http://www.shirazu.ac.ir/en

On the theory of strips and Joachimsthal theorem in the Lorentz space \mathbb{L}^n , (n > 3)

A. Tutar* and O. Sener

Ondokuz Mayıs University, Science and Arts Faculty, Department of Mathematics, 55139, Atakum, Samsun, Turkey E-mails: atutar@omu.edu.tr & ondersener_55@hotmail.com

Abstract

In this study the theory of strips and Joachimsthal Theorem in \mathbb{L}^3 are generalized to Lorentz space \mathbb{L}^n , (n > 3). Furthermore, the Joachimsthal Theorem is investigated when the strip is time-like and space-like.

Keywords: Curvature strip; semi-Euclidean space; Joachimsthal Theorem

1. Introduction

The theory of strips and Joachimsthal Theorem in \mathbb{L}^3 is studied in [1]. Also, in [2] the higher curvatures of a strip in E^n is studied. The behavior of curvature lines near a principal cycle common to two orthogonal surfaces, as a complement of Joachimsthal theorem, is studied in [3]. Furthermore Joachimsthal's theorems in Euclidean spaces E^n are given in [4]. Using Cartan's structure equations, Joachimsthal's theorems in semi-Euclidean spaces E_v^{n+1} are studied in [5]. In this section, some basic concepts and

definitions in the Lorentz *n*-space \mathbb{L}^n are given.

 \mathbb{R}^n equipped with the Lorentzian inner product

$$\langle X, Y \rangle_{\mathbb{L}} = \sum_{i=1}^{n-1} x_i y_i - x_n y_n \tag{1}$$

is called *n*-dimensional Lorentz space and denoted by \mathbb{L}^n .

In \mathbb{L}^n , a vector X is said to be time-like if $\langle X, X \rangle < 0$, space-like if $\langle X, X \rangle > 0$ or X = 0 and null if $\langle X, X \rangle = 0$ and $X \neq 0$. In addition, the norm of a vector $X \in \mathbb{L}^n$ is defined by $||X|| = \sqrt{|\langle X, X \rangle|}$ in [6].

Let α be a curve in \mathbb{L}^n and α' be the velocity vector of α , where (') denotes the derivation with respect to the parameter s.

The curve α is called time-like if $\langle \alpha', \alpha' \rangle < 0$, space-like if $\langle \alpha', \alpha' \rangle > 0$, null if $\langle \alpha', \alpha' \rangle = 0$.

*Corresponding author

Received: 12 December 2011 / Accepted: 8 February 2012

The bilinear function $g: V \times V \to \mathbb{R}$ is called a symmetric bilinear form on V if g(v,w) = g(w,v) for every $v, w \in V$, where V is finite dimensional real vector space.

A symmetric bilinear form g on a real vector space V is

i) positive definite provided it implies q(v, v) > $0, v \in V$.

ii) negative definite provided it implies g(v, v) < v $0, v \in V$

iii) nondegenerate provided g(v, w) = 0 for all $w \in V$ implies v = 0 [6].

If g is a symmetric bilinear form on V, then the restriction $g|_{W \times W}$ for any subspace W of V, denoted by $g|_W$, is again symmetric and bilinear. The index ν of a symmetric bilinear form g on V is the largest integer that is the dimension of a subspace W on which $g|_W$ is negative definite. Obviously, $0 \le \nu \le \dim(V)$.

Symmetric, bilinear and nondegenerate function

$$g: \chi(M) \times \chi(M) \longrightarrow C^{\infty}(M, \mathbb{R})$$

is called a metric tensor on M. If g is a metric tensor with constant index on M, the pair (M, g) is called semi-Riemannian manifold. If dim $(M) \ge 2$ and $\nu = 1$, the pair (M, g) is called a Lorentz manifold.

Let $j: M \to \mathbb{L}^n$ be an inclusion transformation. If $j^*(g)$ is a metric tensor on *M*, then *M* is called the Lorentz submanifold. If $\dim(M) = n - 1$, the submanifold is called a hypersurface of \mathbb{L}^n .

Let M be a hypersurface in \mathbb{L}^n . It is called timelike hypersurface if normal of M is space-like (space-like hypersurface if normal of M is timelike).

Let *M* be a time-like hypersurface in \mathbb{L}^n and α be a time-like curve on *M*. The geometric shape which is constituted by points of curve α and surface tangents at these points is called time-like surface strip along the given curve and is denoted by (α, M) . The strip (α, M) is called space-like surface strip if *M* is space-like hypersurface and α is a space-like curve.

2. The Higher Curvatures of a Strip in \mathbb{L}^n

Let *M* be a hypersurface in \mathbb{L}^n and α be a curve given with the arc-parameter *s*. Let $\{V_1, V_2, ..., V_n\}$ be a Frenet *n*-frame at the point $\alpha(s)$, taking $Z_1 = V_1$ and \mathcal{F}_0^1 be a set of orthonormal frame $\{Z_1, Z_2, ..., Z_n\}$ at the point $\alpha(s)$. Taking Z_n a unit normal vector of *M* at the point $\alpha(s)$, $\{Z_1, Z_2, ..., Z_{n-1}\}$ is an orthonormal base of $T_M(\alpha(s))$.

For vector fields Z_i

$$Z_i = \sum_{j=1}^n g_{ij} \frac{\partial}{\partial x_j} , \qquad 1 \le i, j \le n$$

may be written, where $x_i, 1 \le i \le n$, are coordinate functions in \mathbb{L}^n . We may write

$$Z = GE \tag{2}$$

where $[Z_1 \ Z_2 \ \dots \ Z_n]^T = Z$, $[\frac{\partial}{\partial x_1} \ \frac{\partial}{\partial x_2} \ \dots \ \frac{\partial}{\partial x_n}]^T = E$ and $G \in O_{\nu}(n)$. If Eq. (2) is derivated with respect to the arc-parameter *s*, then

$$\frac{dZ}{ds} = \frac{dG}{ds}E$$

is obtained. Moreover, since $G \in O_{\nu}(n)$, we may write

$$GG^{-1} = G(\varepsilon G^T \varepsilon) = I_n , \qquad (3)$$

where ε is a sign matrix of G. That is

$$\varepsilon = \begin{bmatrix} \varepsilon_0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \varepsilon_0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \varepsilon_0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \varepsilon_0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & \varepsilon_0 \end{bmatrix},$$

$$\varepsilon_0 = \begin{cases} 1 & , & \text{if } Z_i \text{ space-like} \\ -1 & , & \text{if } Z_i \text{ time-like.} \end{cases}$$

$$\left(\frac{dG}{ds}G^{-1}\right) + \varepsilon \left(\frac{dG}{ds}G^{-1}\right)^T \varepsilon = 0$$

is obtained. If we denote

$$\frac{dG}{ds}G^{-1} = \Omega$$

we have

$$\Omega^T = -\varepsilon \Omega \varepsilon.$$

This shows that Ω is a semi anti-symmetric matrix. Then we may write

$$\frac{dZ}{ds} = \Omega Z.$$

This expression can be written in the matrix form as follows:

$$\begin{vmatrix} \frac{dZ_1}{ds} \\ \frac{dZ_2}{ds} \\ \vdots \\ \frac{dZ_{n-1}}{ds} \\ \frac{dZ_{n-1}}{ds} \end{vmatrix} = \begin{bmatrix} 0 & \varepsilon_0 t_{12} & \varepsilon_0 t_{13} & \cdots & \varepsilon_0 t_{1(n-1)} & \varepsilon_0 t_{1n} \\ -\varepsilon_0 t_{12} & 0 & \varepsilon_0 t_{23} & \cdots & \varepsilon_0 t_{2(n-1)} & \varepsilon_0 t_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -\varepsilon_0 t_{1(n-1)} & -\varepsilon_0 t_{2(n-1)} & -\varepsilon_0 t_{3(n-1)} & \cdots & 0 & \varepsilon_0 t_{(n-1)n} \\ -\varepsilon_0 t_{1n} & -\varepsilon_0 t_{2n} & -\varepsilon_0 t_{3n} & \cdots & -\varepsilon_0 t_{(n-1)n} & 0 \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_{n-1} \\ Z_n \end{bmatrix}$$
(4)

Here the functions

$$t_{ij}: I \longrightarrow \mathbb{R}$$
, $1 \leq i, j \leq n$

are called higher curvature functions of the strip (α, M) and the real number $t_{ij}(s) \in \mathbb{R}$ is said to be higher curvature of (α, M) at the point $\alpha(s)$ for every $s \in I$. If *S* is the shape operator of *M* and α is a curvature line, we may write

$$S(Z_1) = k_1 Z_1$$
, $k_1 \in \mathbb{R}$.

Moreover, since

$$S(Z_1) = -\frac{dZ_n}{ds} ,$$

$$t_{2n} = t_{3n} = \dots = t_{(n-1)n} = 0$$

is obtained from the matrix Ω . Then we can state the following theorem:

Theorem 2.1. Let (α, M) be a strip in \mathbb{L}^n . If α is a curvature strip, then for the higher curvature functions $t_{ij} : I \to \mathbb{R}$, $1 \le i, j \le n$, we have

$$t_{2n} = t_{3n} = \dots = t_{(n-1)n} = 0$$

If $t_{2n} = t_{3n} = \cdots = t_{(n-1)n} = 0$ for the strip (α, M) in \mathbb{L}^n , the strip is said to be curvature strip. If we take n = 3, then t_{23} equals 0. This shows that (α, M) is a curvature strip in \mathbb{L}^3 . **Theorem 2.2.** Let M_1 and M_2 be two time-like hypersurfaces in \mathbb{L}^n and α be a differentiable time-like curve, where $\alpha(I) \subset M_1 \cap M_2$. If time-like strips (α, M_1) and (α, M_2) are curvature strips, then the angle between (α, M_1) and (α, M_2) is constant.

Proof: Let $\{Z_1, Z_2, ..., Z_{n-1}, Z_n\}$ and $\{X_1, X_2, ..., X_{n-1}, X_n\}$ be vector field systems of the strips (α, M_1) and (α, M_2) , respectively. Let t_{ij} and \bar{t}_{ij} , $1 \le i, j \le n$ be higher curvature functions of (α, M_1) and (α, M_2) , respectively. In this case, from (4)

$$\frac{dZ_n}{ds} = -\varepsilon_0 t_{1n} Z_1 \tag{5}$$

and

$$\frac{dX_n}{ds} = -\varepsilon_0 \bar{t}_{1n} X_1 \tag{6}$$

are obtained. If θ is the angle between (α, M_1) and (α, M_2) , we can write $\langle Z_n, X_n \rangle = \cos \theta$ (see [7]). If this expression is derived with respect to *s*,

$$\langle \frac{dZ_n}{ds}, X_n \rangle + \langle Z_n, \frac{dX_n}{ds} \rangle = -\sin\theta \frac{d\theta}{ds}$$

is obtained. If we use (5) and (6),

$$-\varepsilon_0 t_{1n} \langle Z_1, X_n \rangle - \varepsilon_0 \bar{t}_{1n} \langle Z_n, X_1 \rangle = -\sin\theta \frac{d\theta}{ds} \quad (7)$$

is obtained. Since $\{V_1, V_2, ..., V_n\}$ is Frenet *n*-frame at the point $\alpha(s)$, we have $Z_1 = V_1$ and $X_1 = V_1$. Therefore, from (7) $\sin \theta \frac{d\theta}{ds} = 0$ is obtained. If $\sin \theta = 0$, then $\theta = 0$ or $\theta = \pi$. This means that the time-like strips (α, M_1) and (α, M_2) are congruent. Then $\frac{d\theta}{ds} = 0$ is obtained. This shows that θ is constant.

Now we express and prove the Theorem 2.2 in the case of the strips (α, M_1) and (α, M_2) being space-like.

Theorem 2.3. Let M_1 and M_2 be two space-like hypersurfaces in \mathbb{L}^n and α be a differentiable space-like curve, where $\alpha(I) \subset M_1 \cap M_2$. If the space-like strips (α, M_1) and (α, M_2) are curvature strips, then the angle between (α, M_1) and (α, M_2) is constant.

Proof: Let $\{Z_1, Z_2, ..., Z_{n-1}, Z_n\}$ and $\{X_1, X_2, ..., X_{n-1}, X_n\}$ be vector field systems of the strips (α, M_1) and (α, M_2) , respectively. Let t_{ij} and \bar{t}_{ij} , $1 \le i, j \le n$, be higher curvature functions of (α, M_1) and (α, M_2) , respectively. In this case, from (4)

$$\frac{dZ_n}{ds} = -\varepsilon_0 t_{1n} Z_1 \\
\frac{dX_n}{ds} = -\varepsilon_0 \bar{t}_{1n} X_1$$
(8)

or

$$\left. \begin{array}{l} \frac{dZ_n}{ds} = -t_{1n}Z_1\\ \frac{dX_n}{ds} = -\bar{t}_{1n}X_1 \end{array} \right\} \tag{9}$$

are obtained. If θ is the angle between (α, M_1) and (α, M_2) , then we may write

$$\langle Z_n, X_n \rangle = ch\theta$$
 (see [7]),

since Z_n and X_n are unit time-like vectors. If this expression is derivated with respect to s,

$$\langle \frac{dZ_n}{ds}, X_n \rangle + \langle Z_n, \frac{dX_n}{ds} \rangle = sh\theta \frac{d\theta}{ds}$$

is obtained. If we use equation (9), then

$$-t_{1n}\langle Z_1, X_n \rangle - \bar{t}_{1n}\langle Z_n, X_1 \rangle = sh\theta \frac{d\theta}{ds}$$
(10)

is obtained. Since $\{V_1, V_2, \dots, V_n\}$ is Frenet *n*-frame at the point $\alpha(s)$, we have $Z_1 = V_1$ and $X_1 = V_1$. Therefore, from (10)

$$\frac{d\theta}{ds}sh\theta = 0. \tag{11}$$

If $sh\theta = 0$, then $\theta = 0$. That means the space-like strips (α, M_1) and (α, M_2) are congruent. So $sh\theta \neq 0$. Hence $\frac{d\theta}{ds} = 0$. It is seen that θ is constant.

Theorem 2.4. Let M_1 and M_2 be two hypersurfaces in \mathbb{L}^n . Let α be a nonplanar time-like curve on M_1 and β be any time-like curve on M_2 . Let *P* be a hypersurface which is rolling along the curves α and β on M_1 and M_2 . If the time-like strips (α , M_1) and (β , M_2) are curvature strips, then the distance between the corresponding points is constant.

Proof: Suppose that α and β are two curves with the arc-parameter s_1 and s_2 , respectively. Let $\{Z_1, Z_2, \dots, Z_{n-1}, Z_n\}$ and $\{X_1, X_2, \dots, X_{n-1}, X_n\}$ be strip vector field systems at the point $\alpha(s_1)$ and $\beta(s_2)$, respectively. Since the points $\alpha(s_1)$ and $\beta(s_2)$ are at the common tangent space of M_1 and M_2 , we may say $V(s_1) \in T_M(\alpha(s_1))$, where $V(s_1)$ is a unit vector on the line combining the points $\alpha(s_1)$ and $\beta(s_2)$. Therefore, we may write

$$V(s_1) = \sum_{i=1}^{n-1} h_i Z_i \quad , \quad h_i(s_1) \in \mathbb{R}.$$
 (12)

Furthermore, we may write

$$\beta(s_2) = \alpha(s_1) + \lambda(s_1) \mathbf{V}(s_1) \tag{13}$$

Since (α, M_1) and (β, M_2) are curvature strips, from (4) we may write

$$\frac{dZ_n}{ds_1} = -\varepsilon_0 t_{1n} Z_1 \\ \frac{dX_n}{ds_2} = -\varepsilon_0 \bar{t}_{1n} X_1 \bigg\}.$$
(14)

Since time-like hypersurfaces M_1 and M_2 have the common tangent space along α and β , the unit normal vector fields of M_1 and M_2 are the same. In this case, from (14)

$$t_{1n}Z_1ds_1 = \bar{t}_{1n}X_1ds_2.$$

can be written. If the norm of the two sides of the above equation is taken, since X_1 and Z_1 are unit time-like vector fields

$$\frac{ds_1}{ds_2} = \frac{|\bar{t}_{1n}|}{|t_{1n}|}$$
(15)

is obtained. Let us denote

$$\frac{|\bar{t}_{1n}|}{|t_{1n}|} = k.$$
 (16)

If Eq. (13) is derivated with respect to s_1 , and Eqs. (15) and (16) are kept in mind, then

$$X_1 = kZ_1 + k\frac{d\lambda}{ds_1}V(s_1) + k\lambda(s_1)\frac{dV}{ds_1}$$
(17)

is obtained. If Eq. (12) is replaced in the last equation and we consider $\langle X_1, X_n \rangle = 0$ and $Z_n = X_n$, then

$$\sum_{i=1}^{n-1} \varepsilon_0 h_i t_{in} = 0$$

is obtained. Since (α, M_1) is curvature strip, we have $t_{2n} = t_{3n} = \cdots = t_{(n-1)n} = 0$. In this case, since $t_{1n} \neq 0$, from the last equation we have $h_1(s_1) = 0$. If we consider Eq. (13), then

$$\langle Z_1, V(s_1) \rangle = 0 \tag{18}$$

is obtained. Moreover, since $Z_n = X_n$, Z_1 and X_1 are linear dependent. Therefore we have

$$\langle X_1, V(s_1) \rangle = 0.$$

If Eq. (17) is replaced in the last equation, then we obtain

$$k\frac{d\lambda}{ds_1} = 0.$$

Since the curve α isn't planar, $k \neq 0$. This shows that λ is constant.

Example 2.1. Let's take the Lorentz sphere $S = \{\alpha(u, v) = (rchu \cos v, rchu \sin v, rshu): 0$ $\leq v \leq 2\pi, u \in \mathbb{R}\}$

in \mathbb{L}^3 . If Lorentz sphere S is derived with respect to parameter u, we obtain

 $\alpha_u = (rshu\cos v, rshu\sin v, rchu).$

If we compute geodesic curvature k_g of the parameter curve α_u , we find $k_g = 0$. Here $k_g = t_{12}$. Then we can say that the α_u is a geodesic curve on *S*. In this case the geodesic torsion τ_g of α_u is equal to the torsion τ of α_u and we compute $\tau = 0$. Since $\tau_g = \tau$, we obtain $\tau_g = t_{23} = 0$. This shows that the pair of (α_u, S) is a curvature strip.

Now let us show this with a Fig.

Acknowledgments

The authors thank the referee for the useful suggestions and remarks for the revised version. This study is supported by the University of Ondokuz Mayıs Project no PYO.FEN.1904.11.007.

References

- [1] Tutar, A. (1994). Lorentz Uzayında Küresel Eğriler ve Joachimsthal Teoremi. Doctoral
- Dissertation. *Ondokuz Mayıs University*, Samsun 1-68 (in Turkish)
- [2] Keleş, S. (1982). Joachimsthal's theorems for manifolds, Doctoral Dissertation. *Furat University*, 1-55 (in Turkish)
- [3] Garcia, R. (2004). Curvature lines of orthogonal surfaces of and Joachimsthal Theorem. *Civilize*, *1*, 141-151
- [4] Sabuncuoğlu, A. (1979). On the Joachimsthal's theorems. J. Fac. Sci. of the K.T.Ü II (Fasc. 5), Series MA: Mathematics, 41-46
- [5] Çöken, A. C. & Görgülü, A. (2009). On Joachimsthal's theorems in semi-Euclidean spaces. *Nonlinear Analysis*, 70(11), 3932-3942
- [6] O'Neill, B. (1983). Semi-Riemannian Geometry. New York, Academic Press.
- [7] Ratcliffe, J. G. (1994). Foundations of Hyperbolic Manifolds. Graduate Texts in Math. 149, New York, Springer-Verlag.