http://www.shirazu.ac.ir/en

Bounds on the signed distance-k-domination number of graphs

D. A. Mojdeh^{1, 2}*, B. Samadi² and S. M. Hosseini Moghaddam³

¹Department of Mathematics, University of Tafresh, Tafresh, Iran ²School of Mathematics, Institute for Research in Fundamental Sciences (IPM) Tehran, Iran, P.O. Box 19395-5746 ³Shahab Danesh Institute of Higher Education, Qom, Iran E-mails: damojdeh@ipm.ir, b_samadi61@yahoo.com & Sm.hosseini1980@yahoo.com

Abstract

Let G = (V, E) be a graph with vertex set V = V(G) of order n and edge set E = E(G). A k -dominating set of G is a subset $S \subseteq V$ such that each vertex in $V \setminus S$ has at least k neighbors in S. If v is a vertex of a graph G, the open k-neighborhood of v, denoted by $N_k(v)$, is the set $N_k(v) = \{u \in V : u \neq v \text{ and } d(u, v) \leq k\}$. $N_k[v] = N_k(v) \cup \{v\}$ is the closed k-neighborhood of v. A function $f : V \to \{-1, 1\}$ is a signed distance-k-dominating function of G, if for every vertex $v \in V$, $f(N_k[v]) = \sum_{u \in N_k[v]} f(u) \geq 1$. The signed distance-k-domination number, denoted by $\gamma_{k,s}(G)$, is the minimum weight of a signed distance-k-dominating function of G. In this paper, we give lower and upper bounds on $\gamma_{k,s}$ of graphs. Also, we determine the signed distance-k-domination number of graph $\gamma_{k,s}(G \lor H)$ (the graph obtained from the disjoint union G + H by adding the edges $\{xy : x \in V(G), y \in V(H)\}$) when $k \geq 2$.

Keywords: Signed distance-k-dominating function; kth power of a graph

1. Introduction

Let G = (V, E) be a graph with vertex set V = V(G) of order n and edge set E = E(G). For a subset $S \subseteq V(G)$, we define $N(S) = N_G(S) = \bigcup_{v \in S} N(v)$. If v is a vertex of a graph G, the open k-neighborhood of v, denoted by $N_k(v)$, is the set $N_k(v) = \{u \in V : u \neq v \text{ and } d(u, v) \leq k\}$. $N_k[v] = N_k(v) \cup \{v\}$ is the closed-k-neighborhood of v. $\delta_k(G) = min\{|N_k(v)|; v \in V\}$ and $\Delta_k(G) = max\{|N_k(v)|; v \in V\}$.

A *k*-dominating set of *G* is a subset $S \subseteq V$ such that every vertex in $V \setminus S$ has at least *k* neighbors in *S*. The *k*-domination number $\gamma_k(G)$ is the minimum cardinality among the *k*-dominating sets of *G*. A subset $S \subseteq V$ is a total dominating set, if for every vertex $u \in V$ there exists a vertex $v \in S$, such that *u* is adjacent to *v*. Let *G* be a graph with no isolated vertex. The total domination number $\gamma_t(G)$ is the minimum cardinality among the total dominating sets of *G*.

A function $f: V \rightarrow \{-1, 1\}$ is a signed *distance-k-dominating* function of G, if for every vertex $v \in V$, $f(N_k[v]) = \sum_{u \in N_k[v]} f(u) \ge 1$. The signed *distance-k-domination* number, denoted by $\gamma_{k,s}(G)$, is the minimum weight of a signed

*Corresponding author

distance-*k*-dominating function on *G*. A signed distance-1-dominating function and signed distance-1-domination number $\gamma_{1,s}(G)$ of a graph *G* are identified with the usual signed dominating function and signed domination number $\gamma_s(G)$ of a graph *G* [1].

Let $k \ge 2$ be a positive integer. A subset $S \subseteq V(G)$ is a k -packing if for every pair of vertices $u, v \in S$, d(u,v) > k. The k -packing number $\beta_k(G)$ is the maximum cardinality of a k-packing in G [2]. The joint of simple graphs G and H, written $G \lor H$, is the graph obtained from the disjoint union G + H by adding the edges $\{xy : x \in V(G), y \in V(H)\}$ [3]. Let G be a graph of order n with vertex set $\{v_1, v_2, ..., v_n\}$. We construct kth power G^k of a graph G, by $V(G^k) = V(G)$ and u and v are adjacent in G^k if and only if $0 < d_G(u, v) \le k$.

2. Lower bounds on $\gamma_{k,s}(G)$

Observation 1. Let *G* be a graph of order *n*, and *k* be a positive integer. Then $\gamma_{k,s}(G) = \gamma_s (G^k)$.

Proof: Let *f* be a signed distance-*k*-dominating function of *G*. It is easy to see that for every $v \in V(G)$, $N_k[v] = N_{G^k}[v]$. Hence $f(N_{G^k}[v]) = f(N_k[v])$. Therefore *f* is a signed distance-*k*-dominating function of *G* if and only if *f* is a signed

Received: 5 November 2011 / Accepted: 9 January 2012

distance dominating set of G^k . Thus $\gamma_s(G^k) = \gamma_{k,s}(G)$.

Let *G* be a graph of order *n*, and *k* be a positive integer. $\delta(G^k) = \delta_k(G)$ and $\Delta_k(G^k) = \Delta_k(G)$.

Theorem 2. [4] For any graph *G* with $\delta \ge 2$, $\gamma_s(G) \ge n(\frac{\left|\frac{\delta}{2}\right| - \left|\frac{\Delta}{2}\right| + 1}{\left|\frac{\delta}{2}\right| + \left|\frac{\Delta}{2}\right| + 1}).$

As an immediate result from Observation 1 and Theorem 2 we have.

Corollary 3. For any graph *G* with $\delta_k \ge 2$, $\gamma_{k,s}(G) \ge n(\frac{\left\lfloor \frac{\delta_k}{2} \right\rfloor - \left\lfloor \frac{\Delta_k}{2} \right\rfloor + 1}{\left\lfloor \frac{\delta_k}{2} \right\rfloor + \left\lfloor \frac{\Delta_k}{2} \right\rfloor + 1})$.

Proposition 4. Let *G* be a graph of order *n*. Then $2 \gamma_2(G) - n \leq \gamma_s(G)$.

Proof Let *f* be a minimum signed dominating function of *G*. Let $V_1 = \{u \in V : f(u) = 1\}$ and $V_{-1} = \{u \in V : f(u) = -1\}$. If $V_{-1} = \emptyset$, then the proof is clear.

If $v \in V_{-1}$ since $f(N_G[v]) \ge 1$, then v has at least two adjacent in V_1 . Therefore V_1 is a 2-dominating set for G and $|V_1| \ge \gamma_2(G)$. Since $\gamma_s(G) = |V_1| - |V_{-1}|$ and $n = |V_1| + |V_{-1}|$, then $\gamma_s(G) = 2|V_1| - n$ and finally we have $\gamma_s(G) \ge 2\gamma_2(G) - n$.

Proposition 5. Let *G* be a graph of order *n* and with no isolated vertex. Then $2\gamma_t(G) - n \leq \gamma_s(G)$.

Proof: The proof is similar to the Proposition 4.

3. Upper bounds on $\gamma_{k,s}(G)$

Theorem 6. Let k be a positive integer. If G is a simple graph of order n and minimum degree $\delta \ge 2$ and β_{k+1} is a maximum value of k + 1-packing sets. Then $\gamma_{k,s}(G) \le n - 2\beta_{k+1}$, and this bound is sharp.

Proof: Let *S* be a k + 1-packing set with $|S| = \beta_{k+1}$. We define $f: V \rightarrow \{-1, 1\}$ by,

$$f(v) = \begin{cases} -1 & \text{if } v \in S \\ 1 & \text{if } v \in V - S. \end{cases}$$

It is easy to show that $f(V(G)) = n - 2\beta_{k+1}$. Therefore, it is sufficient to show that f is a signed distance-k-dominating function on G. Let v be a vertex in S. Since $\delta \ge 2$, then $|N_k[v]| \ge 3$ since S is a k + 1-packing set. Hence $N_k[v] \cap S = \{v\}$, and $f(N_k[v]) \ge 1$. Now let v be a vertex in V - S. There are two cases. **Case 1.** $N[v] \cap S \neq \emptyset$. Since *S* is a k + 1-packing set in graph *G*, then $|N_k[v] \cap S| = 1$ and let $N_k[v] \cap S = \{w\}$. Otherwise let *u* be a vertex in $N_k[v] \cap S$ different from *w*. This shows that $d(w, u) \leq k + 1$. This is a contradiction. Since $\delta \geq 2$ therefore $f(N_k[v]) \geq 1$.

Case 2. $N[v] \cap S = \emptyset$. If $N_k[v] \cap S = \emptyset$, then $f(N_k[v]) \ge 1$. Let $N_k[v] \cap S \ne \emptyset$ and let $N_k[v] \cap S = \{s_1, s_2, \dots, s_r\}$. Since $d(s_i, s_j) \ge k + 2$, there exists a vertex v_i on the $v - s_i$ path which is distinct from the vertex v_j on the $v - s_j$ path. Thus there exist at least r distinct vertices in $N_k[v] - S$. Suppose v_i be a vertex in $N_k[v]$ such that v_i is adjacent to s_i for each $1 \le i \le r$.

Therefore, $f(N_k[v]) \ge \sum_{i=1}^r f(v - s_i) + \sum_{i=1}^r f(v_i) + f(v) = 1$. And f is a signed-k-dominating function on G with weight $|V - S| - |S| = n - 2\beta_{k+1}$. Hence $\gamma_{k,s}(G) \le n - 2\beta_{k+1}$.

Now, we show that the bound is sharp. The desired graph *G* will be the union *p* copies of C_4 . Then $\gamma_{k,s}(G) = 2p$ and $\beta_{k+1} = p$. Therefore $\gamma_{k,s}(G) = 2p = 4p - 2p = n - 2\beta_{k+1}$. This completes the proof.

Corollary 7. Let k be a positive integer. If G is a simple graph of order n and minimum degree $\delta \ge 2$ and β_{k+1} is a maximum value of k+1 -packing sets, then

$$\beta_{k+1} \leq \frac{n}{2} \left(1 - \frac{\left\lceil \frac{\delta_k}{2} \right\rceil - \left\lfloor \frac{\Delta_k}{2} \right\rfloor + 1}{\left\lceil \frac{\delta_k}{2} \right\rceil + \left\lfloor \frac{\Delta_k}{2} \right\rfloor + 1}\right).$$

Proof: By Theorem 6 and Corollary 3 the proof is clear.

Theorem 8. Let *G* be a connected graph of order *n*. Let *L* and *S* be the sets of vertices degree 1 (leaves) and $N_G(L)$ (support vertices) respectively. If *D* is a maximum 2-packing set in $G - (L \cup S)$, then $\gamma_s(G) \le n - 2|D|$, and this bound is sharp.

Proof: We define $f:V(G) \rightarrow \{-1,1\}$ by, $f(v) = \begin{cases} -1 & \text{if } v \in D \\ 1 & \text{if } v \in V - D. \end{cases}$

It is easy to show that f(V(G)) = n - 2 |D|. Therefore, it is sufficient to show that f is a signed distance-2-dominating function on G. For each vertex $v \in V(G)$, if v is a vertex in L then $f(N[v]) = 2 \ge 1$. Let $v \in V - (L \cap D)$, if $N[v] \cap D = \emptyset$ then obviously $f(N[v]) \ge 1$. If $N[v] \cup D \neq \emptyset$, since D is a 2-packing set in $G - (L \cup S)$ then $|N[v] \cap D| = 1$, and let $N[v] \cap D$ different from w then $d(u,w) \le 2$. This is a contradiction. Since $deg(v) \ge 2$ then $f(N[v]) \ge 2$ and $N[v] \cap D = \{v\}$ then $f(N[v]) \ge 1$. Therefore f is a signed dominating function of G with weight n-2|D|. Hence $\gamma_s \leq n-2|D|$.

Now, we show that the bound is sharp. Let $G = K_{1,n-1}$ $(n \ge 2)$. Then $\gamma_s(G) = n$ and $D = \emptyset$. Thus $\gamma_s(G) = n - 2|D|$.

In Theorem 6 the graph *G* can be a simple disconnected graph of order *n* and $\delta(G) = 1$. Since $H_1, H_2, ..., H_m$ are components of *G*, then $\gamma_s(G) = \gamma_s(H_1) + \gamma_s(H_2) + ... + \gamma_s(H_m)$. By a similar reason we can prove $\gamma_s(G) \le n - 2|D|$, where *L* and *S* are the sets of vertices of degree 1 and $N_G(L)$ respectively.

But there exists a natural question here. What would happen if k > 1? We are going to answer this question by concept of kth G^k of the graph G. Firstly, we have the following lemma.

Lemma 9. Let G be a simple graph of order n and G^k be the k^{th} power of the graph G. Then $D \subseteq V(G)$ is a maximum set of tk-packing vertices if and only if $D \subseteq V(G^k)$ is a maximum set of t-packing vertices.

Proof: Since every edge in G^k is equal to a path with length $l \le k$ we have u and v, two vertices in $V(G^k)$ such that there is no path between them with length $l \le t$ if and only if u and v are two vertices in V(G) such that there is no path between them with length $l \le tk$. This shows that $D \subseteq V(G^k)$ is a set of t-packing vertices if and only if $D \subseteq V(G)$ is a set of tk-packing vertices. Also, it is easy to see that $D \subseteq V(G^k)$ is maximum. This completes the proof.

Theorem 10. Let $k \ge 2$ be a positive integer. If *G* is a simple graph and each component is order $n \ge 3$, with minimum degree $\delta = 1$ and *S* is a maximum 2k-packing set, then $\gamma_{k,s}(G) \le n - 2\beta_{2k}$, where $\beta_{2k} = |S|$, and this bound is sharp.

Proof: Let G^k be the *k*th power of the graph *G*. By Observation 1 we have $\gamma_{k,s}(G) = \gamma_s(G^k)$. Since $n \ge 3$ then $\delta(G^k) \ge 2$. Therefore, by Theorem 6 we have $\gamma_{k,s}(G) = \gamma_s(G^k) \le n - \beta_2(G^k)$. Finally by Lemma 9 we have $\gamma_{k,s}(G) \le n - 2\beta_{2k}(G)$.

Now we show that the bound is sharp. The desired graph *G* will be the union *t* copies of star $K_{1,2}$. Then $\gamma_{k,s}(G) = t$, n = 3t, and $\beta_{2k} = t$. Therefore $\gamma_{k,s}(G) = t = 3t - 2t = n - 2\beta_{2k}$. This completes the proof.

Observation 11. Let G and H be two simple graphs. If $k \ge 2$ then

$$\begin{aligned} \gamma_{k,s}(G \lor H) \\ &= \begin{cases} 1 & if \ |V(G)| + |V(H)| \ is \ odd \\ 2 & if \ |V(G)| + |V(H)| \ is \ even. \end{cases} \end{aligned}$$

Now we show that for any integer k we can find a simple graph G such that $\gamma_s(G) = k$.

Theorem 12. For any integer k, there exists a connected graph G with $\gamma_s(G) = k$.

Proof: We consider four cases.

Case 1. Let k < 0. We consider the star $K_{1,2|k|+2}$ with vertices $v_1, v_2, ..., v_{2|k|+2}$ and central vertex v. We add vertices u_i $(1 \le i \le 2|k|+2)$ be adjacent to v_i and v_{i+1} in modulo 2|k|+2. Then we add edges $v_i v_{i+1} (1 \le i \le 2|k|+2)$ in modulo 2|k|+2. Finally, we add vertices w_i $(1 \le i \le |k|+1)$ adjacent to v_{2i-1} and v_{2i} (when k = -3, *G* is illustrated in Figure 1).

We define $f: V(G) \rightarrow \{1, -1\}$ by,

 $f(u) = \begin{cases} 1 & if \ u \in \{v_1, v_2, \dots, v_{2|k|+2}\} \\ -1 & if \ \in \{u_1, u_2, \dots, u_{2|k|+2}\} \cup \ \{w_1, w_2, \dots, w_{|k|+1}\}. \end{cases}$

In the following, we prove that *f* is a signed dominating function of *G*. By symmetry it is sufficient to show that $f(N[u]) \ge 1$ for $u \in \{v, v_1, u_1, w_1\}$. $f(N[v]) = f(v) + \sum_{i=1}^{2|k|+2} f(v_i) = 2|k| + 3 \ge 1$. $f(N[v_1]) = f(v) + f(v_1) + f(v_2) + f(v_{2|k|+2}) + f(u_1) + f(u_{2|k|+2}) + f(w_1) = 1 \ge 1$. $f(N[u_1]) = f(u_1) + f(v_1) + f(v_2) = 1 \ge 1$. $f(N[w_1]) = f(v_1) + f(v_2) + f(w_1) = 1 \ge 1$. Therefore *f* is a signed dominating function of *G* with weight f(V(G)) = 1 + 2|k| + 2 - |k| - 1 - 2|k| - 2 = 1

-|k| = k. Hence $\gamma_s(G) \ge k$.

On the other hand, let g be a minimum signed dominating function on G such that $\gamma_s(G) = g(V(G))$, we have, $g(V(G)) = \sum_{u \in V(G)} g(u) = \sum_{i=1}^{2|k|+2} g(N[u_i]) + \sum_{i=1}^{|k|+1} g(w_i) + g(v) \ge \sum_{i=1}^{2|k|+2} (1) + \sum_{i=1}^{|k|+1} (-1) - 1 = |k| \ge k$. Therefore $\gamma_s(G) = k$.

Fig. 1. example of Theorem 12 for k = -3

Case 2. If k = 0. We consider the Hajos graph G_H (Fig. 2).

We define $f: V(G) \rightarrow \{1, -1\}$ by, $\begin{pmatrix} 1 & \text{if } y \in \{y, y, y, y\} \end{pmatrix}$

$$f(u) = \begin{cases} 1 & if \quad v \in \{u_1, u_2, u_3\} \\ -1 & if \quad v \in \{v_1, v_2, v_3\} \end{cases}$$

It is easy to see that f is a signed dominating function of G_H , with weight 0. Therefore $\gamma_s(G_H) \leq$ 0. On the other hand, let g be a minimum signed dominating function of G_H such that $\gamma_s(G_H) =$ $g(V(G_H))$. We have, $\gamma_s(G_H) = g(V(G_H)) =$ $\sum_{u \in V(G_H)} g(u) = g(N[u_1]) + g(v_3) \geq 1 - 1 =$ 0. Therefore, $\gamma_s(G_H) \geq 0$. Hence $\gamma_s(G_H) = 0$.

Fig. 2. Hajous graph

Case 3. If k = 1. Obviously for the complete graph K_{2n+1} we have $\gamma_s (K_{2n+1})=1$.

Case 4. If $k \ge 2$. We consider the star $K_{1,k-1}$. It is easy to see that $\gamma_s(K_{1,k-1}) = k$. This completes the proof.

References

- Xing, H., Sun, L. & Chen, X. (2006). On signed distance- k -domination in graphs. *Czechoslovak Mathematical Journal*, 56(1), 229-238
- [2] Haynes, T. W., Hedetniemi, S. T. & Slater, P. J. (1998). Fundamentals of Domination in Graphs. New York, Marcel Dekker.
- [3] West, D. B. (2001). *Introduction to Graph Theory* (Second Edition). USA: Prentice Hall.
- [4] Haas, R. & Wexler, T. B. (2002). Bounds on the signed domination number of a graph. *Electronic Notes* in *Discrete Mathematics*, 11, 742-750.