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Abstract 

In this paper, the variational homotopy perturbation method (VHPM) and its convergence is adopted for the 
Zakharove-Kuznetsov equations (ZK-equations). The aim of this paper is to present an efficient and reliable 
treatment of the VHPM for the nonlinear partial differential equations and show that this method is convergent. 
The convergence of the applied method is approved using the method of majorants from Cauchy-Kowalevskaya 
theorem of differential equations with analytical vector field. 
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1. Introduction 

Traveling waves are very important because various 
phenomena in nature such as vibration and self-
reinforcing solitary waves are described by them. 
So, investigation of traveling wave solution plays 
an important role in nonlinear science. Rosenau and 
Hyman [1] introduced a class of partial differential 
equations (PDEs)  
 

m n
t x xxxK ( m , n ) :   u a( u ) ( u ) = 0,  m > 0,1 < n 3,     (1) 

 
which is a generalization of the Korteweg-de Vries 
(KdV) equation such that the theory of water waves 
in shallow channels is described. For more 
information refer to [2]. In Eq.(1) 

x

u
u

t

u
u

m
m
xt 





=,=  and 
3

3

=
x

u
u

n
n
xxx 


. For 

nm =  these are Solitary waves or so-called 
Compactons. Recently, Wazwaz [3] has given the 
new solitary patterns for the nonlinear dispersive 
K(m,n) equations: 
 

m n
t x xxxu a( u ) ( u ) = 0,  m > 0,n > 0.             (2) 

 
The new solitary wave special solutions with 

compact support for the nonlinear dispersive 
K(m,n) equations: 
 

m n
t x xxxu a( u ) ( u ) = 0,  m > 0,n > 0,                 (3) 
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are presented by Ismail and Taha [4] and Wazwaz 
[5]. They use a finite difference method and a finite 
element method to investigate the approximate 
solutions of K(2,2) and K(3,3) in Eq.(1). The ZK-
equation (shortly called ZK(m,n,k)) of the form  
 

m n k
t x xxx yyxu a( u ) b( u ) c( u ) = 0,  mnk 0,         (4) 

 
where knm ,,  are integers and cba ,,  are 

arbitrary constants. Eq.(4) governs the behavior of 
weakly nonlinear ion-acoustic waves in plasma 
comprising cold ions and hot isothermal electrons 
in the presence of a uniform magnetic field [6]. 
Eq.(4) is solved by a different method. For instance 
in [7] ZK-equation was solved by the sine-cosine 
and the hyperbolic tangent (tanh)-function methods. 
In this paper, the variational Homotopy 
Perturbation method using He's polynomials is 
applied to solve ZK-equation and convergence of 
the considered technique is approved. 

2. Methodology 

To introduce the VHPM, it is necessary to know 
VIM and HPM.  

2.1. Variational Iteration and Homotopy 
Perturbation Method 

To illustrate the basic concepts of the VIM and 
HPM, first consider the following nonlinear 
differential equation 
 

),(= xgNuLu                                                (5) 
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where L  is a linear operator, N  is a nonlinear 
operator and )(xg  is an inhomogeneous term. 

According to the VIM [8,9,10] we can construct a 
correction functional as follows: 
 

,)}(~){()(=)(
01  dguNLuxuxu nn

t

nn  
  (6) 

 
where )(  is a general Lagrange multiplier. 

)(  can be identified optimally via the 

variational theory, the subscript n  denotes the 

n th-order approximation and nu~  is considered as 

a restricted variation i.e. 0.=~
nu  The essential 

idea of this method is to introduce a homotopy 
parameter, say p , which takes the values from 0 to 

1. When 0=p , the system of equations is in 

sufficiently simplified form, which normally admits 
a rather simple solution. As p  gradually increases 

to 1, the system goes through a sequence of 
``deformation'', the solution of each stage is ``close'' 
to that at the previous stage of ``deformation''. 
Eventually at 1=p , the system takes the original 

form of equation and the final stage of 
``deformation'' gives the desired solution. To 
illustrate the basic concept of homotopy 
perturbation method, consider the following 
nonlinear system of differential equations 
 
A( U ) = f ( r ), r                            (7) 
 
with boundary conditions 
 

U
B U , = 0, r

n
    

 

 
where A  is a differential operator, B  is a 
boundary operator, )(rf  is a known analytical 

function, and   is the boundary of the domain  . 
Generally speaking the operator A  can be divided 
into two parts L  and N , where L  is a linear, and 

N  is a nonlinear operator. Therefore, Eq.(7) can 
be rewritten as follows:  
 

0.=)()()( rfUNUL   
 

We construct a homotopy ),( prV : 
nR [0,1] , which satisfies 

 
0H (V , p ) = (1 p )[ L(V ) L(U )]

              p[ A(V ) f ( r )] = 0, p [0,1], r ,
 

   
 

 
or equivalently, 
 

0 0H (V , p ) = L(V ) L(U ) pL(U )

              p[ N (V ) f ( r )] = 0.

 
 

             (8) 

 
where 0U  is an initial approximation of Eq.(7). In 

this method, using the homotopy parameter p , we 

have the following power series presentation for 
V ,  
 

.= 2
2

10  VppVVV  
 

The approximate solution can be obtained by 
setting 1=p , i.e. 
 

.= 210  UUUU  

2.2. Variational Homotopy Perturbation Method 
using He's polynomials 

To illustrate the basic idea of the VHPM, 
consider the following general differential equation 
 

)(= xgNuLu                                                 (9) 
 
where L  is a linear operator, N  is a nonlinear 
operator and )(xg  is an inhomogeneous term. 

According to the VIM, as illustrated  previously we 
can construct a correction functional as follows: 
 

,))(~)(()(=)(
01  dguNLuxuxu nn

t

nn   (10) 

 
where )(  is a general Lagrange multiplier. 

Applying the homotopy perturbation method 
 

tn n
n 0 n0

n=0 n=0
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0

p u = u ( x ) p ( ) N p u  d

             ( ) g( ) d ,
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   

           



 




(11) 

 
which is the coupling of VIM and He's polynomials 
and is called the modified variational iteration 
method (MVIM). The comparison of similar 
powers of p  gives solutions of various orders. So, 

nu  can be obtained as 
 

, )()(),(=
00  dgyxfu
t

                     (12) 

 
and 
 

t
n 1 n0

u = ( ) H d ,     

 
where 
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For later numerical computation, we let the 

expression ),,(=
0=

tyxui

n

in   to denote the n -

term approximation to u(x,y,t). For more 
information about the VHPM refer to [11,12]. 

3. The VIM and VHPM for ZK-equation 

3.1. The VIM for ZK-equation 

In order to solve ZK-equation 
 

0,=)()()( yyxucubuau k
xxx

n
x

m
t   

 
by the VIM, correction functional can be 
constructed as follows: 
 

),,(~),,(){(),(=),(
01   yxuayxutxutxu m

xnn

t

nn  

 dyxucyxub k

yyxn
n

xxxn ),,(~),,(~              (13) 

 
where nu~  is considered as restricted variations, i.e. 

0=~
nu .  

To find the optimal value of )( , we have 
 

),,(~),,(){(),(=),(
01   yxuayxutxutxu m

xnn
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nn  
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xxxn             (14) 

 
or 
 

,)(),,(=),,(
01  dutyxutyxu n

t

nn  (15) 

 
which results in 
 

tnnn yxutyxutyxu =1 |),,()(),,(=),,(   

0.=),,()(
0

 dyxun

t
                            (16) 

 
Therefore, the stationary conditions are obtained 

in the following form 
 


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                                        (17) 

 
which results in 1=)(  . Substituting this value 

of the Lagrange multiplier into Eq.(13) gives 
 

),,(),,({),,(=),,(
001  yxauyxutyxutyxu xn
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n         (18) 

 
The iteration formula will give several 

approximations, and the exact solution is obtained 
at the limit of the resulting successive 
approximations.  

3.2. The VHPM for ZK-equation 

Using the value of Lagrange multiplier that was 
calculated in the previous section and applying the 
VHPM gives: 
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The comparison of similar powers of p  gives 

solutions of various orders, and the component 
which constitutes ),,( tyxu  is written as 

).,,(=),,(
0=

tyxutyxu ii


 

4. Convergence of VHPM for ZK equations 

Consider the initial value problem 
 
u = L u Nu ,  n > 0                                          (20) 
 
with initial condition 
 

),,(=(0) yxfu  
 
where dot denotes differential in time .t   

4.1. Assumption 

Let YXL  :  form a continuous semigroup 

)(exp=)( LttE   for  ,Rt  XXuN :)(  

be analytic near fu =  and X  be a Banach 

algebra with the property 
 

., Xgf
xxx

 gffg                     (21) 

 
Note that for ZK- equation 0=L , so 

.=)( ItE  

By Duhamel’s principle, problem (20) can be 
reformulated as an integral equation 
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t

0
u( t ) = E ( t ) f E ( t ) N ( u( ))d , n > 1.    (22) 

 
If N(u) is analytic near f, it satisfies a local 

Lipschitz condition in the ball )( fB  of a radius 

0>  centered at f, i.e., there is a constant 

0>K  such that 
 

x x

x x

N ( u ) N ( u ) k u u , 

  u f ,   u f .



 
  

     

 
                (23) 

 
In the following, the convergence of the VHPM is 

approved for Eq.(20). 

4.2. Theorem (Picard-Kato)  

Let L  and )(uN  satisfy assumption 4.1 and 

Xf  . There exists a 0>T  and a unique 

solution )(tu  of the initial-value problem Eq.(20) 

on [0,T], such that 
 

)],([0,)],([0,)( 1 XTCXTCtu            (24) 
 
and fu =(0) . Moreover, the solution )(tu  

depends continuously on the initial data f .  See 
[13] for the proof of Picard-Kato theorem. Using 
this theorem local well-posedness of solutions of 
the initial-value problem (20) with Lipschitz vector 
field N(u) can be proved for small time intervals.  

4.3. Theorem (Cauchy-Kowalevskaya)  

Let assumption 4.1 be satisfied with YX =  and 
)(tu  be a unique solution of Eq.(20) in 

)],([0,1 XTC , where 0>T  is the maximal 

existence time. Then there exist )(0,T  such 

that Xu ][0,:   is also a real analytic function. 

For further details and the proof of Cauchy-
Kowalevskaya theorem see [13]. 

By Cauchy estimates there exist constants 
0>,ba  such that: 
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where )(uNu  denotes operator in the sense of 

Frechet derivative, e.g., )(=)( uNuNu   is the 

Jacobian operator. The Taylor series of )(uN  at 

f  converges for any afu
x
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where afu
x

<=  . From the majorant 

function )(g , it is clear that 
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Now consider the majorant problem 
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where R . The majorant problem has an 

explicit solution 
 

,2=)( 2 abtaat   
 

which is an analytical function of t  on 

).
2

,(
b

a
  Using these relations the convergence 

of the VHPM can be approved for ZK- equations.  

4.4. Convergence theorem  

Let the assumption 4.1 be satisfied and )(tu  be a 

unique solution of Eq.(20) in ),),([0, XTC  where 

0>T  is the maximal existence time. As 

mentioned before, )(tun  is defined as 
 

.)(=
01  dHu n

t

n   

 
For ZK-equations 1=)(  . So,  
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01 dHu n

t

n                                              (29) 

 
There exist a )(0,T  such that the nth  

partial sum k

n

kn uS  0=
= , when n  

converges to the solution )(tu  in ).],([0, XC    

4.5. Remark 
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Existence and uniqueness of the solution )(tu  in 

)),([0, XTC  is approved in Picard-Kato 

Theorem.  

4.6. proof 

From Picard-Kato theorem, for any 0>  there 

exist a )(0,0 Tt   such that  
 

.
20]0[0,


 xtt fusup                           (30) 

 
Choosing a2< , where a  is the radius of 

analyticity of )(uN  near f . The Cauchy 

estimates, Eq.(25) can be generalized as 
 

!!

)(1)(1)(
)(

!

1 0

0 km

fufNkmmm
uN

k

km

xx

m

kmx

k








  

m

km

x

km akm

fukmmm
b

!!

1)(1)( 0








 

,
!

)(
=

k

gk 
                                                      (31) 

 
where )(t  satisfy the majorant problem Eq.(28) 

for )
2

[0,
b

a
t . Then, )(t  and all its derivatives 

with respect to t  are increasing functions of t  and 
so are ))(( tg   and all its derivatives with respect 

to  . By using semigroup property and Eq.(29)  
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By induction, we assume that 
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and prove that the same relation remains true at 
1= nk : 
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As )(t  is analytic in t  for all )
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any small 0>p  there exists a C  function 
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By definition of nH , we have 
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so that 
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where np  is a polynomial of g  and its derivatives 

up to the thn   order with positive coefficients 
(the same as in the proof of Cauchy-Kowalevskaya 
theorem). Using the iterative formula, Eq. (29), we 
obtain 
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which converges for all .
4

<||
b

a
t  Recall the 

constraint ][0,0 Tt   in bound Eq.(30). By the 
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4.7. Corollary 

There exists a constant 0>0C  such that the error 

of the VHPM is bounded by 
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where ),,( ba  are defined in convergence 

theorem.  

4.8. proof 

From convergence theorem we have 
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It follows from the explicit form for )(t  that 
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As a result, we obtain 
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Now we would like to choose two special 
equations, namely ZK(2,2,2) and ZK(3,3,3) with 
specific initial conditions. 

First consider the ZK(2,2,2) equation: 
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with specific initial conditions 
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where   is an arbitrary constant. 

Assume 1=  and proceeding as before, using 

VIM the lagrange multiplier is determined as 
1=  . Based on the VHPM we have: 
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Comparing the coefficient of similar powers of 

p  or using Eq.(29), we have: 
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 By substituting 

4  in Eq.(37) and studying the result of that in Fig. 

1, it is clear that our approximation satisfies the 
equation with a high level of accuracy. So, 

nn
u

0=
 will be convergent to the exact solution. 

To Continue, consider the ZK(3,3,3) equation 
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and proceeding as before ).,,(=),,(
0=

tyxutyxu ii
  

Substituting 4  in Eq.(39) and studying Fig. 2 

shows that the VHPM gives the solution of Eq. (39) 
which has an excellent agreement with the exact 
one. So, our applied method is convergent for this 
example too.  

 
Fig. 1. The result of substituting 4  in Eq.(37) at 

.1=y  
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Fig. 2. The result of substituting 4  in Eq.(39) at 

.1=y  

5. Conclusion 

In this work, the variational homotopy perturbation 
method using He's polynomials is used to solve 
Zakharov-Kuznetsove equations. As shown, this 
method is an effective and straightforward 
technique. One important object of our research is 
the examination of the convergence of the 
variational homotopy perturbation method using 
He's polynomials. Convergence theorems are given 
in general for partial differential equations and the 
result is examined on Zakharov-Kuznetsove 
equations as special cases. The results show that the 
VHPM is a convergent method and can be used to 
solve other linear and nonlinear equations. 
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