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Abstract— Electrical Impedance Tomography (EIT), is one of the safest medical imaging
technologies and can be used in industrial process monitoring. In this method, image of electrical
conductivity (or electrical impedance) distribution of the inner part of a conductive subject can be
reconstructed. The image reconstruction process is done by injecting an accurate current into the
boundary of a volume conductor (), measuring voltages around the boundary (0Q) and
transmitting them to a computer, and processing on acquired data with software (e.g. MATLAB).
The image would be reconstructed from the measured peripheral data by using an iterative
algorithm. A precise instrumentation (EIT hardware) plays a very important and vital role in the
quality of reconstructed images. In this paper, we have proposed a practical design of a low-cost
precise EIT hardware including, a high output impedance VCCS (Voltage-Controlled Current
Source) with pulse generation part, precise voltage demodulator and measuring parts, a high
performance multiplexer module, and a control unit. All the parts have been practically and
accurately tested with successful results, and finally the proposed design was assembled on PCB.
The quality of experimental results at the end of this paper, (reconstructed images by using the
implemented system), confirms the accuracy of the proposed EIT hardware.
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1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a relatively new imaging technique. In this method, an image
of the inner part of a conductive domain () can be made with an array of external electrodes which are
located on the boundary of domain (0€2). In this imaging method, the image of electrical conductivity (or
impedance) distribution of the internal part of a typical conductive subject can be reconstructed [1]. EIT
procedure includes injecting an accurate current into the boundary of domain (0€2) via a pair of electrodes,
measuring the boundary voltages by means of other electrodes around the boundary and transmitting them
to a computer, and at the end, processing the acquired data with software (e.g. MATLAB) to reconstruct
the image. Human body tissues contain a wide range of conductivities, and hence the potential exists to
use EIT to carry out medical imaging using the conductivity as the parameter to be mapped [2].

As a matter of fact, EIT is a challenging problem. This technique has some advantages compared to
other methods, including: simplicity of application, no hazard to the patient (such as X-ray), low cost and
portable, and the high speed of data collection and image reconstruction [3]. Although EIT systems suffer
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from poor image resolution, the transfer impedances must still be measured with high accuracy. The effect
of unknown skin—electrode impedance on measurement errors can also have a significant effect on image
quality [4]. EIT still has technical difficulty in terms of developing hardware for data acquisition and the
algorithms to reconstruct the images. However, there are some methods to improve imaging quality. The
most important of them is hardware improvements to acquire a high-accuracy measured datum [5, 6].
Reconstructed image quality mainly depends on the boundary data accuracy and the reconstruction
algorithm [7].

This paper is focused on hardware implementation of EIT. First of all, the top view of our proposed
design is illustrated and explained, and each part of the design will be described in detail as well. After
that, some experiments done by using the implemented system and their results will be presented. At the
end, final reconstructed image of our EIT system will be compared with other works.
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Fig. 1. The main block diagram of proposed EIT hardware design
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2. TOP VIEW OF PROPOSED DESIGN

In general, EIT instrumentation comprises digital and analog circuits, an array of electrodes which acts as
ElIT-sensors and a PC. The image is finally reconstructed from the acquired data (voltages) by using an
iterative algorithm. In our design, the analog section of hardware includes an accurate current source and a
data acquisition part (to measure voltages with enough precision). The digital part contains control unit.
The precision of all units plays a very important role in reconstructed image quality. The top view of the
proposed EIT system is illustrated in Fig. 1. The block diagram of the proposed EIT hardware (Fig. 1) has
different parts:

1- VCCS (Voltage-Controlled Current Source) which includes a VCO as a waveform generator, a filter,
a VCC (Voltage-to-current converter) part, and a pulse generator.

2- Multiplexer module.

3- Control unit.

4- Voltage measurement part containing a voltage demodulator and a voltmeter.

The constant and accurate current produced by the VCCS is injected into the boundary of domain
(0Q) via the multiplexer part (MUX). The second task of the current source section is generating two
types of pulse train simultaneous with maximum point of positive peaks and zero points of the current
waveform. They can be used for sampling of real and imaginary sections of measured voltage in voltage
demodulation portion. In order to measure the boundary voltage, meaning demodulating and measuring
the electrodes voltage, “V-Demo.” and “V-Meter” blocks should be applied respectively after multiplexer
block. Control unit is applied for controlling the multiplexer module and measurement parts, and also for

communicating with the PC for data transaction. The assembled EIT hardware is shown in Fig. 2.
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Fig. 2. Assembled EIT hardware

3. VOLTAGE-CONTROLLED CURRENT SOURCE

Electrical Impedance Tomography (EIT) systems require accurate current sources that work over a wide
frequency range and with a large variation in load impedance. The simplest technique to obtain a constant
current is to use a voltage-controlled current source (VCCS), which can be defined as a combination of
positive and negative feedback around a high gain operational or instrumentation amplifier [8]. A typical
VCCS used in the EIT systems, consists of waveform generator and Voltage-to-Current Converter (VCC)
parts. Design of the VCC in EIT systems is especially important. The VCC part requires stability and high
precision, which means that it must have high output impedance. Generally, the waveform used in the EIT
systems in most cases is the sinusoidal waveform which is produced by the waveform generation part in
digital or analog form [9]. The main features for a typical waveform generator are as follow; an accurate
output waveform (i.e. exact sinusoidal waveform without any jitter), a low output impedance (similar to an
ideal voltage source), wide operational bandwidth, and steady amplitude over all the frequency range. In
addition, the main characteristics for the VCC part to have an excellent VCCS are based on high output
impedance, linearity in converting voltage to current, precision of output waveform, supporting a wide
range of load, and proper working in a broad range of frequency [10]. The high-performance current
source can ameliorate the image quality to a certain extent [11].

The current source in EIT systems must be able to deliver the current over a frequency range between
10KHz and 1MHz and be able to support the load between 100Q2 and 10KQ [9]. Its output impedance
must be in the range of more than 100KQ as well [12], therefore an excellent current source design should
satisfy the above conditions. Figure 3 shows the flowchart of the proposed VCCS. It consists of a VCO
(Voltage-Controlled Oscillator) part, a Butterworth band-pass filter (Butterworth low-pass and high-pass
filters in serial connection), and a VCC (Voltage-to-Current Converter) part.

: Low-Pass High-Pass
VCO —» Amplifier —p Fiter [l Buffer —p- Filter

Fig. 3. Flowchart of proposed VCCS design

— Buffer —» VCC —» Load

a) Waveform generation

Schematic circuit of the waveform generation part is shown in Fig. 4. As it can be seen, XR-2206
(EXAR Inc.) has been used in the waveform oscillator part as a VCO. An AD844 IC has been placed at
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the output of the VCO, to amplify the sinusoidal waveform and also to create a low output impedance
value at the output of waveform generation part (measured output impedance of the circuit without
AD844, is about 690Q and with this IC, is about 14Q).
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Fig. 4. Voltage-controlled oscillator (waveform generation part)

b) Butterworth band-pass filter

In order to have an exact waveform without any jitter, noise and distortion, and also to create low

output impedance for the next stage (VCC), a Butterworth band-pass filter Ranging between 10KHz and
250KHz, has been designed and placed between the VCO and VCC parts of current source. Hence the
operational frequency range of the designed EIT system would be between 10 and 250KHz. In order to
design the filter for other frequencies, the Butterworth coefficients have been cited in [13]. The schematic
circuit of the filter is shown in Fig. 5. As it is shown, the filter consists of a fourth-order Butterworth low-
pass filter (U; and U,) with cutoff frequency of 250 KHz and also a fourth-order Butterworth high-pass
filter (U, and Us) with a cutoff frequency of 10 KHz that are connected serially.
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Fig. 5. Butterworth Band-pass filter which is put between the VCO and VCC parts
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¢) Voltage-to-current converter

The end structure of mentioned flowchart is Voltage-to-Current converter (VCC), many experiments
were done to improve and modify its operation. Several essential tests were done on four main
configurations of a VCCS:

e VCCS based on AH (Advanced Howland), [14, 15].

e VCCS based on DOA (Double-Operational Amplifier), [16].

e VCCS based on TOAL1 (Triple-Operational Amplifier form 1), [17].
e VCCS based on TOA2 (Triple-Operational Amplifier form 2), [9].

These experiments were done with identical VCOs, different VCC structures, different component
values such as different resistance values, different types of OP-AMP, and also different ranges of load.
According to results of the primary practical tests, the best structure of the VCC part was selected and
modified. The main selected criteria in the primary tests were based on the output impedance, the
operational band-width, and the minimum and maximum loads that each VCCS can support. The
schematic circuits of different VCCSs which have been used in practical tests and simulations (with
PSPICE), and their results have been shown in Appendix A. Proposed structure of the VCC part with its
components value, according to the best result in experiments is shown in Fig. 6. For VCCS based on
TOAT1 circuit, (2) should be satisfied and therefore I, is calculated by (3).

R4 .
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Fig. 6. Proposed structure of the VCC section, with suggested components values

The output impedance Z,, of a typical current source can be calculated by (4). As it is shown in Fig.
7, V1 represents the measured output voltage of Ry, when the switch S is opened and V, represents the
measured output voltage of Ry, when S is closed. Rp and R; are connected at the output of VCCS with
optional value [2]. In order to measure the output impedance and also load voltage of a typical VCCS with
an oscilloscope, the input impedance of the voltmeter (oscilloscope) should be considered.

V1
Rp — Ry “

Zput = ——-
out =y _y1
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Fig. 7. A method for measuring VCCS output impedance [2]

Figure 8A shows the results of other practical tests to determine the best value for R; to R4 according
to the circuit of Fig. 6. In the curve, Maximum allowable load represents the maximum value of load in
which the VCCS can support in a specific frequency. The output waveform of VCCS (load voltage) must
be exact sinusoid and the relationship of the input voltage of VCC part and load current must be linear
during the test. The amplitude of load current was adjusted on 1mA in all frequencies. In fact, the output
Impedance of a current source depends on inverse of frequency [9]. The maximum allowable load in a
particular frequency is also restricted by the value of output impedance. As a result according to the curve
in Fig. 8A. The best value for R; to R, was selected as 1KQ. This is due to the VCC structure with 1KQ
resistor, which creates higher output impedance compared to others.
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Fig. 8. (A) The curve represents the ranges of maximum allowable load which can be supported by the implemented
VCCS, in different frequencies and different values of R; to R4 according to the circuit in Fig. 6. (B) Open circuit
output voltage of implemented VCCS in different frequencies. (C) Output Impedance of proposed VCCS, simulated
with PSPICE in different frequencies
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With this resistance value the maximum allowable load in frequencies less than 100KHz is 12KQ
which decreases to about 8KQ in 250KHz as shown in the upper curve of Fig. 8A. The circuit in Fig. 6
was tested with resistors less than 1KQ (~0.5KQ), however, the waveform was distorted and the OP-
AMPs were heated up. The result of the other practical test for the proposed VCCS is shown in Fig. 8B. In
this part the output voltage of the VCCS was measured when there wasn’t any load at the output of the
circuit (open circuit voltage), in operational frequency range. Part C of Fig. 8 shows the output impedance
of simulated VCCS in PSPICE.

d) Pulse generator

A pulse generation module has been attached to the VCCS circuit design in order to generate two
types of synchronous pulse train with the maximum point of positive peaks and zero points of the output
current waveform (peak detection and zero detection of the current).The pulses were used for
demodulating the boundary voltages in order to measure them. Figure 9 shows the pulse generator circuit
diagram. The input of the pulse generator is connected to the output of the filter. We may shift the position
of the pulses with R,. As shown in Fig. 10, sections A and B depict the worthwhile usage of this part. The
pulse width can be varied by increasing C; from 1nF to 10nF. For instance, by regulating R,, the output
pulse train and also the signal of Point B may be used for sampling and extracting real part of the load
voltage in the demodulator section.

R3 10K R6 20K R8 200 R10 1K

Input

< Amplifier »< Phase Shifter »< Convert to Pulse »< Buffer >« Edge Detector >
Tnput Pomt A Pout B Crutput
a2 Vo W s (W o nnnan,
| NG 7 G S | [

Fig. 9. Pulse generation schematic circuit

(A) (B)
Fig. 10. The output generated pulses. (A) Peak detection (B) Zero detection

4. VOLTAGE MEASUREMENT

The data acquisition system can limit the overall accuracy [18]. Errors arise from both current drive and
voltage acquiring parts of the EIT system. Related to the topology that is applied for measuring
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(measuring pattern) in each moment, only one voltage can be measured via two particular electrodes. In
addition to avoiding measurement error because of common mode effects, the voltage of electrodes which
are connected to the current source is not measured.

a) Demodulation of electrodes voltage

In order to measure the boundary voltage, at first the electrodes voltage must be demodulated. At this
stage, the voltage demodulator samples the voltage waveform in specific points and prepares sampled data
for measurement. As an example, in order to measure the real portion of the load voltage, the samples
should be taken from the load voltage when the injecting current would be on the maximum value of
positive peak. On the mentioned points, the voltage of capacitance components of the subject is zero due
to the 90 degree phase shift. The method of modulation is based on sample-and-hold approach that is
known as pulse-sample demodulation. The suggested method does not require multiplier or output filter
[19].

As it is shown in Fig. 11, both electrode voltages after passing through the high pass filters and
buffers are entered to the high speed CMOS-logic analog multiplexers (74HC4053). The control pulses
entered via ports C and D, come from the pulse generator part of the current source. To measure the real
part of the load voltage, port C must be connected to the positive peak detector (point B of Fig. 11) and
port D must be connected to the maximum point detector (to the output of the pulse generator part, when it
works as the peak detector). Hence the input voltages of AD625 (programmable gain instrumentation
amplifier) are the demodulated electrode voltages and the output voltage of the IC is differential value of
those mentioned voltages. The gain value determined by R7, Rg and Rgis optional and is calculated by (5)
[20]. To measure the imaginary part of the load voltage the pulse of point B and zero detection output
pulse should be applied as well.
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Fig. 11. Proposed design for demodulating of electrode voltages
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b) Voltage measurement

At this stage the demodulated voltage is measured, hence it must be converted from analog to digital
value. The digital value is then transmitted to the microcontroller (ATmegal28) of control unit. In
measurement part, AD1674 with 12-bit resolution is applied as an ADC. ATmegal28 has a number of
ADCs by itself, but its ADCs cannot be used in measurement. According to the data-sheet [21], the
conversion time (i.e. required time for conversion of an analog value to valid digital data) of its ADCs, is
between 13 to 260us which is not an exact amount of time. So it would not be possible to capture the
analog voltage signal at a specific point in the range of micro second. However, in AD1674, the
conversion or sampling time is exactly 10us [22], hence it is very interesting to capture the analog voltage
whenever it is required. This is due to the 12-bit resolution of the IC, for amplitude between +5V, the

mentioned ADC can sense 2.44 mV changing on the analog voltage (one bit is used for sign).

5. MULTIPLEXER

A high-speed multiplexer module with 32 outputs can be added to the proposed instrumentation design.
As it is seen in Fig. 12, the schematic circuit of the multiplexer module is illustrated. ADG506AKN is
used as the analog multiplexer in our design.

For a 32-electrode EIT system, eight ICs of the mentioned multiplexer are required. Four of which
are applied for injection and sink ports of current source and the others are used for voltage measurement.
The multiplexer is applied for sharing the current source and voltmeter between multiple electrodes. For a
32-electrode system, 5 address lines are needed; hence four address lines of ADG506AKN plus its enable
pin can be used. Each latch is applied for a pair of ADG506A (for lower and higher than 16 electrodes).

T4L53T4
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S0 s S0 4D \CIQ 1D}
Al 351 1 Al LBQ 20y
A2 52 2 A2 L3Q 3D
A3 53 3 A3 ¥m;; 4D
EN s 4 EN 150 5D
35 5 [_—cs CLE]
56 %6 ==
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59 59  w
D sio 510 D —
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514 14 |—*27
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T o Curvent Source GHD L
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50 0 s s
51 1 —a 2 51 1
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b = 8 DFED |\ 4 &b = s3 DD
54 34 = 54 54
55 5 —=2 $5 ss
56 55 — 56 56
7 57 B o9 g N
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Fig. 12. The proposed design for multiplexer module
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6. CONTROL UNIT

The control unit contains the following tasks:
e Controlling the multiplexer part to determine the state of each electrode on each moment.
e Communicating with a PC and matching with MATLAB for data transaction via RS-232.
e Connecting to LCD (if required), to display the voltages and also number of measurements.
e Connecting to ADC and controlling that as a slave with handshaking and interrupting signals.
e Communicating with AVR programmer for programming via ISP mode.

As it can be seen in Fig. 13, ATmegal28 is applied as the microcontroller of control unit. All the
output ports should be buffered to amplify the port output current and also to prevent the loading effect of
the next stages.
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Fig. 13. The proposed design of control unit

a) Data transaction via RS-232

Serial communication is one of the protocols that are supported by many types of computer and
therefore connecting the computer and microcontroller, RS-232 communication protocol is often applied
[23]. After completion of the voltage measurement, the measured voltage stored in the microcontroller
register must be transmitted to the computer. In the proposed EIT system, the microcontroller
(ATmegal28) is connected to the computer via MAX232, which converts the TTL voltage to RS-232
voltage and vice versa. Hence the data transaction is done by RS-232 serial communication via 9-pin
COM port. In this design based on the standard frequencies and baud-rates (bps) table [23], the
microcontroller frequency is assigned on 14.7456MHz. In the mentioned frequency for all standard baud-
rates such as 2.4, 9.6 and 115.2 kbps, the data transaction error is zero.
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7. STIMULATION AND MEASUREMENT PATTERNS

To show the experimental results of the proposed EIT system, different topologies can be used for
stimulation (current injection) and voltage measurement, such as: adjacent pattern, opposite pattern and
cross pattern. In this paper the adjacent pattern that is the most common pair-drive protocol [24] is applied
as the stimulation and measurement topologies.

In the adjacent (neighboring) pattern, shown in Fig. 14, the current is applied through two adjacent
electrodes and the voltages are measured from successive pairs of adjacent electrodes. The current is then
applied through the next pair of electrodes, and the voltage measurements will be repeated for others. The
procedure will be continued until each possible pair of adjacent electrodes is used to inject current. In this
pattern, it is common to use all N x (N — 3) measurements in most reconstruction algorithms, where N is
the number of electrodes. ATmegal28 in the control unit has been programmed based on the adjacent
pattern as the system stimulation and measurement protocols. In this pattern the current is injected mainly
in the outer region of the imaged object. The current density is highest between the injecting electrodes,

and decreases rapidly as a function of distance.

Fig. 14. Adjacent pattern as the stimulation and measurement prot(;cols of the proposed EIT system

8. EXPERIMENTAL RESULTS

To evaluate performance of the system to reconstruct images, some experiments were carried out on the
cylindrical phantom with a few test objects. The images reconstructed by using the implemented system
will be shown and described, and some elements that can affect the quality of images will be introduced.
In all experiments, the saline used in phantoms is prepared with solution of NaCl and de-ionized distilled
water. A current signal (~1mA) with 20 KHz frequency is injected to the boundary of phantoms via two
electrodes. Adjacent pattern is used as the stimulation and voltage measurement protocol in all
experiments. All images are reconstructed by using the Eidors MATLAB package [25, 26]. The
cylindrical phantom is made of Plexiglas with a radius of 15cm.

a) Experiment 1

In the first experiment two pieces of a plastic (Teflon) shaft have been placed in front of electrode 1
of a 16-electrode cylindrical phantom. The aim of experiment is to evaluate the quality of reconstructed
image of subjects having less conductivity than saline. The reconstructed images of this phantom are
shown in Fig. 15. Parts B, E and F show the fine-model images of phantom, and the coarse models are
illustrated in parts C and D. In parts B, D, and F the image of phantom, is reconstructed onto nodes, but in
parts C and E the image is reconstructed onto elements.

June 2014 IJST, Transactions of Electrical Engineering, Volume 38, Number E1
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Fig. 15. (A) Phantom with two pieces of plastic shaft. (B) Fine model reconstructed onto nodes. (C) Coarse model
reconstructed onto elements. (D) Coarse model reconstructed onto nodes. (E) Fine model reconstructed onto
elements. (F) Fine model reconstructed onto nodes

b) Experiment 2

In this experiment, two pieces of a metallic (Aluminum) shaft have been placed in front of electrodes
4 and 14 of a 16-electrode cylindrical phantom with 30 cm diameter. The aim of this test is to understand
the quality of reconstructed image of the subjects having as much conductivity as saline. Parts B to F of
Fig. 16 illustrate the final reconstructed images of the phantom (shown in part A) by using different fine
and coarse mesh generation models.

S'm
0

T
et
e

&

WV
A
o

¥ i
"1 Ll
VA
NI

SV

ol
& -
V¥

A\
N
VN

=1
<1
<]
=5

,,.
e
KEE

A

s
e

it

<
Wans:

INWVVVAAA
PNV

N
AR
VWAV

1 a5 0 0% ! ' o8 o o ' 1 as 0 [1] 1

Fig. 16. (A) Phantom with two pieces of metallic shaft. (B) Fine model reconstructed onto nodes. (C) Coarse model
reconstructed onto elements. (D) Coarse model reconstructed onto nodes. (E) Fine model reconstructed onto
elements. (F) Fine model reconstructed onto nodes

¢) Experiment 3

In this experiment, four pieces of the metallic and plastic shafts have been put in the 16-electrode
cylindrical phantom. The experiment is conducted to evaluate the quality of reconstructed image of the
subjects in different conductivities locating in composite setting. The final reconstructed images in fine
and coarse models are shown in parts B to F of Fig. 17.
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Fig. 17. (A) Phantom with four pieces of metallic and plastic shafts. (B) Fine model reconstructed onto nodes. (C)
Coarse model reconstructed onto elements. (D) Coarse model reconstructed onto nodes. (E) Fine model
reconstructed onto elements. (F) Fine model reconstructed onto nodes

d) Experiment 4

In the following, three plastic and metallic subjects have been placed in a 16-electrode thorax-shape
phantom. The goal of this test is evaluation of quality of the images reconstructed by using a 16-electrode
thorax-shape phantom. As it can be seen in Fig. 18B, the image is reconstructed onto elements, but in part
C (of Fig. 18) the image is reconstructed onto nodes.
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Fig. 18. (A) A 16-electrode thorax-shape phantom with some subjects. (B) Fine model reconstructed onto elements.
(C) Fine model reconstructed onto nodes

e) Experiment 5

The aim of conducting this experiment is to show the effects of hyper-parameter (1) in reconstructed
images, and evaluate the quality of the final images reconstructed with different values of hyper-
parameter. In fact hyper-parameter () is a scalar that controls the amount of regularization. The goal of
hyper-parameter selection is to produce the best reconstruction with high quality and resolution. Hyper-
parameter selection should produce solutions that preserve as much of the measured data as possible to
obtain a useful reconstruction [24]. Practically in image reconstruction, insufficient hyper-parameter
causes the image to be dominated by noise and as it is increased, noise is filtered through the smoothing
action. As it can be seen in Fig. 19, few reconstructed images of the phantom with different hyper-
parameter values are shown. Obviously the reconstructed image with A = 0.01, represents the best image
in terms of precision and quality.
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+=10.01 ~,=0.05 A=0.1 A=075 h=1

Fig. 19. Some images which were reconstructed with different A values (hyper-parameter) by using the 16-electrode
EIT system. The image with A=0.01 represents the best image in terms of precision and quality

f) Experiment 6

In the current experiment, effect of number of voltage frame or number of scanning in the
reconstructed image quality will be analyzed. In fact, in adjacent pattern the number of voltages in each
frame acquired by scanning an N-electrode phantom is calculated by Nx(N — 3). Hence after scanning a
16-electrode phantom each frame of voltage contains 208 voltages.

In experiment 6 some metallic and plastic subjects are located in different positions of a 16-electrode
cylindrical phantom as shown in Fig. 20.A. The image in part B is reconstructed by using only one frame
of voltage which means that the image is reconstructed after one time scanning, therefore some effects of
noise can be seen on this image (near electrodes 4, 8, 9, and 10). However the image in part E is
reconstructed after scanning ten times, which means image reconstruction is done using the average of ten
frames of voltages. So the effects of noise are improved in the mentioned image. The images in parts C
and F of Fig. 20 are the 3D images of the phantom of part A, which are reconstructed by different number
of voltage frames. The image in part F reconstructed after scanning ten times is smoother than the image
of part C which is reconstructed after scanning only one time. This result can be extracted so that, by using
the average of voltage frames instead of one frame, in image reconstruction process, the quality of the
final reconstructed images would be improved.

(A) Phantom

Fig. 20. Some reconstructed images of one phantom, by using the average of n voltage frames. (A) Phantom with
four pieces of metallic and plastic shafts. (B) n=1. (C) 3D image (3D surface plot) of phantom in part A with n=1.
(D) n=5. (E) n=10. (F) 3D image of phantom in part A with n=10
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g) Experiment 7

The objective of experiment 7 is to show the effects of number of electrodes in the final reconstructed
image quality. To evaluate the image quality, three positions of a phantom surface would be considered:
near the boundary, in the central part and the whole phantom (both central part and near the boundary). In
this test, three phantoms are applied with different numbers of electrodes which are 8, 16 and 32
electrodes. The dimensions of phantoms and internal saline and subjects are identical. First position for
evaluation is near the boundary. As it can be seen in Fig. 21, the distance between subjects to the inner
wall of the phantoms is about 2~3 cm, but in the reconstructed images by 8-electrode and 16-electrode
phantoms, in some places show that the dark parts (smudges) are connected to the boundary of image,
whereas in reconstructed images by 32-electrode phantom as it can be seen, the dark parts are completely
separated from the boundary of phantoms.

8 Electrodes 16 Electrodes 32 Electrodes

o
i "ch";n

0

Fig. 21. Reconstructed images of subjects which are located near the boundary of phantoms with various numbers of
electrodes to show their accuracy in final image reconstruction quality

The next position is the central part of the phantom. As is illustrated in Fig. 22, the quality of
reconstructed image of subjects put in the central part is poor. This is because the pattern which was
applied as the stimulation and measurement topologies in all image reconstructions in this paper is
Adjacent pattern, and it is very sensitive to conductive parts near the boundary and insensitive to the
central parts. It is sensitive to disturbances in the boundary shape of the object, the position of the
electrodes, measurement error and noise as well [24, 27].

Phantoms 16 Electrodes 32 Electrodes

Fig. 22. Showing quality of reconstructed images of the subject, which is located in central part of phantoms, by

means of various numbers of electrodes
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The last position is the whole phantom. As shown in Fig. 23, the reconstructed image of the 8-
electrode phantom is very crude, and it does not have acceptable accuracy to show the correct position of
the subjects which are located in the phantom. But despite the bad quality and showing inexact position of
the subjects, there is a dark smudge in the central part of this image, as the position of the central plastic
shaft. But it cannot be seen in the reconstructed image of 32-electrode phantom. The reconstructed image
of the 16-electrode phantom shows the correct position of the subjects located near the boundary, but
instead of the central plastic shaft it shows a very light smudge.

Phantom 8 Electrodes 16 Electrodes 32 Electrodes

Sm

Sm

880 EEEBEEEEE

Fig. 23. Reconstructed images of three phantoms with different numbers of electrodes. Subjects are located in
different positions of the phantom (central part and near the boundary), and these positions were identical in three
reconstruction processes

The reconstructed image of the 32-electrode phantom also exactly shows the correct position of
subjects located near the boundary, but it does not show anything, even a light smudge, in its central part
instead of plastic shaft!

Hence the result that can be acheived from this experiment is, for an EIT system that works based on
the adjacent pattern, when the number of electrodes of phantom increases, the system sensitivity to the
parts near the boundary will be increased, but its sensitivity to the central part of the phantom will be
decreased specifically when some subjects have been located near the boundary. The reason of this
phenomenon is that in 8-electrode phantom the distance between electrodes is more than the others (16
and 32-electrode phantoms), and it causes more current density in the central part, which results in more
sensitivity. Therefore in image reconstruction accuracy, related to measurement and stimulation
topologies, the position of subjects is important as well, even when using 32-electrode system.

9. VISUAL COMPARISON ON RESOLUTION

Although the EIT has been developed substantially over recent years, there are many challenges (such as
resolution) that still need to be overcome to make it a clinically applicable imaging [28]. EIT has been
extensively researched in clinical diagnosis [29, 30], but due to poor Signal to Noise Ratio (SNR) of the
boundary voltage data and poor spatial resolution of image, the EIT systems have not yet been accepted as
regular medical imaging devices.

In this part, the quality of reconstructed image using the proposed EIT system will be compared
visually with quality of images produced by using other implemented EIT systems. The other EIT systems
include an EIT system proposed by Bera and Nagaraju in [31] and a DSP based multi-frequency EIT
system designed by Goharian et al in [32]. In fact in both systems, image is reconstructed by using a 16-
electrode phantom and from this point of view those systems are similar to the proposed system. The test
objects located in phantoms are made from similar materials (plastic and metal) as well.

As a matter of fact, the size of all phantoms and test objects are different in comparison with each
other, but the size and position of subjects in their own phantoms are exactly plotted in the middle column
of Fig. 24 according to their paper information [31-32]. The mapped image of phantoms and their inner
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objects (in middle column of Fig. 24), have been drawn with the exact proportion compared to dimensions
of real phantoms and their containers applied in image reconstruction. As it can be seen in Fig. 24, the first
column shows three 16-electrode phantoms related to different EIT systems containing saline and test
objects. The third column shows the reconstructed images made by three different EIT systems. The
quality or resolution of reconstructed image seen in Fig. 24.C is obtained by using only 16 electrodes from
32 electrodes of the implemented EIT system. Of course, the quality and resolution of image will be
increased if the number of electrodes increases.

Fig. 24. Visual comparison on quality of final images made by applying three different implemented EIT systems.
(A) reconstructed image by using EIT system proposed by Bera and Nagaraju in [31]. (B) reconstructed image by
using a DSP based multi-frequency EIT system proposed by Goharian et al in [32]. (C) reconstructed image by using
our EIT system

9. CONCLUSION

In this paper a practical low-cost precise design of EIT instrumentation was proposed and described in
detail. System performance has been checked with a saline tank and some experimental results have been
shown. The novelty of this design is its precision which was achieved without any complex circuits.
Simplicity of design made it possible to have a low-cost instrumentation which could pave the way for
EIT researchers for designing and implementation of EIT hardware. Some hard work has been done from
the practical point of view to improve the precision of the proposed system such as trying to maximize the
output impedance of the current source, which was finally increased to more than 5 MQ such that it
wasn’t possible to be measured with oscilloscope. Higher quality of the reconstructed images by our
system with 16 electrodes compared to the others is the best reason to verify the accuracy of the
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implemented EIT hardware. Future research includes improvement of the current EIT hardware in terms

of accuracy and precision to become appropriate for clinical applications and development of EIT

application in industrial and medical fields.
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APPENDIX A. SCHEMATIC CIRCUITS OF MENTIONED VCCSS
AND THE RESULTS OF PRIMARY PRACTICAL TESTS

Fig. Al. (A) VCCS based on Advanced Howland [14, 15]. (B) VCCS based on Double-Operational Amplifier [16].
(C) VCCS based on Triple-Operational Amplifier form 1 [17]. (D) VCCS based on Triple-Operational Amplifier
form 2 [9]
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Figure A1 shows different schematic circuits of the VCCS which have been used in practical tests. As it can be
seen in Table A1, the results of several experiments are shown briefly. These tests were done on the breadboard with
different resistance values in condition of 20KHz frequency and 1mA load current. It can be concluded (from Table
Al) that the VCCS based on TOA1 (fourth row) is the best choice to have an efficient voltage-controlled current
source. It can support a load in range of 10Q to 10KQ linearly and also has more than SMQ output impedance which

calculated with (4).

Table A1l. The results of VCCS primary physical tests [33]

VCCS | R, R, R, Ry Rs | Allowable | Measured | PSPICE
Type | (KQ) | (KQ) | (KQ) | (KQ) | (KQ) | Load (€2) | Zpy (Q) | Zyyy (Q)
AH 1 2 1 1 1 10 ~ 1K 100K 420K
DOA 1 1 1 1 5 10 ~ 5K 3M 5.3M
TOALI 1 1 1 1 5 10 ~ 10K >5M 7.8M
TOA1 2 2 2 2 5 10 ~ 10K 1M 3.9M
TOA1 5 5 5 5 5 10 ~ 10K 500K 1.6M
TOA1 10 10 10 10 5 10 ~ 10K 500K 770K
TOA1 22 22 22 22 5 10 ~ 10K 150K 340K
TOA1 27 27 27 27 5 10 ~ 10K 100K 280K
TOA2 1 1 1 1 5 10 ~ 10K 600K 2.5M
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