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Abstract

In this paper, uniqueness theorem is studied for boundary value problem with "aftereffect" on afinite interval with
discontinuity conditionsin an interior point. The oscillation of the eigenfunctions corresponding to large modulus
eigenvalues is established and an asymptotic of the nodal points is obtained. By using these new spectral

parameters, uniqueness theorem is proved.
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1. Introduction

Inverse nodal problems exist in recovering
operators from given nodes (zeros) of their
eigenfunctions. Mclaughlin seems to have been the
first to consider this sort of inverse problem for the
one-dimensional Schrodinger equations on an
interval with Dirichlet boundary conditions [1].
Later on, some remarkable results were obtained.
For example, X. F. Yang got the uniqueness for
general boundary conditions using the same method
as McLaughlin [2]; C.K. Law and Ching-Fu Yang
[3] have reconstructed the potential function and its
derivatives from nodal data. We consider boundary
value problem with "aftereffect” on afinite interval
with discontinuity conditionsin an interior point:

ly(x) == =y"(x) + q(x)y(x)

X _ (@)
+jo|v|(x —t)y(t)dt = Ay(x), 0<x < T,
U(y) := y'(0) - hy(0) = 0, @
V(y) :=y'(T) + Hy(T) =0,

T T
y(5+0) =ay(5-0),

2 2 3

LI S T
y(§+0)—aly(2 0)+<':12y(2 0).
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Here A is the spectral parameter. Let A :pz,
p=oc+irt, q(xX),h H,a,a, be red,
g(x) € L(O,T) and &, > 0.

Without loss of generality we assume that

.
'[0 g(x)dx=0. We denote the boundary value

problem (1)-(3) by L(g,M,h,H). Boundary
value problems with discontinuities inside the
interval often appear in mathematics, mechanics,
physics, geophysics and other branches of Natural
sciences. For example, discontinuous inverse
problems appear in electronics for constructing the
parameters of heterogeneous electronic lines with
desirable technical characteristics[4], [5]. Asarule,
such problems are connected with discontinuous
material properties. In [6], the authors considered
the inverse nodal problem for the differential
equation  —y"+qg(X)y=Ay,0<x<T  with
discontinuity conditions inside the interval. In the
present paper, we investigate uniqueness theorem
from given nodes of their eigenfunctions for the
boundary value problem L. In section 2, the
eigenvalues and eigenfunctions corresponding to
large modulus eigenvalues are obtained and in
section 3, an asymptotic of the nodal points is
calculated and the uniqueness theorem is proven.

2. Asymptotic of the eigenvalues and
eigenfunctions
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Let p(X,1),C(X, 1), S(X,4) be the solutions
of equation (1) wunder initiadl conditions
C(0,4)=5(0,4) =¢(0,1) =1,
C'(0,41)=5(0,4)=0, ¢'(0,4)=h and
under the jump conditions (3). Then U (@) =0.
Denote

A(4) = -V(e). (4)

Let Cy(x,4) and §;(X,4) be smooth solutions
of (1) on the initid [0,T] under the initial
conditions ¢, (0,4)=S,(0,4)=1s C,'(0,4) = S,(0,4) =0-
Then, using the jump conditions (3) we get [7]:

C(x,1) = Co(X,1), S(X,A) = Sp(X.A), X <£ ®)

C(x, 1) = A1Co(X, L) + BiSy (X, 1),

S(X,A) = ALCo(X,A) + BoSy(X,A), X >% ©)

where
As = 3Co(5 S5 )
-a,'Cy’ (— 7»)So(— 1)
-aCo (5 ; 7\)30(5 WA,
B, = (& - )Col Su5.2) + 2:C (5 ), ™

Ay =(ag - all)SO(— 7»)50(* A - 325(%(* A),

B, = 8 'Co(5 NS5 )
~aCo(G IS (5.1)
+ 2S5 MCol5 1)

The function C,(X,4) satisfies the following
integral equation:
Co(X, 1) = cospx + j:w(q(t)co(t, )
P ®
+ j;M (t —)Cy (s, 1)ds)dlt

andfor | p [ o

C,(X,A) = cos px+ O(l ™. (9)
o,

Then (8) implies

Co(X,A) = cospx .32

j q(t)at

1 ¢x .
+2—p'|‘0q(t)smp(x —2t)dt

+J'Ox Snp(x—-19) E)X - I;M (t —s) cospsdsdt + O(p—l2 e) (10)

Co'(X,\) = —pSinpx + X ,[;(Q(t)dt

1 ex
+ EIOQ(t) cosp(x — 2t)dt

+j: cosp(x —t) j;M (t —s) cospsdsat + O(% ™). (12)

Analogously,
Sy(x,4) = S'”PX L[ SNP( 1) 4 (1)
" 12)
* .[OM (t—9)S(s, A)ds)dt.
andfor | p |>

Then (12) implies

sin px COSpX

So(x,A) =

j q(t)at
+2—p2 joq(t) cosp(x — 2t)dt

+p—12foxsinp(x - t)I;M (t—s)sinpsdsdt + o(p%éqX) (14)

. _ Sian X
S'(X, ) = cospx + 55 joq(t)dt

1 ;x .
- 2—p oq(t)sm p(x — 2t)dt
1 X t q 1 T|X
+5.f0 cosp(X — t)jOM (t—s)sin psdsdt + O(p—zé k). (15)
By virtue of (7) and (10)-(15),

T .
A =b,+b, cosgT + (b, [2q(t)ct _3,SnpT
0 2 p

b, (%t .
+;j02josnp(T +S—t)M (t — s)dsdt



393

1JST (2012) A3 (Special issue-Mathematics): 1-12

by 51t Mt — )dsdt + O(— 16
= [2]Snp(s—OM(t - s)dsdt + ) )
T
B, = b,(psinpT —cospT jozq(t)dt
T
- [ 2q(t) cosp(T - 2t)ct) + a—22(1+ cospT)

.
+J'O§J.; cosp(T —t) cospsM (t — s)dsdt + O(%). (17)

A, =0, 3P L oy, (18)
P p
Bz = b]_ - b2 COSpT + O(%), (19)
1 1
where bl:% @:% Since

P(x,A) = C(x,A)+hS(x, 1), for |A|> o0
uniformly in x and using (10)-(15), (16)-(19) one
has (see[8] or chapter 1in[9]):

b(x,2) = cospx + (h+ 2 [ j q(t)dt)smpx

+I:MI M (t — s) cospsdsdt

(20)
+o(£ét|x) x<X.
p 2
d(X,A) = by cospx + by, cosp(T — x)
N fl(x)sinpx +f2(X)sinp(;' —X)
+by j:w j M (t — 5) cospsdsdt
(21)

+o(ie|’|x) x> L
lpl 2

0'(x,1) = —psinpx + (h+ % joxq(t)dt) cospx

+.|'0X cosp(x — t)_[;M (t —s) cospsdsdt +o(€") x < % (22)

¢'(x,1) = p(=by sinpx + b, sinp(T - X))
+ f1(X) cospx — f5(X) cosp(T — x)

+by [ cosp(x - t)L;M (t -9 cospsdsdt + o(€)  x > =, (23
where
f,(x) = bjh + —j q(t)dt + 2

and

b, (x i a
f,(x) = bzh—?z joq(t)dt +h, jOZq(t)dt —72.

It follows from (20)-(23) that for | A > o
A(A) = bpsinpT — o, cospT — w5 + k(p), (24)

where
_ 1,7 a
o, = by(H+h +§I0q(t)dt) =

1 a
@2 = bp(H—h-+3 [ a@dt - [ o) + 5
k(p) = by c0sp(T ~t)[M (t - 5) cos psdisat + o(e'™).

Using (24) by the well-known method ( see, for
example, [7]) one hasthat for N — oo,

\F_—Jrﬁ(wﬁ( " a)z)+%,{xn}e|2 (25)

The eigenfunctions of the boundary vaue
problem L have the form Y, (X) = @(X,4,).

Substituting (25) into (20) and (21) we obtain the
following asymptotic formulae for N-— o0
uniformly in x (see [10]):

(9 = cos ™ x-+ L (T(2h+ ['q(t)t) —é(wl HED )X
+2TI cos—tj M(t—s) cos—sdsdt+— X <7 (26)
Yn(X) = COS?X(bl +(-1)"by)

+ 1 (Tf(X) + ()" TF,(x)
nm

—(o1 + ()" P wz)(x + (-DH%(T -X))
+TqIOxco tjM(t s)cos—sdsdt)snT ’% X%_ (27

3. Computation the nodal points

The eigenfunction Y,(X) has exactly n (smple)
zeros insde the interva (0,T) namely:
0< X <.<x) <T.Theset Xy ={x}}, . is
called the set of noda points of the boundary value
problem L. Denote X'§1={X2’m7k}mlj:m,
k=01 Clealy, XgpUXj =Xg. Inverse
nodal problems consist in recovering the M (X)

and coefficients h and H from the given set X,
, i 4T ,
of nodal points. Denote &, = (] —E)— . Taking
n

(26)-(27) into account, we obtain the following
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asymptotic formulae for nodal points as N — oo
uniformly in j:
xh=ah+

P 2[T(2h+j q(t)dt)——(mﬁ—( )" 2w,)al,

2Tj jM(t )dsdt] + X0 ,xgge(o,z) (28)

xh = al + W[TI%Q(I)dt - é (0 + (-1)" o)),

+2Tﬁj "Mt 9edt + €]+ 2, e(f 1) (29)
where
_ 1 _q\n1 _4\n
—m(ﬁh(bﬁ( 1)"b,) +Ta,(1+(-1)")

;
+2(-1)"*Th, [ 2(t)dt + 2(-1)" %T(wl +(-1)"2w,)).(30)
1

We note that the sets Xg, k =0,1 are dense on
(0,T). Using these formulate we arrive at the

following assertion.
Theorem 1. Fix k=0v1 and x€[0,T]. Let
{Xi”} € X§ be chosen such that

limx." = x.

n—o

Then there exists afinite limit

- 1
9k " “( =21, G

and

0,00 = 2+ [t —=-(, + (-1 ;)

X pt
+2 jo jOM (t — s)dsdt (32)
0 = a0t~ 5 (01 + (<) P
+ ﬁj jM(t s)dsdt+— (33)

where C are defined by (30).
L et us now prove unigueness theorem.

Theorem 2. Fix K=0v1. Let X © X§ bea
subset of nodal points which is dense on (0, T) .

Let X = X then M (X) = M (x) ae.on (0,T),
h=h,H=H.

Proof: 1f, X =X then (31) vyidds
g,(x) =g,(x), xe[0,T]. By virtue of (32)-

(33) we get ae on M(X)ZI\X(X). From
h - gk(o)
2

, we have h= h. Similarly, we can
derive H = H .
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