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Abstract

In this paper, following the methods of Connor, we introduce some new generalized double difference sequence
spaces using summability with respect to a two valued measure, double infinite matrix and an Orlicz function in 2-
normed spaces which have unique non-linear structure and examine some of their properties.
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1. Introduction

The usual notion of convergence does not always
capture in finite details the properties of the vast
class of sequences that are not convergent. One way
of including more sequences under preview is to
consider those sequences that are convergent when
restricted to some big set of natural numbers. By a
big set one understands a set K — N having
asymptotic density equal to 1. Investigation in this
line was initiated by Fast [1] and independently by
Schoenberg [2] who introduced the idea of
statistical convergence. Over the years and under
different names statistical idea of statistical
convergence has been discussed in the theory of
Fourier analysis, ergodic theory and number theory.
Later on it was further investigated from the
sequence spaces point of view and linked with
summability theory by Connor [3], Fridy [4], Salat
[5], Tripaty [6] and many others. The notion of
statistical convergence was introduced for double
sequences by Mursaleen and Edely [7].

Recently Connor [8] introduced definitions of y -

statistical and g -density convergence where p is

a [0, 1]-valued finitely additive measure defined on
a field of subsets of N. It was shown that these two
summability methods are equivalent iff the measure
which generated them was “nearly” countably
additive, which occurs iff the ideal associated with
the measure contains no proper dense subideal

containing C,. This is a very interesting

generalization of statistical convergence. In
particular, Das and Bhunia recently investigated the
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summability of double sequences of real numbers
with respect to a two valued measure and made
many interesting observations (see, [9]). Quite
recently Das, Savas and Bhunia [10] introduced
some new generalized double difference sequence
spaces using summability with respect to a two
valued measure and an Orlicz function in 2-normed
spaces.

The concept of 2-norm spaces was initially
introduced by Gahler [11, 12] as a very interesting
non-linear extension of the idea of usual normed
linear spaces. Recently a lot of interesting
developments have occurred in 2-normed spaces in
summability theory and related topics [13-16].

The sudy of Orlicz sequence spaces was initiated
with a certain specific purpose in Banach space
theory. Indeed, Lindberg [17] become interested in
Orlicz spaces in connection with finding Banach
spaces with symmetric Schauder bases having

compelementary subspaces isomorphic to C, or

£ (1< p<oo). Subsequently Lindenstrauss and

Tzafriri [18] investigated Orlicz sequence spaces in
more detail and they proved that every Orlicz

sequence space {,, contains a subspace
isomorphic to ¢ (1< p<o0). Recently, Parashar

and Choudhary [19] have introduced and discussed
some properties of the four sequence spaces defined
by using Orlicz function M, which generalized the

well known Orlicz sequence space ¢,, and

strongly summable sequence spaces. The Orlicz
sequence spaces are the special cases of Orlicz
spaces studied in [20]. Orlicz spaces find a number



1JST (2012) A3 (Special issue-Mathematics): 1-12

342

of useful applications in the theory of nonlinear
equations.

In this article some new sequence spaces are
introduced by combining a four dimension matrix
transformation A, Orlicz functions, generalized
double difference sequences and a two valued
measure [ in 2-normed spaces.

2. Preliminaries

By the convergence of a double sequence we mean
the convergence in Pringsheim’s sense (see, [21]):

A double sequence X=(X,) of real numbers is
said to be convergent to £ € R if for any £ >0,
there exists N, € N such that |Xkl —§|<£
whenever K,I > N_.
lim x, =¢&.

K,| >

In this case we write

A double sequence X = (X, ) of real numbers is
said to be bounded if there exists a positive real
number M such that |Xk||< M for all K, €N,

That is ”X”(w 5= E,luelr?1|xkl | <00,

Definition 2.1. ([12]). Let X be a real vector space
of dimension d, where 2 < d < . A 2-norm in on
X'is a function |.,J: X x X — R which satisfies (i)

|

,y||:0 if and only if X and y are linearly

+[x,Z|- The ordered

5 ) is then called a 2-normed space.

pair (

3. Results

As an example we may take X = R’ being

=the area of the

equipped with the 2-norm

parallelogram spanned by the vectors X and Y,
which may be given explicitly by the formula

X y” :|X1y2 =XV, X=(X%:%), Y=(Y,, ¥,)-
Recall that (X, ) is a 2-Banach space if every

Cauchy sequence in X is convergent to some X in
X.
Recall in [20] that an Orlicz function

M :[0,00) —[0,0) is a continuous, convex and
non decreasing function such that M(0)=0 and
M(X)>0 for x>0, and M(X)—>o as
X —> 0.

Y

Natural density was generalized by Freeman and
Sember in [22] by replacing C1 with a nonnegative
regular summability matrix A=(Q,,). Thus, if K
is a subset of N then the A-density of K is given by
Sp(K)=1lim, >
K < N x N be a two-dimensional set to positive
integers and let K(M N) be the said numbers of
(1,]) in K such that i <n and j <M. The two-

dimensional analogues of natural density can be
defined as follows: The lower asymptotic density of
aset K = N x N is defined as

a, if the limit exists. Let

5(K) = liminf 2™
mn m
Kmm
mn

limit in the Prinhsheim sense then we say that K has
a double natural density as

mn

In case the double sequence

P-— hm (K).

Let K< NxN be a two-dimensional set of
positive integers, then the A-density of K is given
by

§2A(K)_ _hm Z Akl

" (kNeK

provided that the limit exists. Then the notion of
double asymptotic density for double sequence was
presented by Mursaleen and Edely in [7] as follows.

Definition 3.1. ([7]). A double sequence X=(X,)
of real numbers is said to be statistically convergent
to £ €R ifforany & >0 wehave d,(A(g))=0,
where A(g) = {(k,1) e Nx N:|x, — &> &}.
Throughout the paper & will denote a complete
{0,1} valued finite additive measure defined on an
algebra I" of subsets of N x N that contains all
subsets of N x N that are contained in the union of
a finite number of rows and columns of N x N
and ,u(A) =0 if A is contained in the union of a
finite number of rows and columns of N x N,

(see, [9]).

Definition 3.2. [9] A double sequence X = (X, )

e

) is said to be

in a 2-normed space (X,
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) if for each & >0

convergent to & in (X,

.ye

and each Ze X there exists n, e N such that

%~

< ¢ forall K, 2n,.

Definition 3.3. [9]. Let & be a two valued measure
on NxN. A double sequence X=(X,) in a 2-

normed space (X ,. ) is said to be p -statistically

convergent to some point X in X if for each pre-
assigned & > 0 and foreach ze X,

“(ANZe)=0
where A(z €)= {(k,l) e NxN :”Xkl

3

If a double sequence X=(X,) is p-

statistically convergent to a point X in a 2-normed

R ) then we write

=0

— lim ||XkI

k| >0

or

k,| >0

Here, X is called s -statistical limit of the

sequence (XkI ) .

Definition 3.4. [10]. Let u# be a two valued
measure on N xN. A double sequence

X=(X,) of the points in a 2-normed space
(x.
there exists a set M e with #(M)=1 such

).

If u= {ul,uz,us, ....... ,Ud} is the basis of the

) is said to be &€ X in p -density if

Y

that (X, ) is convergent to & in (X,

Y

. ), then we can have the

2-normed space (X, .

following result.

Lemma 3.1. [10]. x is a two valued measure. A
double sequence (Xkl) is  u -statistically

convergent to Xe X if and only if
p— lim || = XU =0 forevery i =1,23.....d.

k,|—)oo

Definition 3.5. Let ¢ be a two valued measure on
N x N. A double sequence X=(X,) in a 2-

) is said to be 4 (A)-

statistically convergent to L if for every positive &
,uA({(k,|)E Nx N :[A™x, - }):0.
In this case we write X — L(x,(A))

normed space (X, .-

or u,(A)—limx =L, and
yA(A)z{X:EI LeR,yA—limX:L}.

4. New double sequence spaces

Recall that a mapping g: X =R is called a
paranorm on X if it satisfies the following
conditions: (i) Q(€)=0 where 0 is the zero
element of the space; (i) g(X)=0(-Xx); (iii)
gx+y)<gX+g(y); (iv) A"—>1 (n—>w)
and g(X"=x) >0 (n— ) imply
gA"X" =) >0 (n—>o) for all X, ye X (see,
[23]). The ordered a pair (X,Qg) is called a

paranormed space with respect to the paranorm g.
We now state an inequality which will be used

throughout in our study: If (pkl) be a bounded

double sequence of non-negative real numbers and
Supy ey Py =H and D =max{1,2" "'}, then

3 + | < D{ [ag|™ +[b ||

for all k! and @, bkl € C, the set of all complex

numbers. Also,
|a|™ < max{l,|a"}

forallae C.

Throughout this paper we shall examine our
sequence spaces using the following
transformation:

Definition 4.1. Let A=(,,,,,) denote a four

dimensional summability method that maps the
complex double sequences X into the double

sequences AX where the mn-th term to AX is as
follows:

(AX)m,n = za‘m,n,k,l Xy -

KI=1,1

Such transformation is said to be non-negative if

a | is nonnegative for all M N, kandl .

m,n,K,
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) be any 2-normed space and

Let (X,
S'(2—X) denotes X-valued sequence spaces.

o9l

Clearly S'(2—X) is a linear space under
addition and scalar multiplication.

Definition 4.2. Suppose that, as before, 4 is a two
valued measure on N x N and M be an Orlicz

function and (X, ) be a 2-normed space.

Further, let P= (P, ) be a bounded sequence of

positive real numbers. Now we introduce the
following different types of sequence spaces, for all

>0

WA M, A", p, |.])={xeS"@2-X): u((mn)eNxN:
ow Am L Pwi
a_ .| M L,z‘ >¢|=0,
k.1=0,0 P >

for some p>0and L € X and each z € X
W,“(A, M, A", p, )
={xeS"2-X):u((mn)eN xN :

Pu
Z Bk |:M [ ]] 2¢|=0,
k,1=0,0 3

for some p >0 and each z € X
W_“(A, M, A", p, ||
={xeS"(2-X):3k >0,u((m,n)eN xN :

£ o

k,I=0,0
for some p >0 and each z € X

oy

A™X
o,

,Z

m
A

2

where
m m-1 m-1 m-1 m-1
Ay =A7 Xy = AT Xy — AT X FAT Xy

Let us consider a few special cases of the above
sets.

(1) If M(X)=X, then for all X€[0,00) the
above classes of sequences are denoted by
WHA A", p, o), W (A A", p, ||...[) and

W, (A A", p,

@) If py, =1, forall (K,I)€ Nx N, we denote
the above classes of sequences by

W (A M, A", LD, W (A M, A",

and W_“(A M, A",

.y 5

) respectively.

eye

.y

)

) respectively.

ey

3) If M(X)=X, for all Xe[0,00), and
P, =1 for all (K,)eNxN, then we
denote the above spaces by
WHCA AT, (L), W (A AT,

W, “(AA™,.,.

(4) If we take A=C(l, 1), i.e., the double Cesaro

matrix, we denote the above classes of
sequences by

WHM, A", p, [..f), W*(M, A",
W A(M, A", p, ||,
(5) If we take A=(C, 1, )and p,, =1 for all

(k,|)€ Nx N, then we denote the above
spaces by
WM, A™, |, W (M, A™,

Woo#(Ma Ama pa (TR
(6) If we take A=(C, 1, I)and M(X)=X for
all Xe€[0,0), and P, =1 for all

) and

.y

) respectively.

) and

.y

) respectively.

) and

ey

) respectively.

(K,])e Nx N, then we denote the above
spaces by

WA A™, ||, W am,

W, (A", ) and W_“(A™,

(7) Let us consider the following notations and

definitions. The double sequence

9r,5=(k I ) is called double lacunary if

r>'s

)

) respectively.

ey

.y ey

there exist two increasing sequences of integers
such that

k,=0,h =k, —K,_, >oasr > o,
l,=0,hy=1,-1,, > oass—> o,

and let F]r,s=hrhs, 0,

e :{(i, j):kr_1 <i<k andl_, < | gls},
(see, [24], [25]). If we take

ﬁls if (k,D)el, g;
L Rk T

is determined by

0 otherwise.

We write
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W@, M, A", p, [..])
={x €S"(2-X):u((r,s)eN xN :
A™x, —-L ‘

p b

Pu
_1 Z M z >e |=0,
hr,s (k,lel s >

for some p>0andL € X and each z € X
W@, M, A", p, ||,)
={xeS"(2-X):u((r,s)eN xN :

Pui
_L Z M 2¢|=0,
hr,s (k,Del g 5

for some p >0 and each z € X
W_“(6, M, A", p, )

={x €S"(2-X):3k >0, u({(r,s)eN xN :

1 Pu
— > M >k
hr,s (k,hel g

for some p >0 and each z € X

.y

A™X
Yol

,Z

.o

A"Xg

,Z

0,

As a final illustration let

if (K,I)eli;;

B

a k. :{ X

0
where we shall denote /_1i, j by 4 M and
(kellel)) by (Kheli. Let A=(4)

and p = (u j) be two non-decreasing sequences of

otherwise.

positive real numbers such that each tend to c and
Aa<A+L A =0 and gy, <pp+l, 4, =0.
Then our definition reduces to the following

WA, M, A", p, [ )
:{X €S"(2-X):pu((i,j)eN xN:

for some p>0and L € X and eachz € X

.y

A"x, —L
p b

W()#(/l, M > Ama p5 )
={xeS"2-X):u((i.j)eN xN :

Py
Aij ke ,

for some p >0 and each z e X
W, (4, M, A", p, |l
={xeS"(2-X):3k >0,u({(i,j)eN xN :

Pu
1
L M >k} =0,
/Ihi (k,éi,i[ [ J:I } .

for some p >0 and each z € X

.y

m
ATXy

p b

.y

A™x
Kkl ,Z

We now have

Theorem 4.1.
W#(As M5 Am’ p5 ",")5 VV()N(AB M5 Am’ p:
and W_“(A M, A™, p,

)

) are linear spaces.

ey

Proof: We shall
W (A M, A", p,

proved similarly. Let & >0 be given. Assume that
Xy eW (A M, A", p, [.[) and @,B€R,

where X=(X,) and Y=(Y, ). Further, let

prove the theorem for

) and others can be

.y

ze X . Then

y[{(m,n)eN <N :kzoa‘“”“ {M (%‘k',z Hp 28}]—0(1)
for some p, >0 and
yHUmMeNxN}E;QM{M[Arf,ZH%ZEH=OQ)

for some p, > 0.

is a 2-norm, A" is linear, therefore the

)

stamnk[ o M(HAka' 2

Since |.,.

following inequality holds:

5 o[l

| lalo+[Ble,
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4]

z
], +18] o,

” P> ’

+D Z a'mnkl|:
k,1=0,0

M [”Amykl

I

Pui
<DF Y an {M (ﬂ,z H
K.1=0,0 P
Pui
DF Y a, {M (M,z H
K1=0,0 P,
where
H H
F = max 1,|: |a| } , |'B| }
|O!|,01 +|ﬂ|p2 _|0(|p1 +|ﬂ|p2

From the above inequality we get,

g

g{(m,n)eNxN:DF f A

k,1=0,0

Am(axm +,BYK|) 2
|| o, + || o,

M[A X‘",z

P

M(A ya,z
P>

Hence from (1) and (2) the required result is
proved.

k,1=0,0

{(m,n)eNxN: i A

u{(m,n)e NxN:DF f A

k,1=0,0

Theorem 4.2. For any fixed (MN)eNxN,
W “(A M, A", p, ) s

space with respect to the paranorm ¢, : X - R,

a paranormed

ey

defined by
< Amxkl " G |
Z A M »Z = Z A M
k.1=0,0 k.1=0,0
~ 1 Am_1)(s+1’[+1
B | [ M | [——,
hEMIE ( -

s,t+1

p 2

A™ X

1 P
+—M[ ZJ
4

DG f A | | M

K .1=0,0

+M(

P

m-1
A Xk,l+1

P

,Z

|An‘HXk+1,I+1 B An‘ka+1,l B An‘ka,H-l + ArrHXkl

Pm 0,
G (¥)=inf 1 p -

k,1=0,0

Proof: The proof follows on the same lines adopted
by Savas[15]. So it was omitted.

Theorem 4.3. Let X(Am_l), M>1 stands for
WA M, A™ p, L) or WA (A M, A™ p, L))
WA M, A™ p, [l..]). Then
X(Am_l)g X( m). In general, X(Ai )E X( m)
forall 1 =1,2,3,....,m—1.

or

Proof: We shall
W“(A M, A™, p,

in a similar way for W*(A M, A™ D,
WA M, A™, p, |||

X=(%g) eW (A M, A™, p, |-
Also, Let & >0 be given. Then

]

for some o >0. Since M is non-decreasing and

the for

,”) only. It can be proved
,”) and

give prove

.y

Let

ey

m-1
A"Xy

,Z

k.1=0,0

y{{(m,n)eN xN : i A

convex it follows that

JR&

2

Amflx "
P

|

+| =M
4

m-1
A Xk+1,|+1 7

Pui

1

4p
B Pu
+ lM Am 1XS+l,t ,Z
4 p
Am_lx Pu
st .z
p J
Pu m_1 Pu
+ M A Xk+1,| ,Z
L

9

)
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H
where G = max{l,(%j } Hence we have

(mn)e NxN: f amk,{M(

k,1=0,0

ci(mn)e NxN:D’G Z A

k,1=0,0

k,1=0,0

2~ N Am_lxkl
UM eNxN:D’G ) a,|M||—,z

Using (3) we get

A™X
4p

,Z

-4

).

,u[{m,n)eNxN: f amnk[M[

k,1=0,0

Therefore, X=(X,) €eW,“(A M, A", p,
This completes the proof.

.y

Theorem 4.4. (i) Let 0 <inf p, < P, <1. Then
W,U(A7 M b Am’ p’ ||'5'||) CWN(A’ M 2 Am’ ) .

ey

(i) I < py <sup p, <. Then

WH(A M, A",

YCWH(A M, A", p, ||.,.||).

oy

Proof: (i) Let
X = (Xkl ) EWIM(Aﬁ M s Amﬂ pa
& >0 be given. Then

@, m-1 Pu 4
{(m,n)eN xN: Y an, {M [sz‘m >5H_0( )
k.1=0,0 4

for some p>0. Since 0<inf p, < p, <1,

we have

) . Let also

.9

U

Pu
m
A" } .,

Ui (MmN eNxN:DG Y a [ M

k,1=0,0

0,00 Am—lxk
U(mmeNxN:D’G ) a,, M{—"”,z

k,1=0,0

Am—l Pu
M Xs1i41 7 > &
p 4
B Amflxk Bk
—*1"’ Z > E
Yo, 4
r TPu
&
o 4
Pu
>
P 4

A"x,, —L ,
p b

ko]
(=2

A", —L ,

-
)

(i) Let Py =1 for each k|, and sup p, . Let
(Xk,l) EW#(A M H Ama

each 0 <& <1 there exists a positive integer
N such that

L 1

amnkl l: M [
k,1=0,0

< Z a‘mnkl |:M [

So

k,[=0,0

{(m,n)eNxN: f A

C{(m,n)eNxN: i a,mk[M[

k,1=0,0

Finally, from (4) we get

A", - L

u[{(m,n)eNxN: famk[lvl[

k,1=0,0

). Then for

.y
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00,00 Am _ L
D an| M ‘Xk—',z <e<l
K.1=0,0 P
for all N,M> N . This implies that
Pk
& A", —L
z arnnkl M “ ’Z
k.1 =0,0 P
2 A"X,, —L
< Z a'mnkl M ’ ’
K.1=0,0 P
So we have

(mmeNxN: S %[M[H“k—_%‘
k1=0,0 P

-
I8

A", —L 5
P

g{(m,n)eNxN: f amnk[M[

k,1=0,0

As above we have

H

k.1=0,0

{(m,n)eN xN : i A {M [

This completes the proof.
The following corollary follows immediately
from the above theorem.

Corollary 4.1. Let A=(C, 1, 1) double Cesaro
matrix and let M be an Orlicz function.
(@ If 0 <inf py, < p, <1, then

W4M, A", p, ||...[) cW“(M, A", |.,.]).
(b) 1< p, <supp, <oo,then
WHM, A", |l,.h) cW“(M, A™, p, ||...])-

In the next theorem we establish a connection
between W”(A M, A", p, ) and 1,(A).

We now have

.y

Theorem 4.5. If M is an Orlicz function and
0<h=inf p, < py <sup,, B =H <o,

then W (A M, A", p,[.]) = z4(A) .

.90

Proof: If XGW”(A,M,Am, p, ), then there

exists 0 >0 such that

e9e

A, —L H H
—.Z >e¢|=0.
P

y[{(m,n)eN xN : E A {M(

k.1=0,0

ﬂ 28}}0_(5)

. &
Then given £>0 and let £ =— ¢ obtain the

following:

-

Pxi
A"X,, —L , J

Z amnkl M [
k,1=0,0

= z &0k M

K.l :O,O;HA"‘XH 7|_,zH >e

Pk
g A", —L , J

TPl

K1=0,03A"x,  ~L,7<z

0,00

2 Z a'm,n,k,l M

kI :0,0;HAmka —L,ZHZg

0,00

s 3 g (minf (M()] ME)]))

K1=0,05|A"x ~L, =2

Z(min{ [M (gI)Jh,[NI (81)]H} ) > B nkl

K1=0,0A" -L, 722

Z(min{ [M (&‘I):Ih,I:M(El):IH} ),UA({ (kD eNxN:[a™, -L.7>e) ).

=2 A", - L
+ Z A | M ( — 7
M

Finally, from (5) we have X € t A(A) .
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