation. 
8)  Finally, the vector rXX  is constructed. This vector encompasses noise and target echo and 

rejects reverberation.  
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5. RESULTS WITH REAL DATA 
 
Now, we apply this algorithm to real data, and verify the effect of this algorithm in reverberation 
cancellation. It is important to know that the Doppler shift of target echo and reverberation are similar. Let 
us show an example of real surface and bottom reverberation. The transmitted signal is continuous wave 
(CW). The frequency is 50 000 Hz, the transmitted pulse-width is 3 msec. After receiving signal, the 
sampling frequency of the received signal is 200 000 samples per second. Figure 1 shows a target echo 
between 40-50 meters along with the surface and bottom reverberation. As it is shown in Fig.1 the 
reverberation lasts much longer than the transmitted signal and is more powerful than target echo. We 
divide the received signal into blocks with 1200 samples, each block has 600 samples that overlap with the 
former block. Then, we apply the procedures 1-8 defined in section 4 to reject the reverberation from the 
received signal. Finally, for each processed block, the vector rXX  is constructed and plotted in Fig.2.  
As it is seen in Fig. 2, the target echo is encompassing and the reverberation is rejected. 

We also plot the received signal when target is placed at 73m and 90m from hydrophone in Fig. 3 and 
Fig. 5, respectively.  The processed signals of these two cases with the above algorithm are depicted in 
Fig. 4 and Fig. 6. It has been shown from these figures that as target echo becomes lower than 
reverberation the algorithm works more efficiently. 
 

Fig.1. Received signal when target echo is at 45m Fig. 2. Reverberation cancellation from the received 
signal in Fig.1 

 

Fig. 3. Received signal when target echo is at 73m 
 

Fig. 4. Reverberation cancellation from the received 
signal in Fig. 3 

 

Fig. 5. Received signal when target echo is at 90m 
 

Fig. 6. Reverberation cancellation from the received 
signal in Fig. 5 
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6. CONCLUSION 
 
The autoregressive model is considered for reverberation and the Principal Component Inverse (PCI) 
algorithm is used to separate target echo signal from reverberation. This consideration enables us to 
propose a new method to improve computational complexity for the rank determination of the observation 
matrix via singular value decomposition.  

We apply this algorithm to real data, and verify the effect of this algorithm in reverberation 
cancellation when the Doppler shift of target echo and reverberation are similar. It is shown that this new 
method is efficient on real data to separate target echo signal from reverberation, particularly when target 
echo has lower power than reverberation.  
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