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Abstract

In this study the theory of strips and Joachimsthal Theorem in L3 are generalized to Lorentz space L, (n > 3).
Furthermore, the Joachimsthal Theorem is investigated when the strip is time-like and space-like.
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1. Introduction

The theory of strips and Joachimsthal Theorem in
L3 is studied in [1]. Also, in [2] the higher
curvatures of a strip in E™ is studied. The behavior
of curvature lines near a principal cycle common to
two orthogonal surfaces, as a complement of
Joachimsthal theorem, is studied in [3].
Furthermore Joachimsthal’s theorems in Euclidean
spaces E™ are given in [4]. Using Cartan’s structure
equations, Joachimsthal’s theorems in semi-
Euclidean spaces EJ**1 are studied in [5].

In this section, some basic concepts and
definitions in the Lorentz n-space L™ are given.

R™ equipped with the Lorentzian inner product

n-1

(X, V), = Z XiYi — XnYn ®

i=1

is called n-dimensional Lorentz space and denoted
by L™.

In L™, a vector X is said to be time-like if
(X,X) <0, space-like if (X,X) >0 or X =0 and
null if (X, X) = 0 and X # 0. In addition, the norm
of a vector X € L™ is defined by || X|| = /[{X, X)|
in [6].

Let @ be a curve in L™ and a’ be the velocity
vector of a, where (') denotes the derivation with
respect to the parameter s.

The curve « is called
time-like if {(a’, a') < 0,
space-like if (a’, a’) > 0,
null if (a’, a’) = 0.
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The bilinear function g:V XV - R is called a
symmetric bilinear form on V if g(v,w) = g(w,v) for
every v,w € V, where V is finite dimensional real vector
space.

A symmetric bilinear form g on a real vector
space I/ is
i) positive definite provided it implies g(v,v) >
O,vev,

ii) negative definite provided it implies g(v,v) <
O,vev,

iii) nondegenerate provided g(v,w) =0 for all
w €V implies v = 0 [6].

If g is a symmetric bilinear form on V, then the
restriction g |y for any subspace W of V,

denoted by g |, is again symmetric and bilinear.
The index v of a symmetric bilinear form g on V is
the largest integer that is the dimension of a
subspace W on which g, is negative definite.
Obviously, 0 < v < dim (V).

Symmetric, bilinear and nondegenerate function

g: x(M) X (M) — C*(M,R)

is called a metric tensor on M. If g is a metric
tensor with constant index on M, the pair (M, g) is
called semi-Riemannian manifold. If dim (M) > 2
and v =1, the pair (M, g) is called a Lorentz
manifold.

Let j: M — L™ be an inclusion transformation. If
j*(g) is a metric tensor on M, then M is called the
Lorentz submanifold. If dim(M) =n—1, the
submanifold is called a hypersurface of ™.

Let M be a hypersurface in L™. It is called time-
like hypersurface if normal of M is space-like
(space-like hypersurface if normal of M is time-
like).
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Let M be a time-like hypersurface in I and a be
a time-like curve on M. The geometric shape which
is constituted by points of curve a and surface
tangents at these points is called time-like surface
strip along the given curve and is denoted by
(a, M). The strip (o, M) is called space-like surface
strip if M is space-like hypersurface and «a is a
space-like curve.

2. TheHigher Curvaturesof a Strip in L™

Let M be a hypersurface in L™ and @ be a curve
given with the arc-parameter s. Let {V;,V,, ... ,},}
be a Frenet n-frame at the point a(s), taking
Z; =V, and F} be a set of orthonormal frame
{Z,,Z,, ... ,Z,} at the point a(s). Taking Z,, a unit
normal vector of M at the point a(s),
{Z,,Z,,... ,Z,_1} is an orthonormal base of

Ty (a(s)).
For vector fields Z;
n
i = 9ij 53— =Lj=n
= 0x;

may be written, where x;, 1 < i < n, are coordinate
functions in L. We may write

Z =GE )

d d

7]
where [Zy Zy . Zn]" = Z,[5- 5= 51T = E

and G € 0, (n). If Eq. (2) is derivated with respect
to the arc-parameter s, then

dZ_dG
ds  ds

is obtained. Moreover, since G € 0,(n), we may
write

GGt =G(eGTe) =1, 3)

where ¢ is a sign matrix of G. That is

g 0 0 - 0 0
0 ¢ O -0 0
0 0 g 0 0
&= ’
0 0 0 - g O
00 0 - 0 g
. 1, if Z space-like
O -1, if Z time—like

If Eq. (3) is derived with respect to s,

(dG G‘l) N (dG 6-1)T _o
ds & ds €=

is obtained. If we denote

G G120

ds B
we have

QF = —¢gQe.

This shows that Q is a semi anti-symmetric
matrix. Then we may write
dz 0z

ds =

This expression can be written in the matrix form
as follows:

s § 0 &t gt -ogt gt

d%s 012 013 0 “1(n-1) 0In Z

TSZ 7‘90112 0 ‘90123 . gutsz]) ‘9(1t2n Zz
e |7 : : : : Po|@
f oty ~Eobmon G bynen 0 Etnonn || Zna

dz

o &by &by gL, =&, 0 Z,

ds

Here the functions

tij: Il >R, 1<i,j<n

are called higher curvature functions of the strip
(a, M) and the real number ¢;;(s) € R is said to be

higher curvature of (a, M) at the point a(s) for
every s € [. If S is the shape operator of M and « is
a curvature line, we may write

S(Zl) b k121 » kl eER.

Moreover, since

dZ
S(Zl) = _d—Sn ,
bon =t3n = =ln-1)n = 0

is obtained from the matrix Q. Then we can state
the following theorem:

Theorem 2.1. Let (a, M) be a strip in L™. If a is a
curvature strip, then for the higher curvature
functions ¢;; : I > R,1<i,j <n,we have

bon =tzp == t(n—l)n =0.

If tyn =t3n=""=tm-1yn =0 for the strip
(a, M) in L™, the strip is said to be curvature strip.
If we take n = 3, then t,5; equals 0. This shows that
(a, M) is a curvature strip in L3.
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Theorem 2.2. Let M; and M, be two time-like
hypersurfaces in L" and a be a differentiable time-
like curve, where a(l) € M; N M,. If time-like
strips (a, M;) and (a, M,) are curvature strips, then
the angle between (a, M) and (a, M,) is constant.

Pr oof: Let {Z1,Z5, . ,\ Zp_1,Z,} and
{X1, X5, ... , Xn_1, X5} be vector field systems of the
strips (a, M;) and (a, M;), respectively. Let t;; and
tij, 1 <1i,j <n be higher curvature functions of
(a, M;) and (@, M,), respectively. In this case, from
“)

dZy,

s = “SotinZy Q)
and

dXp, _

s —&ot1n Xy (6)

are obtained. If 8 is the angle between (a, M;) and
(a, M,), we can write (Z,,, X,,) = cos 8 (see [7]). If
this expression is derived with respect to s,

de

dz, dx, _
(E' Xu) + (Zn.g) = —sin6 s

is obtained. If we use (5) and (6),
T . ,do
_€0t1n<Zl’ Xn) - €0t1n<Z‘n; X1> = —SIn QE (7)

is obtained. Since {V;,V,, ... ,V,,} is Frenet n-frame
at the point a(s), we have 21 =V, and X; = V.

Therefore, from (7) sm@;— 0 is obtained. If
sinf = 0, then 8 =0 or § = m. This means that
the time-like strips (a,M;) and (a,M,) are
congruent. Then % = 0 is obtained. This shows
that 6 is constant.

Now we express and prove the Theorem 2.2 in

the case of the strips (a, M;) and (@, M;) being
space-like.

Theorem 2.3. Let M; and M, be two space-like
hypersurfaces in L™ and a be a differentiable space-
like curve, where a(I) € M; N M,. If the space-like
strips (a, M;) and (a, M,) are curvature strips, then
the angle between (a, M) and (a, M,) is constant.

Pr oof: Let {Z1,Z5, .. ,\ Zp_1,Z,} and
{X1, X5, ... , Xn_1, Xy} be vector field systems of the
strips (a,M;) and (@, M), respectively. Let t;; and
tij, 1 <1i,j <n, be higher curvature functions of

(a, M) and (a, M,), respectively. In this case, from
“)

= —&tinZy ®
dXn _ _

= —&olinXq

or

daz,

—= = —tynZy

ds (9)
X, =

- = “hnXy

are obtained. If 6 is the angle between (a, M;) and
(a, M;), then we may write

(Zpn, Xy) = ch8 (see [7]),

since Z, and X, are unit time-like vectors. If this
expression is derivated with respect to s,

do
) = shf —

dX
Xo) + (2~ =

A2
ds’

is obtained. If we use equation (9), then
_ o
_tl?’l(Z]J Xn) - t1n<Zn: X1> = She; (10)

is obtained. Since {V;,V,, ... ,},} is Frenet n-frame
at the point a(s), we have Z; =V, and X; =V;.
Therefore, from (10)

dae
< sho = 0. (11)

If sh@ = 0, then 8 = 0. That means the space-like
strips (@, M;) and (a,M,) are congruent. So

shO # 0. Hence %zo. It is seen that 6 is
constant.

Theorem 2.4. Let M; and M, be two hypersurfaces
in L™. Let a be a nonplanar time-like curve on M;
and £ be any time-like curve on M,. Let P be a
hypersurface which is rolling along the curves «
and f on M; and M,. If the time-like strips (a, M;)
and (B, M,) are curvature strips, then the distance
between the corresponding points is constant.

Proof: Suppose that a and  are two curves with
the arc—parameter s; and Sy, respectively Let
{Z,Z, ... \Zpn_1,Z,} and {Xy,X;, ... , X1, X} be
strip vector field systems at the point a(s;) and
B(s,), respectively. Since the points a(s;) and
B(s,) are at the common tangent space of M; and
M,, we may say V(s;) € Ty (a(sy)) , where V(s;)
is a unit vector on the line combining the points
a(s1) and B(s,). Therefore, we may write

Vi)=Y iz, hi(s) €R (12)

Furthermore, we may write
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B(sz) = a(sy) + A(s1)V(s1) (13)

Since (a,M,;) and (B, M,) are curvature strips,
from (4) we may write

az
d_sn = —&tiny

L 14)
Pn — e T Xy ) (
2,  folinky

Since time-like hypersurfaces M; and M, have
the common tangent space along a and £, the unit
normal vector fields of M; and M, are the same. In
this case, from (14)

tan]_ d51 = flnXl dSz .

can be written. If the norm of the two sides of the
above equation is taken, since X; and Z; are unit
time-like vector fields

dsi _ [enl

dsy;  |tinl (15)
is obtained. Let us denote

Eanl _ . (16)

[t1nl
If Eq. (13) is derivated with respect to s;, and
Egs. (15) and (16) are kept in mind, then

is obtained. If Eq. (12) is replaced in the last
equation and we consider (X;, X,)=0 and
Z, = X, then

n-1

z &hitin =0

i=1
is obtained. Since (a, M;) is curvature strip, we
have ty, =t3n =" = t(n-1yn = 0. In this case,
since ty, # 0, from the last equation we have
h,(s;) = 0. If we consider Eq. (13), then

(Z,V(s1))=0 (18)

is obtained. Moreover, since Z, = X,,, Z; and X;
are linear dependent. Therefore we have

(X1,V(s)) = 0.

If Eq. (17) is replaced in the last equation, then
we obtain

A
ds,

Since the curve a isn’t planar, k # 0. This shows
that A is constant.

Example 2.1. Let’s take the Lorentz sphere
S ={a(u,v) = (rchucos v, rchusinv, rshu): 0
<v <2mu€R}

in 3. If Lorentz sphere S is derived with respect to
parameter u, we obtain

= (rshu cosv, rshu sinv,rchu).

If we compute geodesic curvature k; of the
parameter curve a,, we find k; = 0. Here k; =
t;,. Then we can say that the ,, is a geodesic curve
on S. In this case the geodesic torsion 7, of @, is
equal to the torsion T of @, and we compute T = 0.
Since 5 = 7, we obtain 7, = t,3 = 0. This shows
that the pair of (,, S) is a curvature strip.

Now let us show this with a Fig.

Curvamre strip

X\ 77
\Q.‘l}!.ﬁ

L II.
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