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Abstract 

Dually flat Finsler metrics form a special and valuable class of Finsler metrics in Finsler information geometry, 
which play a very important role in studying flat Finsler information structure. In this paper, we prove that every 
locally dually flat generalized Randers metric with isotropic S-curvature is locally Minkowskian. 
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1. Introduction 

In [1], Amari-Nagaoka introduced the notion of 
dually flat Riemannian metrics when they studied 
the information geometry on Riemannian 
manifolds. Information geometry has emerged from 
investigating the geometrical structure of a family 
of probability distributions and has been applied 
successfully to various areas including statistical 
inference, control system theory and multi-terminal 
information theory. In Finsler geometry, Shen 
extends the notion of locally du ally flatness for 
Finsler metrics [2]. Dually flat Finsler metrics form 
a special and valuable class of Finsler metrics in 
Finsler information geometry, which play a very 
important role in studying flat Finsler information 
structure [3-6]. 

A Finsler metric ),( yxFF   on a manifold 

M is said to be locally dually flat if at any point 

there is a standard coordinate system ),( ii yx  in 

TM  which satisfies 
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In this case, the coordinate )( ix  is called an 

adapted local coordinate system. It is easy to see 
that every locally Minkowskian metric is locally 
dually flat. But the converse is not true, generally 
[3]. 
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The S-curvature is constructed by Shen for given 
comparison theorems on Finsler manifolds [7]. A  

A Finsler metric F on an n-dimensional 
manifold M  is said to have isotropic S-curvature 
if isotopic ,)()1( FxcnS   for some scalar 

function c  on M . It is known that some of 
Randers metrics are of S-curvature [8, 9]. This is 
one of our motivations for considering Finsler 
metrics of isotropic S-curvature.  

In this paper, we show that a locally dually flat 
generalized Randers metric with isotropic S-
curvature reduces to a locally Minkowskian metric. 
More precisely, we prove the following. 
 
Theorem 1.1. Let 2

12
2

1
2 2  cccF   

)0,0( 21  cc be a non- Randers type and non-

Riemannian generalized Randers metric on a 
manifold M of dimension 3n . Then F  is 
locally dually flat with isotropic S-
curvature, FxcnS )()1(  , if and only if it is 

locally Minlowskian. 

2. Preliminaries 

A Finsler metric on an n-dimensional manifold 

M is a function   ,0:TMF  which has the 

following properties: (i) F is C on 

}0{\:0 TMTM  ; (ii) F is positively 1-

homogeneous on the fibers of tangent bundle TM; 

(iii) for each MTy x  the following quadratic 

form yg  on MTx  is positive definite, 
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Given a Finsler manifold ),( FM , a global 

vector field G  is induced by F  on 0TM  which in 

a standard coordinate ),( ii yx  for 0TM is given 

by ,),(2 i
i

i
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y
yxG
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yG
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  where iG  are 

the coefficients of the spray associated with F  and 
given by the following 
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Indeed, G  is called the associated spray to 

),( FM  [10]. 

A Finsler metric ),( yxF  on an open domain 
nRU   is said to be locally projectively flat if its 

geodesic coefficients iG  are in the form 

,),(),( ii yyxPyxG   where RRUTUP n :  

is positively homogeneous with degree one, 
P(x, y) P(x, y), 0.      We call ),( yxP  the 

projective factor of F. 
A Finsler metric ),( yxFF  on a manifold 

M  is said to be locally dually flat if at any point 

there is a standard coordinate system ),( ii yx in 

TM such that ),(2 yxFL  satisfies 
 

k l l
k

x y xL y 2L .                                                 (1) 
 

In this case, the coordinate )( ix is called an 

adapted local coordinate system. It is easy to see 
that every locally Minkowskian metric is satisfied 
in the above equation, hence it is locally dually flat. 
In [3], the following is proved. 
 
Lemma 2.1. ([3]) Let ),( yxFF   be a Finsler 

metric on an open subset nRU  . Then F is 

locally flat and projectively flat onU  if and only 

if kk yx
CFFF   , where C  is a constant. 

For a Finsler metric F  on an n-dimensional 
manifold M , the Busemann- Hausdorff volume 

form n
FF dxdxxdV ...)( 1  is defined by 
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( (1))
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Here Vol denotes the Euclidean volume and 

(1)nB denotes the unit ball in nR . 

Then the S-curvature is defined by 
 

( ) : ( , ) [ln ( )]
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G
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where |i
x xi

y y T M
x


 


[7]. S said to be 

isotropic if there is a scalar function ( )c x  on M 

such that  
 

( , ) ( 1) ( ) ( , )S x y n c x F x y  . 

3. Proof of Theorem 1.1. 

In this section, we are going to prove the Theorem 
1.1. First let us introduce our notations. Define 

|i jb by 
 

| :j j
i j i j ib db b    

 

where :i idx  and :j j k
i ik dx   denote the 

Levi-Civita connection form of  . Put 
 

| |

1
: ( ),

2ij i j j ir b b   | |

1
: ( )

2ij i j j is b b   

 
Clearly,   is closed if and only if 0ijs   [11]. 

Put 
 

00 : ,i j
ijr r y y  0 : ,m

k kms s y  : ,i
j ijr b r  

: i
j ijs b s  

 

Let 0 0: , :j j
i ij i ijr r y s s y  and 0 : .j

js s y  

We have the following identities 
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where :s



 and : j
k jky a y . 

Let 2 2 2
1 2 32F c c c     be a generalized 

Randers metric on an open subset ,nU R where 
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, ( 1, 2)ic s i   are non-zero constants [12-14]. To 

prove the Theorem 1.1, we need the following. 
 

Theorem 3.1. ([5]) Let ( ),F s s



  be an 

( , )  metric on an n- dimensional manifold 

( 3),nM n  where i j
ija y y   is a 

Riemannian metric and ( ) 0i
ib x y    is a 1-

form on .M Suppose that F is not Riemannian 

and '( ) 0s  . Then F is locally dually flat on 

M if and only if ,  and ( )s  satisfy 
 

0

1
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where ( )x   is a scalar function, 

: ( ) i
i x y   is a 1-form on M  and 
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Lemma 3.2. Let 

 2 2 2
1 2 1 1 22 , 0, 0F c c c c c        be a 

non- Riemannian generalized Randers metric on a 
manifold M of dimension 3.n   Then F is 

locally dually flat on M if and only if ,  and 

( )s   satisfy 
 

0
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3l l ls b                                            (3) 
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where ( )x  is a scalar function and 

k
k y  is a 1-form on .M  

 
Proof: For a generalized Randers metric 

2 2 2
1 2 12 ,F c c c     we have the 

following 
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1 1,k   2 1,k    3 0.k                                (11) 
 

Using (6)-(11), we get: 
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Then by Theorem 3.1, we get the proof.  

 

Now, let ( )s  be a positive C  function on 

0 0( , ).b b  For a number  00, ,b b let 
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 2 2: 1 'sQ b s Q                                 (13) 

 
By considering (7), the relation (12) can be 

written as follows: 
 

  
      2 2

' 1

' ' 1 '' .

     
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Q sQ n

b s Q sQ Q sQ Q
    (14) 

 
Remark 3.1. By a direct computation, we can 
obtain a formula for mean Cartan torsion of an 

 ,  metric as follows 
 

   2

'
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2

 
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i i i

s
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
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Clearly, an  ,  metric 

( ),F s s



   is Riemannian if and only if 

0.   
In [8], Cheng-Shen study the class of 

 ,  metrics of non-Randers type 

2
2 31 t s t s     with isotropic S-curvature 

and obtain the following. 
 

Theorem 3.3. ([8]) Let ( ),F s s



   be an 

non-Riemannian  ,    metric on a manifold 

and : || || . xb   Suppose that 2
1 2 31t t s t s     

for any constant 1 20,t t and 3.t  Then F is of 

isotropic S-curvature  S 1 ,n cF   if and only 

if one of the following holds 
( )i  satisfies 
 

 2 , 0,ij ij i j jr c b a b b s                       (15) 

 
where ( )x  is a scalar function, and 

( )c c x satisfies 
 

 
2

2 2
2 1n k

b s


   


                              (16) 

 
where k is a constant. In this 

case  , S 1n cF   with .c k   

(ii)  satisfies 
 

0, 0ij jr s                                                 (17) 
 

In this case S 0, regardless of choices of a 

particular .  

Using the Theorem 3.3, we are going to consider 
locally dually flat generalized Randers metrics with 
isotropic S-curvature. 
 
Proposition 3.1. Let 

 2 2 2
1 2 1 1 22 , 0, 0F c c c c c      

be a locally dually flat non-Randers on a manifold 
M of dimension 3.n  Suppose that F is of 
isotropic S-curvature, type and non-Riemannian 

 1 ,S n cF  where ( )c c x is a scalar 

function on .M  Then F is a locally generalized 
Randers metric projectively flat in adapted 

coordinate systems with 0.iG   
 

Proof: Let  ,i iG G x y  and  ,i iG G x y   

denote the coefficients of F and   respectively in 
the same coordinate system. By definition, we have 
 

i i i iG G Py Q                                        (18) 
 
where 
 

 1
0 002 ,P Q s r                              (19) 

 

 0 0 002 ,i i iQ Qs Q s r b               (20) 
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.

2 ' ''s b s


  

 
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First, we suppose that the case (i) of the Theorem 

3.3 holds. It is remarkable that, for a generalized 

Randers metric 2 2 2
1 2 12 ,F c c c     the 

following relations hold 
 

2
1 2 12 ,c c s c s     

 

2 1

1 2

,
c c s

Q
c c s





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1 2

' ,
d

Q
c c s


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 
2

3

1 2

2
'' .

c d
Q

c c s





 

 

Where 2 2
1 2:d c c  . Thus we have 

 
2

1 2

1 sQ
c c s


 


                                            (21) 

 
and then 
 

 2 2: 1 'sQ b s Q      

 

   
 

2 2 2
1 2

2

1 2

c c s d b s

c c s

  



                   (22) 

 

By (22), it follows that  2

1 2c c s  is a 

polynomial in s of degree 3. On the other hand, we 
have 
 

   
 

2
2 2 2

1 22
4

1 2

c c s d b s

c c s

 


     


        (23) 

 

Thus if  
2

2 2
2 1n k

b s


   


 holds, then 

by (23) it results that 
 

  

     

42 2
1 2

2
2 2 2

1 22 1 .

  

       

b s c c s

n k c c s d b s 
     (24) 

 

By (24), it follows that   42 2
1 2b s c c s    

is not a polynomial in s (if 0,k   then by 

considering the Remark 3.1, we get a 
contradiction). Indeed, if we put 
 

 
2

4

1 2

,
c c s

 
 


 

 
where 
 

    2
2 2 2 2

1 2 1 1 22 ,c s c s c c c s d b s        

 

then   is a polynomial in s and b if and only if 

   1 1, 0 .c c      But by assumption F  

is not a Randers-type metric. So   is not a 

polynomial in s, and then   42 2
1 2b s c c s    

is not a polynomial in s. 
Now, we consider another formula for :  

 

  
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We have 
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2
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Q sQ
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by (8), (21), (25) and (26), it follows that 
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b s
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     
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2 2 2 2
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
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By (27), it results that for the   defined by (25), 

the relation   42 2
1 2b s c c s    is a 

polynomial in s  and b of degree 7 and 4, 

respectively. The coefficient of 7s is 

  2 2
1 21 .n c c Thus, 0  is impossible because 

2 2
1 2 0.c c   Thus, we can conclude that (16) does 

not hold. Therefore, the case (ii) of the Theorem 3.3 
holds. In this case, we have 
 

00 0,r                                                                (28) 
 

0.js                                                                (29) 
 

By (5) and (28), we obtain 
 

 2 22 2 5

3 3 3
m

mb b                   
  (30) 

 

Since 2 is irreducible polynomial of ,iy then 

(30) reduces to the following 
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 22
0,

3
m

mb b                                    (31) 

 
2 5

0.
3 3
                                                (32) 

 
By (3) we have 

 

 2
0

1
.

3
m

ms b b                                  (33) 

 
It follows from (29) that 0 0.s   Then (33) 

reduces to 
 

2 0m
mb b                                              (34) 

 
By (32) and (34), we obtain 

 

     2 2 22 2 2
1 1 .

3 3 3
m

mb b b b           
 

   (35) 

 
Then it follows from (31) and (35) that 

 
                                                                 (36) 
 

By (36) we have 
 

2 0.j
jb b                                                 (37) 

 
By (31) and (37), it follows that 0,  and by 

considering (36), we get 0.   Therefore (3), (4) 
and (5) reduce to the following 

0,ijs                                                                (38) 
 

0,lG                                                               (39) 
 

00 0.r                                                                (40) 
 

Since 0 00 0,s r  then (19) and (20) reduce to 
 

0iP Q                                                        (41) 
 

By (18), it follows that 0.iG   This completes 

the proof.  
 
Proof of Theorem 1.1. By the Proposition 3.1, we 
conclude that F  is dually flat and projectively flat 
in any adapted coordinate system. By Lemma 2.1, 
we have 
 

.k kx y
F CFF  

 

The spray coefficients i iG Py are given by 

1
.

2
P CF  Since 0,iG   then 0P   and thus 

 
0C  . 

 
It implies that 0kx

F  and then F  is a locally 

Minkowskian metric in the adapted coordinated 
system. This completes the proof. 
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