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Abstract

In this paper, the variational homotopy perturbation method (VHPM) and its convergence is adopted for the
Zakharove-Kuznetsov equations (ZK-equations). The aim of this paper is to present an efficient and reliable
treatment of the VHPM for the nonlinear partial differential equations and show that this method is convergent.
The convergence of the applied method is approved using the method of majorants from Cauchy-Kowalevskaya
theorem of differential equations with analytical vector field.
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1. Introduction

Traveling waves are very important because various
phenomena in nature such as vibration and self-
reinforcing solitary waves are described by them.
So, investigation of traveling wave solution plays
an important role in nonlinear science. Rosenau and
Hyman [1] introduced a class of partial differential
equations (PDEs)

K(m,n): u +a(u™), +(Uu" )y =0, m>0,1< n<3, (1)

which is a generalization of the Korteweg-de Vries
(KdV) equation such that the theory of water waves
in shallow channels is described. For more
information  refer  to  [2]. In  Eq.(1)
m 3,,n

:@,uf‘:au and uQXX:a u3 :
ot oX OX
m=n these are Solitary waves or so-caled
Compactons. Recently, Wazwaz [3] has given the
new solitary patterns for the nonlinear dispersive
K(m,n) equations:

U, For

U —a(u™)y +(U" )y =0, m>0,n > 0. 2

The new solitary wave special solutions with
compact support for the nonlinear dispersive
K(m,n) equations:

Ue +a(u™ )y +(U" )x =0, m>0,n>0, ©)

*Corresponding author
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are presented by Ismail and Taha [4] and Wazwaz
[5]. They use afinite difference method and a finite
element method to investigate the approximate
solutions of K(2,2) and K(3,3) in Eq.(1). The ZK-
equation (shortly called ZK(m,n,k)) of the form

U +a(u™ ), +b(UM )y +C(U* )y =0, mnk 20, (4)

where m,n,K are integers and a,b,c are

arbitrary constants. Eq.(4) governs the behavior of
weakly nonlinear ion-acoustic waves in plasma
comprising cold ions and hot isothermal electrons
in the presence of a uniform magnetic field [6].
Eq.(4) is solved by a different method. For instance
in [7] ZK-equation was solved by the sine-cosine
and the hyperbolic tangent (tanh)-function methods.
In this paper, the wvariationa Homotopy
Perturbation method using He's polynomials is
applied to solve ZK-equation and convergence of
the considered technique is approved.

2. Methodology

To introduce the VHPM, it is necessary to know
VIM and HPM.

21. Variational Iteration and Homotopy
Perturbation Method

To illustrate the basic concepts of the VIM and
HPM, first consider the following nonlinear
differentia equation

Lu+ Nu = g(x), )
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where L is a linear operator, N is a nonlinear
operator and g(X) is an inhomogeneous term.

According to the VIM [8,9,10] we can construct a
correction functional asfollows:

0,109 = U, (0 + [ A(]{ Lu, + NG, - g()}d, (6)

where A(7) is a genera Lagrange multiplier.
A(r) can be identified optimaly via the
variational theory, the subscript N denotes the
Nth-order approximation and Un is considered as

a restricted variation i.e. 80, =0. The essential
idea of this method is to introduce a homotopy
parameter, say P, which takes the values from O to
1. When p =0, the system of equations is in

sufficiently simplified form, which normally admits
a rather simple solution. As P gradually increases

to 1, the system goes through a sequence of
““deformation", the solution of each stageis " "close"
to that at the previous stage of “deformation”.

Eventualy at p =1, the system takes the original

form of equation and the finad stage of
“deformation” gives the desired solution. To
illustrate the basic concept of homotopy
perturbation method, consider the following
nonlinear system of differential equations

A(U)=1(r), reQ (7

with boundary conditions

B(U ,szo, rel”
on

where A is a differentia operator, B is a
boundary operator, f(r) is a known anaytical

function, and I" isthe boundary of the domain €2 .
Generally speaking the operator A can be divided
into two parts L and N , where L isalinear, and

N is a nonlinear operator. Therefore, EQ.(7) can
be rewritten as follows:

L(U)+N(U)-f(r)=0.

We construct a homotopy V(r,p):

Qx[0,1] - R", which satisfies

H(V,p)=@-p)IL(V)-L(Up)]
+p[AV)-f(r)] =0, pe[01],r €,

or equivalently,

H(V.p)=L(V)-L(Ug) +pL(Uo)

_ (8)
+p[N(V)-f(r)] =0.

where U, is an initial approximation of Eq.(7). In
this method, using the homotopy parameter p, we

have the following power series presentation for
V 1

V =V, + pV, + pV, +....
The approximate solution can be obtained by

setting p=1,i.e

U=U,+U,+U,+....

2.2. Variational Homotopy Perturbation Method
using He's polynomials

To illustrate the basic idea of the VHPM,
consider the following general differential equation

Lu+ Nu = g(x) )

where L is a linear operator, N is a nonlinear
operator and g(X) is an inhomogeneous term.

According to the VIM, asillustrated previously we
can construct a correction functional as follows:

U (%) = Uy (9 + [ A(0)(Lu, +NT, - 9(z))dz, (10)

where A(7) is a general Lagrange multiplier.
Applying the homotopy perturbation method

o0 t o0
p"u, = Up(x) +p| A7) N p"a, J}dr
&P J‘J{(nzo” (11)
- [A(r)a(z) de,
which is the coupling of VIM and He's polynomials
and is cadled the modified variationa iteration

method (MVIM). The comparison of similar
powers of P gives solutions of various orders. So,

U, can be obtained as

U= T4 Y)- [A(D)a(@) dr, 12)

and
t
Unia = [(A(T)Hodz,

where
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n

1d" L
=— N u o
o dp" (ép ) lp=o

For later numerical computation, we let the
expression ¢, = Zin:oui (X, y,1) to denote the N-

term approximation to u(xyt). For more
information about the VHPM refer to [11,12].

3. TheVIM and VHPM for ZK-equation

3.1. The VIM for ZK-equation
In order to solve ZK-equation
u +a(u™), +b(u"),, +c(Uu*)yyx=0,

by the VIM, correction functiona can be
constructed as follows:

Upa (%8) = Uy (6 1)+ [ (21U, (%, v, 7) + a7 (%, ¥,7)
~ ~k
+buy (X, y.7)+ cu, (x,y,7)dr (13)
where U, is considered as restricted variations, i.e.
&, =0.
To find the optimal value of A(7), we have
Ay (1) = U, (x,8) + 5[ (KU, (x, v, 1) + @07 (%, ¥, 7)

+b0y (% y,7)+cly (% y,7)de, (14)
or
8, (X Y0) = 8, (% Y, + 8 (), d, (25)

which resultsin
5un+1(x’ y’t) = ajn(x’ y!t) + 5ﬂ(f)un(x, y! T) Ir:t

- E/?,’(r)un(x, y,7)dz = 0. (16)

Therefore, the stationary conditions are obtained
in the following form

{1+ A7) = 0],=,

, (17)
A (T) =0 |r:t ’

which resultsin A(7) = —1. Substituting this value
of the Lagrange multiplier into Eq.(13) gives

Upa (6 Y,0) = U 06, Y1) = [ U, (6, y, ) +-aU™, (x,,7)
+bun, (X, y,7) +cun (X, y,7)dz.  (18)

The iteration formula will give severa
approximations, and the exact solution is obtained
a the Ilimit of the resulting successive
approximations.

3.2. The VHPM for ZK-equation

Using the value of Lagrange multiplier that was
calculated in the previous section and applying the
VHPM gives:

Uy + PU, + p°U, +...= F(X,Y)

—apj(:((u0 + pu, + p°u, +...)"M), dr
—bp_|';((u0 +pu, + pU, +..)")  dr
—cpj(:((uo +puy+ P, +...) ), d7. (19

The comparison of similar powers of P gives

solutions of various orders, and the component
which constitutes  u(X,y,t) is written as

u(x y,) =" b (% y,1).

4. Convergence of VHPM for ZK equations
Consider theinitial value problem
U=LU+Nu,n>0 (20
with initial condition

u) = f(x,y),

where dot denotes differential in time 1.

4.1. Assumption

Let L': X =Y form a continuous semigroup
E(t) =exp(tL’) for teR,, N(u): X > X
be analytic ner u=f and X be a Banach
algebrawith the property

Ifal, <IflJel, f.g9eX. @

Note that for ZK- equation L'=0, so
E(t)=1.
By Duhamel’s principle, problem (20) can be
reformulated as an integral equation
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u(t) = E(OF +[E(t-0)N(u(e)dr, n>1(22)

If N(u) is analytic near f, it satisfies a local
Lipschitz condition in the ball B;(f) of aradius
0>0 centered a f, i.e, there is a constant
K4 > 0 such that

IN(u) =N (@) [, <ksfu-all

23
VJu-tf |, <5, V[a-t |, <. @)

In the following, the convergence of the VHPM is
approved for Eq.(20).

4.2. Theorem (Picard-Kato)

Let L and N(u) satisfy assumption 4.1 and
f e X. There exists a T >0 and a unique

solution U(t) of the initial-value problem Eq.(20)
on [0,T], such that

u(t) e C([0,T], X) nC*([0,T], X) (24)

and u(0) = f . Moreover, the solution u(t)

depends continuously on the initia data f . See
[13] for the proof of Picard-Kato theorem. Using
this theorem local well-posedness of solutions of
the initial-value problem (20) with Lipschitz vector
field N(u) can be proved for small time intervals.

4.3. Theorem (Cauchy-Kowalevskaya)

Let assumption 4.1 be satisfied with X =Y and
u(t) be a unique solution of EQ.(20) in
C'([0,T],X), where T>0 is the maximal
existence time. Then there exist 7 € (0,T) such

that U:[0,7] - X isalsoarea analytic function.

For further details and the proof of Cauchy-
Kowalevskaya theorem see [13].
By Cauchy estimates there exist constants

a,b > 0 such that:

kl‘ < — k=0 (25)
where 0,N(u) denotes operator in the sense of
Frechet derivative, e.g., 0,N(u) = N'(u) is the
Jacobian operator. The Taylor series of N(u) at
f converges for any Hu — fHX <a, and

moreover, we obtain

f)k

INW, < S = e
k=0 k!

ab
=——1=9(p), (26)
a-p

where p = Hu— f”x <a. From the magorant
function g(p) , itisclear that

1«
u|\|(f)HXsEapg(0) k>0. ()

Now consider the majorant problem

do _
E_ g(p) t>0! (28)
p(0) =0,

where peR,. The mgorant problem has an
explicit solution

p(t) =a—+a”-2abt,

which is an analytical function of t on
a
(—oo,z—b). Using these relations the convergence

of the VHPM can be approved for ZK- equations.

4.4. Convergence theorem

Let the assumption 4.1 be satisfied and U(t) bea
unique solution of Eq.(20) in C([O, T), X), where
T>0 is the maxima existence time. As
mentioned before, U, (t) isdefined as

= [A(z)H,dr.
For ZK-equations A(7) = —1. So,
t
Uy = [ —H,dr. (29)

There exist a 7€ (0,T) such that the nth

partial  sum SHZZE:OUK

converges to the solution u(t) in C([0,7], X).

when N— o

4.5. Remark
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Existence and uniqueness of the solution u(t) in
C([0,T),X) is approved in Picard-Kato
Theorem.

4.6. proof
From Picard-Kato theorem, for any ¢ >0 there

existaty € (0,T) such that

o

Supte[ovt()] HUO - f Hx < E (30)

Choosing O < 2a, where a is the radius of
anayticity of N(u) near f. The Cauchy
estimates, Eq.(25) can be generalized as

m(m-1)...(m-k+1)

6"‘N(f)HxHu0 — |

e, < x

mk!
m(m=1)...(m=k+1)u, — f|™*
. MDDy 1
m>k mkla™
ak
_ pg(p)1 (31)
k!

where p(t) satisfy the majorant problem Eq.(28)
for t €[0, 2%)) . Then, p(t) and all its derivatives

with respect to T are increasing functions of t and
so are g(p(t)) and al its derivatives with respect
to o . By using semigroup property and Eq.(29)

|us], < folHo] A7 < [N (uo (. v)] dr
< ['9(p(0)dr <tg(p(1))

=to'(t),
HUZHX_ xdT
< [[g(p(ENe(p(r)dr
PG (e®)9(e)
2l
= tp ”(t). (32)

2!

By induction, we assume that

t“of p(t
fu < =22

and prove that the same relation remains true at
k=n+1:

t n+1a n+1p(t)
Junea] < W

a
E[O,%)

As p(t) isandyticin t for all te[O,%) , for
any small p>0 there exists a C* — function

pP(t) on [0,2%)) such that

p't* afp(t) Pt o0 (1)
1+ p)t
P((1+p)t) = Z P i)
if u? =>"" pu, then
ki k
k p e af p(t)
< 3 plu, < £ PLCPO
_ )
=p((1+pt) ————F——.
p((1+ p)t) (N1 D)
By definition of H , we have
_1d
Hn n dp p=0
_1 d
e N [p=0 (33)
so that
n N 9(/3((1+ p))
ansnl!jpnl\uuﬁ) oo dp - lp=o
B nl et n!
tnan+l t
:—p()’ (34)
nl

where P, isapolynomia of g and its derivatives

up to the N—th order with positive coefficients
(the same as in the proof of Cauchy-Kowalevskaya
theorem). Using the iterative formula, Eq. (29), we
obtain
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n+lAn+l 2abr
t o p(t) <+a? - 2abr (————)™"
nal, < (1), ar <= 200 )
' zw (2k +2n-1)! 2abr . (35)
Therefore, U(t) = Z(:zoun ismajorant in X by k=0 2 (k+n+1)!"a’ —2abr”
the power series I
p a;Zk:Ekzn 1)1)| _ 12k <1, vnk>1,
o tkak +Nn+ n+
p(2t) = Z 8“0('[) = a—+/a?—4abt we obtain
= K
/a _ ( )n+1Z(
which converges for al |t|< 2 Recal the a’ _ZabT k=0 az 2abr
4b 2abr 1 02
congtraint t, €[0,T] in bound Eq.(30). By the If (a2—2abr) <1then 7 &( ’4_b) and we
Weierstrass M-test U(t) = Z:: U, convergence have

in C([0,7],X) for any 7€(0,7,), where

\/6172( 2abr ) 1 )

Ty = min{to,%}, to the unique solution u(t) of a’-2abr” _ 2abr

: a’-2abr
our equation. 2abr
< CO (2—) n+1l
4.7. Corollary gb— 2abr
T
< PPN+l
There exists aconstant C._ > + such that the error = Co( a ) (36)
of the VHPM is bounded by
2br where C _ Va'-2abr When
E,=supju-S,|. <C —”*1 n>1 ° g 2abr
= -5, <o) -

. . n—w, E, — 0. So, with an appropriate choice for
where (a,b,7) are defined in convergence _ .
a and b ZK-equations will be convergent for

theorem.
i
4.8. proof 4o
Now we would like to choose two specia
From convergence theorem we have equations, namely ZK(2,2,2) and ZK(3,3,3) with
han specific initial conditions.
70, p(7) First consider the ZK (2,2,2) equation:
supfug |, < ==

nl 1 1

U+ (U°), + 2 (U)o + 5 (U),, =0, (37)
It follows from the explicit form for p(t) that 8 8
- (2n—3)!!b”a” with specific Aifnitial 2 conditions
PR = (a%—2abr)" 2’ u(x, y,0) = f(x,y) =—§ncosh (X+y),

Asaresult, we obtain where 77 is an arbitrary constant.

Assume 17 =1 and proceeding as before, using

00 rkpk(r) VIM the lagrange multiplier is determined as
Z SUpHU H K A =—1. Based on the VHPM we have:
k n+1 +1 :
|| 2 _
\/3722 (2k 3) abr ) Uy + puU, + pu, +...= F(X,y)

k=n+1 a —2abr
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t
- p'[o((u0 + pu, + pu, +...)%),dr
—1/8pj;((uO + pu, + p%u, +...)?%) dr
—1/8p_|-;((u0 +pu + p°u, +..)%),,d7. (38)

Comparing the coefficient of similar powers of
p or using Eq.(29), we have:

p% Uy (X, y,t) = —gcoshz(x+ y),

t
phiun(x,yt) = -[ (u§),dr

2 o0 o7 =5 (U )l
= (_zgﬁcoshE'(x +y)sinh(x +Y)
—%cosh(x +y)sinh3(x +y)t
p?uy(x,y.t) = —j;(ZUoul)xdT

1 1
*gﬁ(zuoul ) d7 *gﬁ(zuoul )y d7
-(- 5056
27

_817928 sinh*(x+ y)cosh*(x+y) _%? sinh®(x+ y)t*

cosh®(x+Y) —%sinhz(wr y)cosh* (x+y)

t
p? ruz(x,y,t) = —_[O(Zuouz +uf )dr
1t

_8_ 0(ZUOUZ +U12 Yo d7

1t
—§J0(2u0u2+uf)wxdr

- (_% sinh(x+ y)cosh’ (x+Y)

—&57216 sinh®(x+ y)cosh®(x+y)
9551872 .
-y

81

(192512 4 e (x+ y)cosh(x+ y))t*

nh®(x+ y)cosh®(x+Y)

and U(X, Y,t) =D U (X, y,t). By subsiituting

@, in Eq.(37) and studying the result of that in Fig.
1, it is clear that our approximation satisfies the
equation with a high level of accuracy. So,

Z::Oun will be convergent to the exact solution.
To Continue, consider the ZK (3,3,3) equation

U, + (U%), + 2(U°) o + 2(U°), =0, (39)

with specific initial conditions
u(x, y,0) = f(x,y) =1.5nsinh((x+ y)/6), as
mentioned in the previous example we assume
n=1. By using VIM the lagrange multiplier is
determined as 4 = —1. Applying the VHPM gives:
P Uy (X, y,t) =1.5sinh((x + y)/6),

ph (X, t) = -] (uf)dr
2 (U Do d7 =2 (U3 )yl
= (-3sinh?((x +y) / 6)cosh((x +y) / 6)

—gcosh3(( X+y)/ )t

t
P2 iUy (X,y ) = -] (3uguy )xd7

2 j;(sugul Yoo A7 — 2 j;(sugul )y 07

273 . 1641 2

= (asmh ((x+ y)/6)+ﬁsmh ((x+ y)/6)cosh”((x+ y)/6)
+%sinh((x+ y)/6)cosh® ((x+ y)/B)t?
pdug(x,y,t)= —L;(:Suouf +3udu, ) dr

t
—2J.0(3u0u12 +3U8Uy )ix d T

- 2'[;(3110u12 +3U5U,),,,d7
=(- 322218i nh®((x+ y)/6)cosh((x+ Y)/6)
114915

256

16455
128
505
— = cosh’((x+ y)/e)t® 40
256 (x+y)/6)) (40)

and proceeding as before u(x, y,t) = zzoui (X, y,1).

sinh?*((x+ y)/6)cosh®((x+ y)/6)

sinh?((x+ y)/6)cosh®((x+ y)/6)

Substituting ¢, in Eq.(39) and studying Fig. 2
shows that the VHPM gives the solution of Eq. (39)
which has an excellent agreement with the exact
one. So, our applied method is convergent for this

example too.

Fig. 1. The result of subsiituting ¢, in Eq.(37) a
y=.1
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Fig. 2. The result of subsiituting ¢, in Eq.(39) a
y=.1

5. Conclusion

In this work, the variational homotopy perturbation
method using He's polynomials is used to solve
Zakharov-Kuznetsove eguations. As shown, this
method is an effective and straightforward
technique. One important object of our research is
the examination of the convergence of the
variational homotopy perturbation method using
He's polynomials. Convergence theorems are given
in general for partial differential equations and the
result is examined on Zakharov-Kuznetsove
equations as specia cases. The results show that the
VHPM is a convergent method and can be used to
solve other linear and nonlinear equations.
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