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Abstract 

In this paper, uniqueness theorem is studied for boundary value problem with "aftereffect" on a finite interval with 
discontinuity conditions in an interior point. The oscillation of the eigenfunctions corresponding to large modulus 
eigenvalues is established and an asymptotic of the nodal points is obtained. By using these new spectral 
parameters, uniqueness theorem is proved. 
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1. Introduction 

Inverse nodal problems exist in recovering 
operators from given nodes (zeros) of their 
eigenfunctions. Mclaughlin seems to have been the 
first to consider this sort of inverse problem for the 
one-dimensional Schrodinger equations on an 
interval with Dirichlet boundary conditions [1]. 
Later on, some remarkable results were obtained. 
For example, X. F. Yang got the uniqueness for 
general boundary conditions using the same method 
as McLaughlin [2]; C.K. Law and Ching-Fu Yang 
[3] have reconstructed the potential function and its 
derivatives from nodal data. We consider boundary 
value problem with "aftereffect" on a finite interval 
with discontinuity conditions in an interior point: 
 

x

0

ly(x) := y (x) q(x)y(x)

M(x t)y(t)dt = y(x), 0 < x < T,

 

  
              (1) 

 
U(y) := y (0) hy(0) = 0,

V(y) := y (T) Hy(T) = 0,

 
 

                                  (2) 

 

1

1
1 2

T T
y( 0) = a y( 0),

2 2
T T T

y( 0) = a y ( 0) a y( 0).
2 2 2



 

   
                 (3) 
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Here   is the spectral parameter. Let 2=  , 

 i= , 21 ,,,),( aaHhxq  be real, 

)(0,)( TLxq   and 0>1a . 

Without loss of generality we assume that 

0.=)(
0

dxxq
T

  We denote the boundary value 

problem (1)-(3) by ),,,( HhMqL . Boundary 

value problems with discontinuities inside the 
interval often appear in mathematics, mechanics, 
physics, geophysics and other branches of Natural 
sciences. For example, discontinuous inverse 
problems appear in electronics for constructing the 
parameters of heterogeneous electronic lines with 
desirable technical characteristics [4], [5]. As a rule, 
such problems are connected with discontinuous 
material properties. In [6], the authors considered 
the inverse nodal problem for the differential 
equation Txyyxqy <<0,=)(   with 

discontinuity conditions inside the interval. In the 
present paper, we investigate uniqueness theorem 
from given nodes of their eigenfunctions for the 
boundary value problem L . In section 2, the 
eigenvalues and eigenfunctions corresponding to 
large modulus eigenvalues are obtained and in 
section 3, an asymptotic of the nodal points is 
calculated and the uniqueness theorem is proven.  

2. Asymptotic of the eigenvalues and 
eigenfunctions  
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Let ),(  x , ),( xC , ),( xS  be the solutions 

of equation (1) under initial conditions 
1=)(0,=)(0,=)(0,  SC  , 

0=)(0,=)(0,  SC , h=)(0,  and 

under the jump conditions (3). Then 0=)(U . 

Denote  
 

).(=)(  V                                                  (4) 
 

Let ),(0 xC  and ),(0 xS  be smooth solutions 

of (1) on the initial ][0,T  under the initial 

conditions 1=)(0,'=)(0, 00  SC , 0=)(0,=)(0,' 00  SC . 

Then, using the jump conditions (3) we get [7]: 
 

0 0
T

C(x, ) = C (x, ), S(x, ) = S (x, ), x <
2

        (5) 

 

1 0 1 0

2 0 2 0

C(x, ) = A C (x, ) B S (x, ),

T
S(x, ) = A C (x, ) B S (x, ), x >

2

   

   
          (6) 

 
where 
 

1 1 0 0

1
1 0 0

2 0 0

T T
A = a C ( , )S '( , )

2 2
T T

    a C '( , )S ( , )
2 2

T T
    a C ( , )S ( , ),

2 2



 

  

  

 

1 2
1 1 1 0 0 2 0

T T T
B = (a a )C ( , )S '( , ) a C ( , ),

2 2 2
                    (7) 

 
1 2

2 1 1 0 0 2 0
T T T

A = (a a )S ( , )S '( , ) a S ( , ),
2 2 2

      

 
1

2 1 0 0

1 0 0

2 0 0

T T
B = a C ( , )S '( , )

2 2
T T

    a C '( , )S ( , )
2 2
T T

    a S ( , )C ( ).
2 2

  

  

  

 

 
The function ),(0 xC  satisfies the following 

integral equation: 
 

x
0 00

t
00

sin (x t)
C (x, ) = cos x (q(t)C (t, )

            M(t s)C (s, )ds)dt

 
   



  




  (8) 

 
and for ||   
 

).
1

(=),( ||
0

xeOxxC 


 cos                      (9) 

 
Then (8) implies 

 
x

0 0

x

0

sin x
C (x, ) = cos x q(t)dt

2

1
           q(t)sin (x 2t)dt

2


  



  





 

 
x t | |x

20 0

sin (x t) 1
M(t s)cos sdsdt O( e ) 

   
      (10) 

 
x

0 0

x

0

cos x
C '(x, ) = sin x q(t)dt

2
1

            q(t) cos (x 2t)dt
2


   

  




 

x t | |x

0 0

1
cos (x t) M(t s)cos sdsdt O( e ).     

    (11) 

 
Analogously, 

 
x

0 00

t
00

sin x sin (x t)
S (x, ) = (q(t)S (t, )

            M(t s)S (s, )ds)dt.

  
  

 

  




  (12) 

 
and for ||   
 

).
1

(=),( ||
20

xeO
x

xS 


 

sin
                 (13) 

 
Then (12) implies 

 
x

0 2 0

x

2 0

sin x cos x
S (x, ) = q(t)dt

2

1
            + q(t) cos (x 2t)dt

2

 
 

 

 





  

x t | |x
2 30 0

1 1
sin (x t) M(t s)sin sdsdt O( e )     

        (14) 

 
x

0 0

x

0

sin x
S '(x, ) = cos x q(t)dt

2

1
          q(t)sin (x 2t)dt

2


  



  





 

 
x t | |x

20 0

1 1
cos (x t) M(t s)sin sdsdt O( e ).     

     (15) 

 
By virtue of (7) and (10)-(15), 

 


 Ta

dttqbTbbA
T sin

cos )
2

)((= 22

02211  

dsdtstMtsT
b t

T

)()(
0

2

0

2   


sin  
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T
t1 2

20 0

b 1
sin (s t)M(t s)dsdt O( ),    

            16) 

T
2

1 2 0
B = b ( sin T cos T q(t)dt      

T
22

0

a
q(t)cos (T 2t)dt) (1 cos T)

2
     

T
t

2
0 0

1
cos (T t)cos sM(t s)dsdt O( ),     

     (17) 

2 2 2

sin T 1
A = b O( ),




 
                                    (18) 

2 1 2
1

B = b b cos T O( ),  


                              (19) 

where 
2

=
1

11
1

 aa
b , 

2
=

1
11

2

 aa
b . Since 

),(),(=),(  xhSxCx  , for ||   

uniformly in x and using (10)-(15), (16)-(19) one 
has (see [8] or chapter 1 in [9]): 
 

x

0

1 sin x
(x, ) = cos x (h q(t)dt)

2


    
  

 
x t

0 0

| |x

sin (x t)
M(t s) cos sdsdt

1 T
o( e ) x < .

2


 
  






 
                     (20) 

1 2

1 2

(x, ) = b cos x b cos (T x)

sin x sin (T x)
          f (x) f (x)

     
  

 
 

 

x t
1 0 0

| |x

sin (x t)
b M(t s) cos sdsdt

1 T
o( e ) x > .

| | 2


 
  






 
             (21) 

 
x

0

1
(x, ) = sin x (h q(t)dt)cos x

2
        

 
x t | |x

0 0

T
cos (x t) M(t s)cos sdsdt o(e ) x < .

2
         (22) 

 
1 2

1 2

(x, ) = ( b sin x b sin (T x))

           f (x) cos x f (x)cos (T x)

       
    

 

x t | |x
1 0 0

T
b cos (x t) M(t s) cos sdsdt o(e ) x > ,

2
        (23) 

 
where 
 

x1 2
1 1 0

b a
f (x) = b h q(t)dt ,

2 2
   

 
and 

.
2

)()(
2

=)( 22

020

2
22

a
dttqbdttq

b
hbxf

T
x

   

 
It follows from (20)-(23) that for ||   

 
1 1 2( ) = b sin T cos T ( ),                    (24) 

 
where 
 

T 2
1 1 0

1 a
= b (H h q(t)dt) ,

2 2
     

T a 2
2 2 0 0

1 a
= b (H h q(t)dt q(t)dt) ,

2 2
       

).()()(=)( ||

001
TtT

eosdsdtstMtTb    coscos  

 
Using (24) by the well-known method ( see, for 
example, [7]) one has that for n , 
 

22
2

1
1

}{,)1)((
1

== l
nbnT

n
n

nn
nn   


    (25) 

 
The eigenfunctions of the boundary value 

problem L  have the form ),(=)( nn xxy  . 

Substituting (25) into (20) and (21) we obtain the 
following asymptotic formulae for n  
uniformly in x (see [10]): 
 

x
b

dttqhT
n

x
T

n
xy nx

n )1)((
2

))((2(
2

1
=)( 2

2
1

1
0




  cos

x t n

0 0

n n T
2T cos t M(t s) cos sdsdt x < .

T T n 2
  

      (26) 

n
n 1 2

n 1
1 2

n
y (x) = cos x(b ( 1) b )

T
1

        (Tf (x) ( 1) Tf (x)
n




 

  


2n 2 n 1
1 2

1

b
( ( 1) )(x ( 1) (T x))

b
        

.
2

>))(
001

T
x

n
x

T

n
sdsdt

T

n
stMt

T

n
Tb n

tx 
  sincoscos

 (27) 

3. Computation the nodal points  

The eigenfunction )(xyn  has exactly n  (simple) 

zeros inside the interval )(0,T  namely: 

.<<...<<0 1 Txx n
nn  The set 

njn
j

nB xX
1,=1,

}{= 
 is 

called the set of nodal points of the boundary value 

problem L . Denote 
kmjm

j
km

k
B xX  1,2=1,2 }{:= , 

0,1=k . Clearly, .=10
BBB XXX   Inverse 

nodal problems consist in recovering the )(xM  

and coefficients h  and H  from the given set BX  

of nodal points. Denote 
n

T
jj

n )
2

1
(=  . Taking 

(26)-(27) into account, we obtain the following 
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asymptotic formulae for nodal points as n  
uniformly in j: 
 

j
nj j n 2 j

n n 1 2 n2 2 0 1

T 2
x = [T(2h q(t)dt) ( ( 1) )

b2n

         
   

j tn n j
n20 0

T
2T M(t s)dsdt] , x (0, )

2n

 
             (28) 

j
nj j n 2 j

n n 1 2 n2 2 0 1

T 2
x = [T q(t)dt ( ( 1) )

b2n

        
 

j t1 n n j
nn 20 0

1 2

b T
2T M(t s)dsdt C] , x ( ,T)

2b ( 1) b n

 
    

     (29) 

 
where 
 

)1)((1)1)(((2
1)(

1
= 22

1
1

21

nn
n

TabbTh
bb

C 


  

T
2n 1 n n 22

2 1 20 1

b
2( 1) Tb q(t)dt 2( 1) T( ( 1) )).

b
         (30) 

 

We note that the sets k
BX , 0,1=k  are dense on 

)(0,T . Using these formulate we arrive at the 

following assertion. 
 
Theorem 1. Fix 10= k  and ][0,Tx . Let 

k
B

nj

n Xx }{  be chosen such that 
 

.= xx nj

n
n
lim


 

 
Then there exists a finite limit 

 

),)
2

1
((

2
:=)(

2

2

Tjnx
T

n
xg n

nj

n
n

k 



lim           (31) 

 
and 

x
Tb

dttqhxg kx

k )1)((
2

)(2=)( 2
2

1
1

0
  

dsdtstM
tx

)(2
00

                                  (32) 

 
x k 2

k 1 20 1

2
g (x) = q(t)dt ( ( 1) )x

b T
      

x t1
k 0 0

1 2

b C
2 M(t s)dsdt

Tb ( 1) b
  

                   (33) 

 
where C  are defined by (30). 
Let us now prove uniqueness theorem. 
 

Theorem 2. Fix 10= k . Let k
BXX   be a 

subset of nodal points which is dense on )(0,T . 

Let XX
~

=  then )(
~

xMxM =)(  a.e. on )(0,T , 

hh
~

= , HH
~

= . 
 

Proof: If, XX
~

=  then (31) yields 

)(=)( xgxg kk
~ , ][0,Tx . By virtue of (32)-

(33) we get a.e. on )(
~

xMxM =)( . From 

2

(0)
= kg

h , we have hh
~

= . Similarly, we can 

derive HH
~

= . 

References 

[1] Mclaughlin, J. R. (1988). Inverse spectral theory 
using nodal points as data-a uniqueness result, J. 
Differential Equations. 73(2), 354-362. 

[2] Yang, X. F. (1997). A solution of the inverse nodal 
problem. Inverse Problems. 13, 203-213. 

[3] Law, C. K. & Ching-Fu, Y. (1996). Reconstructing 
the potential function and its derivatives using nodal 
data. Inverse Problems. 12, 377-381. 

[4] Litvinenko, O. N. & Soshnikov, V. L. (1964). The 
Theory of Heterogenious Lines and Their Applications 
in Radio Engineering. Moscow, Radio. 

[5] Meschanov, V. P. & Feldstin, A. L. (1980). 
Automatic Design of Directional Couplers. Moscow, 

Sviaz. 
[6] Shieh, C. T. & Yurko, V. A. (2008). Inverse nodal 

and inverse spectral problems for discontinuous 
boundary value problems. J. Math. Anal. Appl., 34(7), 
266-272. 

[7] Freiling, G. & Yurko, V. A. (2001). Inverse Sturm-
Liouville problems and their applications. New York, 
NOVA science publishers.  

[8] Yurko, V. A. (2000). Integral transforms connected 
with discontinuous boundary value problems. Integral 
Transforms Spec. Funct., 10(2), 141-164.  

[9] Yurko, V. A. (2002). Method of Spectral Mappings in 
the Inverse Problem Theory. Inverse lll-Posed Probl. 
Ser. VSP. Utrecht.  

[10] Shieh, C. T. & Yurko, V. A. (2008). Inverse nodal 
and inverse spectral problems for discontinuous 
boundary value problems. J. Math. Anal. Appl., 347, 
266-272. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


