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Abstract

Dually flat Finder metrics form a special and valuable class of Finsler metrics in Finder information geometry,
which play a very important role in studying flat Finsler information structure. In this paper, we prove that every
locally dually flat generalized Randers metric with isotropic S-curvature islocally Minkowskian.
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1. Introduction

In [1], Amari-Nagaoka introduced the notion of
dually flat Riemannian metrics when they studied
the information geometry on Riemannian
manifolds. Information geometry has emerged from
investigating the geometrical structure of a family
of probability distributions and has been applied
successfully to various areas including statistical
inference, control system theory and multi-terminal
information theory. In Finsler geometry, Shen
extends the notion of locally du aly flatness for
Finsler metrics [2]. Dually flat Finsler metrics form
a specia and valuable class of Finder metrics in
Finder information geometry, which play a very
important role in studying flat Finsler information
structure [3-6].

A Finder metric F =F(X,y) on a manifold
M is said to be localy dually flat if at any point
there is a standard coordinate system (X',y') in
TM which satisfies

(Fz)xkyl yk :2(F2)X| .

In this case, the coordinate (X') is called an
adapted local coordinate system. It is easy to see

that every locally Minkowskian metric is locally
dually flat. But the converse is not true, generally

(3.
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The S-curvature is constructed by Shen for given
comparison theorems on Finsler manifolds [7]. A

A Finder metric Fon an n-dimensional
manifold M is said to have isotropic S-curvature
if isotopic S=(n+1)c(X)F, for some scaar
function ¢ on M . It is known that some of
Randers metrics are of S-curvature [8, 9]. This is
one of our motivations for considering Finsler
metrics of isotropic S-curvature.

In this paper, we show that a locally dualy flat
generdlized Randers metric with isotropic S
curvature reduces to a locally Minkowskian metric.
More precisely, we prove the following.

Theorem 1.1. Let F?=ca’+2caf+cp’
(c,#0, ¢, #0) be anon- Randers type and non-

Riemannian generalized Randers metric on a
manifold M of dimensonn>3. Then F s
locally dualy flaa with isotropic S
curvature, S= (N+1c(X)F , if and only if it is
locally Minlowskian.

2. Preiminaries

A Finder metric on an n-dimensional manifold
M isafunction F:TM — [O,oo) which has the
following  properties (i) F  isC”on
™, =TM \{G}; (i) F is positively 1-
homogeneous on the fibers of tangent bundle TM;
(iii) for eech yeT,M the following quadratic

form g, on T,M ispositive definite,
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Given a Finder manifold(M,F), a globa
vector field G isinduced by F on TM whichin

a standard coordinate (X,Y;) for TMis given

B _ 0 .
byG =Yy ——-2G'(X,y)—, where G' are
oX oy
the coefficients of the spray associated with F and
given by the following
il

i_ 9 2 K e
G = [FL, v -IF, )

Indeed, G is called the associated spray to
(M,F) [10].

A Finder metric F(X,y) on an open domain

U < R" issaid to be localy projectively flat if its
geodesic  coefficients G ae in the form
G'(x,y)=P(x,y)y', where P:TU =U xR" > R
is positively homogeneous with degree one,
P(x,Ay) = AP(x,y), A >0. We cal P(X,y) the
projective factor of F.

A Finder metric F =F(X,y)on a manifold

M is said to be locally dually flat if at any point
there is a standard coordinate system (X',Y')in

TM suchthat L = F?(X, y) satisfies
kayl y" =2L,. (1)

In this case, the coordinate (X')is caled an

adapted local coordinate system. It is easy to see
that every localy Minkowskian metric is satisfied
in the above equation, hence it is locally dualy flat.
In[3], thefollowing is proved.

Lemma 2.1. ([3]) Let F =F(X,y) be aFinder

metric on an open subset U < R". Then F is
locally flat and projectively flat onU if and only
if ka =CFFyk , where C isa constant.

For a Finder metricF on an n-dimensiona
manifold M , the Busemann- Hausdorff volume

form dV; = o (X)dx"...dx" isdefined by
Vol (B" (1)

Vol { (y')eR"|F(y' axaik) }

o(F)=

Here Vol denotes the Euclidean volume and

B " (1) denotes the unit ball in R" .
Then the S-curvature is defined by

S(y):z‘gyi;(x,y)—yia%[lnaF(x)l

wherey :yiaiikeTXM [7]. S sdd to be
X

isotropic if there is a scalar function C(X) on M
such that

S(X,y)=(n+Dc(x)F(x,y).

3. Proof of Theorem 1.1.

In this section, we are going to prove the Theorem
1.1. First let us introduce our notations. Define

bi|j by
b, 0" :=db, ~b

where €' :=dx'and 6 =T dx" denote the
Levi-Civita connection form of « . Put

1

1
fy =50 0y, 8 =y —by)

ilj ilj

Clearly, S isclosed if and only if S; =0 [11].
Put
oo = rijylyJ » S0 = SimY r ::blrij )

i
s; =b's;

Letro:=1,y', S,:=s;y’ ads, =s;y’.
We have the following identities

Ym 0G, m . 9G,
K :7 ayk , ﬂxk :bmlky +bmy,
s, =“bka+% @
B P

where S'=—and Yy, =a, Yy
a

Let F? =c,a’+2c,a3 +C,3° be a generalized

Randers metric on an open subset U < R", where
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C,'S (i =1,2) are non-zero constants [12-14]. To
prove the Theorem 1.1, we need the following.

B

Theorem 3.1. ([5]) Let F = a¢(S), S="—bean
a

(a, f) —metric on an n- dimensional manifold
M " (n>3),where 0:=,/aijyiyj is a
Riemannian metricand S =b, (x)y' #0isal-

form on M .Suppose that F is not Riemannian
and@'(S) #0. Then F is locally dualy flat on

M if and only if ¢, f and ¢ = ¢(S) satisfy
1
S|o=§(ﬁ6’| —-tb),
o =208+ T+g(b2179bl) a2+1(3k -2-3Kkp?) 7B’
00 3 3 1 3 2 '
1 1 1
G. :5[20+(3k1—2)rﬁ]y' +§(e' —b' )a2+5k31ﬁ2b',
o[s(k, ~kes?) (9567 sgg") (¢ 49") + kg (6 -59")] =0,
where 7=7(X) is a scaar function,

0:=0(x)y' is a 1fom on M and

0 =a"g, and k,=T1(0), k, = 1@
Q)

ky= W[B Q"(O)IT'(0) - 6IT'(0)* ~Q(O)1"(0)
__ P g P i
Q p-sp'’ $($-s¢’)

Lemma3.2. Let

F?=ca’+2c,ap+c B’ (c,#0,¢c,#0) be a
non- Riemannian generalized Randers metric on a
manifold M of dimensionn >3. Then Fis
localy dualy flat on M if and only if &, and

¢ = ¢(s) satisly

1
Slozg(ﬂ‘ﬂ _9b|)1 ©)

1 1
G, =§[20+r,6’]y' +§(9' —b')a®, @
rmzéeﬂ+{r+§(bzr—9,b')}a2+§rﬂ2, ®)

where 7=7(X)is a scaar function and

0=6,y"isalformon M .

Proof: For a generdized Randers metric
F?=ca’+2c,af+C,f*°,we have the
following

¢ = \/cl +2¢,5+CS?, (6)
C,+CS
=2 ™
C,+C,S
Ql: C12_C222,
(c,+c,8)
-2c,(c?—-c?
Q"= (¢ 32), (®)
(c,+c,8)
m=—2
C,+C,S
I'= CC, = 9
(c,+c,8)
0°— cc? :
(c,+c,8)
3
mr-- % o (10)
(c,+c,8)
k,=1 k,=-1, k, =0. (11)

Using (6)-(11), we get:
s(k,—k;s*)(4¢'-sp*—sggp")
~(¢°+¢p")+kp(p—5¢") =0

Then by Theorem 3.1, we get the proof.

Now, let ¢ = ¢(S) be a positive C * function on
(—by,b,). For anumber b € [O,bo), let

®:=-(Q-sQ"){nA+1+sQ}
~(b*-s*)(1+sQ)Q"

where

(12)
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A=1+sQ +(b*-s%)Q" (13)

By considering (7), the relation (12) can be
written asfollows:

®=-(Q-sQ')(n+1)A

+(b*-s){(Q-Q")Q - (1+sQ)Q"}. 9

Remark 3.1. By a direct computation, we can
obtain a formula for mean Cartan torsion of an

(a,ﬂ)—metric asfollows

__O(4-s¢)
I = 2Apar’ (abi syi)'

Clearly, an (a,ﬂ)—metric

F =a¢(s), s= I is Riemannian if and only if
a

o =0.
In [8], Cheng-Shen study the class of

(a,B)—merics  of  non-Randers  type

¢ # J1+1,8° +1.S with isotropic S-curvature
and obtain the following.

B

Theorem 3.3. ([8]) Let F = ag(S), S=— bean
a

non-Riemannian(a,,b’)— metric on a manifold

and b :=|| B, ||, . Suppose that ¢ =t \/1+t,5* +t,s
for any constant t, >0, t,and t;. Then F is of
isotropic S-curvature S=(n+1)cF, if and only

if one of the following holds
(i) B tisfies
r, =c{b’a, -bb;}, s, =0, (15)

J

where &=¢&(X)is a scaar function, and
€ =c(Xx) satisfies

gA?
®=-2(n +1)ka_S2 (16)
where kis a  constant. In this

case, S=(n+1)cF withc =Kke.
(ii),Bsatisfies

=0 s =0 17)

In this case S= 0, regardless of choices of a

particular ¢.

Using the Theorem 3.3, we are going to consider
locally dually flat generalized Randers metrics with
isotropic S-curvature.

Proposition 3.1. Let
F?=ca’+2c,af+c,B?, (c,#0, c,#0)
be a locally dually flat non-Randers on a manifold

M of dimensionn > 3. Suppose that F is of
isotropic S-curvature, type and non-Riemannian

S=(n+1)CF,Where c=c(x)is a scaar
function on M. Then F is alocally generalized
Randers metric projectively flat in adapted
coordinate systemswith G' = 0.

Proof: Let G' =G' (x,y) and é;{ :G_; (x,y)
denote the coefficients of F and o respectively in
the same coordinate system. By definition, we have

G' =G +Py' +Q' (18)
where
P=a"0{-2Qas,+Iy}, (19)

Q' =aQsy + ¥ {-WQuas, +1,}b", (20)
¢p'-S(gp"+¢'9")
2¢((¢—s¢')+(b2—52)¢")

1 "
2(¢—s¢')+(b2—sz)¢"'

@:

Wy =

First, we suppose that the case (i) of the Theorem
3.3 holds. It is remarkable that, for a generalized

Randers metric F? =c,a” +2c,a8+C B, the
following relations hold

¢ =1Jc,+2c,5+CS?,

_C,+CS
C,+C,S
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-2cd
(c,+c,s )3 '

Q"=

Where d :=c;/ —C7. Thuswe have

2
1450 =2 (21)
Cc,+C,S

and then
A=1+sQ +(b*-s%)Q"

(c,+c,8)¢° +d (b2 —sz) -
- (cl+czs)2

By (22), it follows that (c,+C,S)"Ais a

polynomial in s of degree 3. On the other hand, we
have

st ¢[(cl+czs)¢2+d gbz—sz)] -
(c,+cC,8)

2
Thus if ®=-2(n+1)k P\~ ods, then

b?-s?

by (23) it results that
(b*-s?)(c,+cs) @

:—2(n +1)k¢[(cl+czs)¢2 +d (bZ_Sz)T.

(24)

By (24), it followsthat (b”—s°)(c, +C,8)" @

is not a polynomia in s (if K =0, then by
considering the Remak 31, we get a
contradiction). Indeed, if we put

A=.cS*+2c,5+C, {(C1+C23)¢2 +d (b? —SZ)}Z,

then A is a polynomia in s and b if and only if
¢=c,(a+p), (c,>0). But by assumption F

is not a Randerstype metric. So A is not a

polynomial in s, and then (b? —sz)(cl+czs)4<1>

isnot apolynomial ins.
Now, we consider another formulafor @ :

®=-(Q-Q)(n+1)A

(25)
+(b2—sz){(Q -sQ")Q - (1+sQ)Q"}.
We have
Q-sQ'=— (26)

(c, +czs)2

by (8), (21), (25) and (26), it follows that

q):_(n+1)c2¢:A+(b2_sz) cdg’ - 202d¢24
(c,+c,8) (c,+c,8)" (¢ +C,8)

(n+1)c,g° [(cl +c,8)¢° +d (b’ —sz)]

(cl+czs)4
T (b?-s2)g?
+ 2
(c,+cC.8)
—(2-n)cd (b2 —sz)¢2 ~(n+1)c,(c, +¢,8)¢* 27)
(c1+<:zs)4

By (27), it results that for the @ defined by (25),
the relation (bz—sz)(cl+czs)4(l) is a
polynomiad inS and bof degree 7 and 4,
respectively.  The  coefficient of  S'is
(n +1)012C22.Thus, @ =0is impossible because

c’cs #0. Thus, we can conclude that (16) does

not hold. Therefore, the case (ii) of the Theorem 3.3
holds. In this case, we have

o =0, (28)
s; =0. (29)
By (5) and (28), we obtain

[T+§(bzr—bm9m )}az =ﬁ[—§9+gﬁ7} (30)

Since &“is irreducible polynomial of yi , then
(30) reduces to the following
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r—i—%(bzr—bmé’m):O, (31)
2 5

——0+—=pBr=0. 32
3 +3ﬁf (32)
By (3) we have

S, = —%(4%2 — po,0™). (33)

It follows from (29) thatS,=0. Then (33)
reduces to

Ob?—pb, O™ =0 (34)
By (32) and (34), we obtain
%(1—b2)9:%(l—bz)rﬂ+{r+§(b2—bme"‘)}/}_ (35)

Then it follows from (31) and (35) that

0=10 (36)
By (36) we have
*-b'6, =0. (37)

By (31) and (37), it follows that 7 =0, and by

considering (36), we get € = 0. Therefore (3), (4)
and (5) reduce to the following

S; = 0, (38)
G. =0, (39)
foo = 0. (40)

Since S, = Iy, =0, then (19) and (20) reduce to
P=Q'=0 (41)

By (18), it follows that G; = 0. This completes
the proof.

Proof of Theorem 1.1. By the Proposition 3.1, we

conclude that F is dually flat and projectively flat
in any adapted coordinate system. By Lemma 2.1,
we have

F . =CFF,.
X y

The spray coefficients G' = Py' are given by
h effici G' ' b

P :%CF, SinceG' =0, then P =0 and thus

C =0.

Itimpliesthat F , =0and then F is alocally

Minkowskian metric in the adapted coordinated
system. This completes the proof.
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