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Abstract 

In this paper, a compound binomial risk model in the presence of a constant dividend barrier is studied. Two types 
of individual claims, main claims and by-claims, are defined, where every by-claim is induced by the main claim 
randomly and may be delayed for one time period with a certain probability. In the evaluation of the moments of 
the present value of dividends, the interest rates are assumed to follow a Markov chain with finite state space. A 
system of differential equations with certain boundary conditions satisfied by the nth moment of the present value 
of total dividend payments prior to ruin, given the initial environment state, is derived. We arrive at a general 
formula which allows us to evaluate the moments of the total discounted dividends recursively in terms of the 
lower order moments. Assuming the claim sizes are Kh distributed or the claim size distributions have finite 
support, we are able to solve for all necessary components in the general recursive formula and obtain some other 
results of interest. We present several numerical examples which illustrate the applicabilities of our main results 
and the effects of the by-claims on the moments of the present value of dividends. 
 
Keywords: Compound binomial risk model; delayed claim; dividend barrier; discounted dividend payments; 
stochastic interest rate; Markov chain 

 
1. Introduction 

In reality, insurance claims may be delayed due to 
various reasons. Since the work by Waters and 
Paratriandafylou [1], risk models with this special 
feature have been discussed by many authors in the 
literature. For example, Yuen and Guo [2] studied a 
compound binomial model with delayed claims and 
obtained recursive formulas for the finite time ruin 
probabilities. Xiao and Guo [3] obtained the 
recursive formula of the joint distribution of the 
surplus immediately prior to ruin and deficit at ruin 
in this model. Xie and Zou [4] derived the exact 
analytical expressions for the Laplace transforms of 
the ruin functions in a delayed claims risk model. 
Yuen et al. [5] studied a risk model with delayed 
claims, in which the time of delay for the 
occurrence of a by-claim is assumed to be 
exponentially distributed. Zou and Xie [6] obtained 
the expression of non-ruin probability in the 
Erang(2) risk model with delayed claims. Xie and 
Zou [7] considered an extension to the compound 
Poisson risk model for which the occurrence of the 
claim may be delayed and proved that the ruin 
probability for this risk model decreases as the 
probability of the delay of by-claims is increasing. 
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A framework of delayed claims is built by 
introducing two kinds of individual claims, namely 
main claims and by-claims, and allowing possible 
delays of the occurrences of by-claims. All risk 
models described above relied on the assumption 
that each main claim induce a by-claim to a 
certainty. 

Dividend strategy for insurance risk models was 
first proposed by De Finetti [8] to reflect more 
realistically the surplus cash flows in an insurance 
portfolio, and he found that the optimal strategy 
must be a barrier strategy. From then on, barrier 
strategies have been studied in a number of papers 
and books, including Claramunt et al. [9], Dickson 
and Waters [10], Zhou [11], Gerber and Shiu [12], 
Li and Garrido [13], Wu and Li [14], Frosting [15], 
Albrecher and Hartinger [16], Albrecher and 
Thonhauser [17], Yang and Hu [18], Gerber et al. 
[19] and references therein. It is well known that 
the optimal dividend barrier level which maximizes 
the expectation of the discounted dividends until 
the time of ruin is independent of the initial surplus 
in the classical compound binomial risk model, if 
the force of interest or the discount factor per 
period is assumed to be a constant. Based on this 
assumption, it becomes evident that the discount 
factor per period embedded into the risk model fails 
to capture the uncertainty of the (future) risk-free 
rates of interest. Xie and Zou [20] first considered 
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the risk model with delayed claims and a constant 
dividend barrier in a financial market driven by a 
time-homogeneous Markov chain. They also 
assumed that each main claim induced a by-claim 
to a certainty and only obtained the expected 
present value of total dividends. Most recently, the 
moments of the random variable representing the 
total discounted dividends paid until ruin occurs 
have been studied in various related risk models in 
the actuarial literature. For example, Wan [21] 
examined a threshold strategy in a compound 
Poisson model perturbed by diffusion, while 
Renaud and Zhou [22] determined the moments of 
discounted dividends for a barrier strategy in a 
Lévy insurance risk model. Cheung and Drekic [23] 
computed dividend moments in the dual risk model. 
Li [24] considered the moments of the present value 
of total dividends in the compound binomial model 
under stochastic interest rates. Cheung et al. [25] 
computed the moments of the total discounted 
dividends paid until ruin occurs for a threshold 
strategy in the compound Poisson risk model. Lu 
and Li [26] studied the moments of the total 
dividend payments until ruin in the Markovian 
regime-switching risk model with a threshold 
dividend strategy. Related works can be found in Li 
and Lu. [27], Frosting [28] and the references 
therein. 

Motivated by these works, in this paper, we 
consider the compound binomial model with 
delayed claims and a dividend barrier, discount 
factors are defined via the modelization of the one-
period interest rates using a time-homogeneous 
Markov chain with a finite state space. In our 
model, every by-claim is induced by the associated 
main claim randomly. We are interested in finding 
the moments of the present value of total dividends 
paid until ruin occurs and some other results of 
interest.  

The model proposed in this paper is a 
generalization of compound binomial risk model 
with paying dividends and classical risk model with 
delayed claims. We show that, the moments of the 
present value of total dividends in this risk model 
can be obtained. The work of this paper can be seen 
as a complement to the work of Xie and Zou [20] 
and Li [24]. This kind of specific dependent risk 
model may be of practical use: for instance, a 
serious motor accident may cause different kinds of 
claim, such as car damage, injury, and death; some 
can be dealt with immediately while others need a 
period of time to be settled. 

It is obvious that the incorporation of the 
randomness of delayed claim and dividend 
payments makes the problem more interesting. It 
also complicates the evaluation of the moments of 
the present value of dividends. We use the 
technique of generating functions to calculate the 

moments of the present value of total dividends for 
this risk model. The paper is structured as follows: 
Section 2 defines the model of interest, describes 
various payments, including the premiums, claims 
and dividends, and lists the notation. In Section 3, 
differential equations with certain boundary 
conditions are developed for the nth moment of the 
present value of total dividend payments prior to 
ruin, given the initial environment state. Then a 
general formula which allows us to evaluate the 
moments of the total discounted dividends 
recursively in terms of the lower order moments is 
derived, using the technique of generating 
functions. Moreover, closed-form solutions for the 
nth moment of the present value of dividends is 
obtained for two classes of claim size distributions 
in Section 4. In particular, when the interest rate is 
assumed to be a constant and the claim amounts are 
of constant size, we give the explicit expression for 
the expected present value of total dividend 
payments and derive the optimal dividend barrier 
level. Furthermore, we also prove that the expected 
present value of the dividend payments up to the 
time of ruin increases as the probability of the delay 
of the by-claims is increasing in Section 4. We 
show that the ruin is certain under constant interest 
rate in Section 5. Numerical examples are also 
provided to illustrate the applicabilities of our main 
results and the effects of the by-claims on the 
moments of the present value of dividends in 
Section 5. 

2．Model description and notation 

Here, we consider a discrete time model which 
involves two types of insurance claims; namely the 
main claims and the by-claims. Denote the discrete 
time units by k = 0, 1, 2,  . In any time period, 
the probability of having a main claim is q, 0 < q < 
1. The occurrences of main claims in different time 
periods are independent. It is assumed that each 
main claim induces a by-claim with probability  , 

0 < < 1, and the main claim doesn't induce a by-

claim with probability 1  . Moreover, if the 

main claim induces a by-claim, the by-claim and its 
associated main claim may occur simultaneously 
with probability  , or the occurrence of the by-
claim may be delayed to the next time period with 
probability 1 .  All claim amounts are 
independent, positive and integer valued. The main 
claim amounts X1, X2, , are independent and 
identically distributed (i.i.d.). Put X=X1. Then the 
common probability function (c.p.f.) of the Xi is 
given by fm = Pr(X= m) for m= 1, 2,  . The 
corresponding probability generating function 

(p.g.f.) and mean are 
1

( ) m
mm

f s f s



   and 
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1X nn
nf 


  , respectively. Let Y1, Y2, , be 

i.i.d. by-claim amounts and put Y=Y1. Denote their 
c.p.f. by gn = Pr(Y= n) for n= 1, 2,  , and write 

the p.g.f. and mean as 
1

( ) n
nn

g s g s



   and 

Y , respectively. 

Let kS  be the total amount of claims up to the 

end of the kth time period, k∈N+ and 0 0S  . We 

define 
 

X Y
k k kS S S  ,                                                   (1) 

 

where X
kS and Y

kS are the total main claims and by-

claims, respectively, in the first k time periods. 
Assume that premiums are received at the 

beginning of each time period with a constant 
premium rate of 1 per period, and all claim 
payments are made only at the end of each time 
period. We introduce a dividend policy to the 
company that a certain amount of dividends will be 
paid to the policyholder instantly, as long as the 
surplus of the company at time k is higher than a 
constant dividend barrier b(b > 0). It implies that 
the dividend payments will only possibly occur at 
the beginning of each period, right after receiving 
the premium payment. The surplus at the end of the 

nth time period, ( )bU n , is then defined to be, for 

n= 1, 2,  , 
 

( ) ( ),b nU n u n S D n     ( (0)bU u ),    (2) 
 
where D(n) is the sum of the total dividend 
payments in the first n periods, with the definition 
 

1 2( ) ,nD n D D D     ( (0) 0D  ), 
 

with max{ ( 1) 1 ,0}n bD U n b    being the 

amount of dividend paid out at the end of period n. 
Here the initial surplus is u, u = 0, 1, , b. 
The positive safety loading condition holds if 

( ) 1X Yq    . Define 
,u bT  inf{ N : ( )bn U n  

0}  to be the time of ruin, 

,( ; ) Pr( u bu b T     | (0) )bU u  to be the 

ruin probability, and ( ; )u b  =1 ( ; )u b  to be 

the survival probability. 
In this note, we assume that the interest rates {Rn, 

k∈N } with Rn being the interest rate in the interval 
(n; n + 1] follow a time homogenous Markov chain 

with finite state space 1 2{ , , , }mr r r . The one-

period transition probability matrix is given by 

, , 1P ( )m
i j i jp  , where ,i jp 1Pr( | )n nR j R i   , 

for n ∈N. The one-period discount factors are 

denoted by 1 2, , ,v v   respectively, where 

1/ (1 )i iv r  . 

Under the interest rate model described above, the 
present value of total dividends until time of 

ruin ,u bT  given that the initial surplus is u is 

denoted by 
 

,

,
1 1

1

1

u bT k

u b k
k i i

D D
R 

 
   
  , 0,1,2, , .u b   

 
Define Vi,n(u; b)=

, 0E[ | ]n
u bD R i , 0,1, , ,u b  n 

∈N+, to be the nth moment of the present value of 
dividend payments up to the time of ruin, given that 
the initial interest rate R0 = ri. 

The aim of this paper is to calculate Vi,n(u; b), the 
nth moment of the present value of a sequence of 
dividend payments until the time of ruin under 
stochastic interest rates to the dividends, for some 
special claim-size distributions so to determine 
whether the optimal dividend barrier level is still 
independent of the initial surplus and illustrate the 
effects of the occurrence and delay of by-claims on 
the moments of the present value of dividends. 

3. A system of differential equations with 
boundary conditions 

To study the nth moment of the present value of the 
dividend payments, Vi,n(u; b), we need to study the 
claim occurrences in three scenarios. 
(I) If a main claim occurs in a certain period and 
doesn't induce a by-claim, then the surplus process 
gets renewed except for the initial value; 
(II) If a main claim induces a by-claim and they 
occur concurrently in some period, then there will 
be no by-claim in the next time period and the 
surplus process also gets renewed except for the 
initial value; 
(III) If a main claim occurs in some period and 
induces a by-claim, but the by-claim is delayed to 
the next period, then the surplus process behaves 
differently because of the delayed by-claim 
occurring in the forthcoming period. 
Conditional on the third scenario, that is, the main 
claim occurred in the previous period and induced a 
by-claim, but the by-claim will occur at the end of 
the current period, we define the corresponding 
surplus process as 
 

* *( ) ( ) ,b nU n u n S D n Y      1, 2, ,n    (3) 
 

with *(0)bU u , where *( )D n  is the sum of 

dividend payments in the first n time periods, and Y 
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is a random variable following the probability 
function gn, n= 1, 2,  , and is independent of all 
other claim amounts random variables Xi  and Yj  for 
all i and j. The corresponding nth moment of the 
present value of the dividend payments is denoted 

by *
, ( ; ).i nV u b  Then conditioning on the 

occurrences of claims at the end of the first time 
period, we can set up the following differential 

equations for , ( ; )i nV u b  and *
, ( ; )i nV u b : 

 

, , ,
1

( ; ) (1 ) ( 1; )
m

n
i n i i j j n

j

V u b v q p V u b


    

1

, ,
1 1

(1 ) ( 1 ; )
m u

n
i i j j n k

j k

v q p V u k b f


 

      

, ,
1 1

( 1 ; )
m

n
i i j j n k l

j l k u

v q p V u l k b f g 
   


   


 

1
*

, ,
1 1

(1 ) ( 1 ; )
m u

i j j n k
j k

p V u k b f


 


    


  , 

0,1,2, , 1.u b                                             (4) 
 

*
, , , 1

1

(0; ) (1 ) (0; )
m

n
i n i i j j n

j

V b v q p V b g


   ,       (5) 

 
and for 1, 2, , 1,u b   
 

1
*
, , ,

1 1

( ; ) (1 ) ( 1 ; )
m u

n
i n i i j j n h

j h

V u b v q p V u h b g


 

    

, ,
1 1

(1 ) ( 1 ; )
m

n
i i j j n k h

j h k u

v q p V u h k b f g
   

       

, ,
1 1

( 1 ; )
m

n
i i j j n k l h

j h l k u

v q p V u l k h b f g g 
    


    


 

*
, ,

1 1

(1 ) ( 1 ; )
m

i j j n k h
j h k u

p V u k h b f g
   


     


  ,     (6) 

 
with boundary conditions: 
 

, ,
0

( ; ) ( 1; )
n

i n i k
k

n
V b b V b b

k

 
  

 
 ,                     (7) 

 
where i = 1, 2,   ,m. The boundary condition 
holds because when the initial surplus is b, the 
premium received at the beginning of the first 
period will be paid out as a dividend immediately. 
Except the first dividend payment, the rest of the 
model is the same as that starting from an initial 
surplus b－1. From (4) and (5) one can rewrite 

*
, ( ; )i nV u b  as 

 
*
, ,

1

( ; ) ( ; )
u

i n i n h
h

V b b V u h b g


  , 1,2, , 1.u b     (8) 

 
This result can also be obtained from model (3) as 
 

*
, , ,

1

( ; ) E[ ( ; )] ( ; )
u

i n i n i n h
h

V b b V u Y b V u h b g


     

 
substituting (8) into (4) gives 
 

, , ,
1

(0; ) (1 ) (1; )
m

n
i n i i j j n

j

V b v q p V b


    

, , 1
1

(1 ) (0; )
m

n
i i j j n

j

v q p V b f


    

, , , 1 1
1 1

(1 ) (1 ) (0; )
m m

n n
i i j j j k k n

j k

v q q p v p V b f g 
 

     , (9) 

 
and for 1, 2, , 1,u b   
 

, , ,
1

( ; ) (1 ) ( 1; )
m

n
i n i i j j n

j

V u b v q p V u b


    

1

, ,
1 1

(1 ) ( 1 ; )
m u

n
i i j j n k

j k

v q p V u k b f


 

      

, ,
1 1

( 1 ; )
m

n
i i j j n k h

j h k u

v q p V u h k b f g
   

     . (10) 

 
with boundary condition (3.5). 

Now let W1(u;n), W2(u;n),  , Wm(u;n) satisfy 
the following differential equations: 
 

,
1

(0; ) (1 ) (1; )
m

n
i i i j j

j

W n v q p W n


     

, 1
1

(1 ) (0; )
m

n
i i j j

j

v q p W n f


      

, , 1 1
1 1

(1 ) (1 ) (0; )
m m

n n
i i j j j k k

j k

v q q p v p W n f g 
 

     ,  (11) 

 
and for 1, 2, ,u    
 

,
1

( ; ) (1 ) ( 1; )
m

n
i i i j j

j

W u n v q p W u n


    

1

,
1 1

(1 ) ( 1 ; )
m u

n
i i j j k

j k

v q p W u k n f


 

      

,
1 1

( 1 ; )
m

n
i i j j k h

j h k u

v q p W u h k b f g
   

     .    (12) 

 
The solutions of (12) are uniquely determined by 

the initial conditions Wi(u;n) for i = 1,2 ,m. 
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Moreover, apart from a multiplicative constant, the 
solution of (11) and (12) is unique (see Xie and Zou 
[20], Wu and Li [14], Landriault [29]). Therefore, 
for an integer value 1 jm, we can set W1,j(u;n), 
W2,j(u;n), , Wm,j(u;n) be the particular solutions of 
(11) and (12) with the initial conditions 
Wi,j(0;n)=I(i=j), where I(·) is the indicator 
function. Then the general solution of (12) is of the 
form: 
 

,
1

( ; ) (0; ) ( ; )
m

i j i j
j

W u n W n V u n


  , u ∈N, i=1,2 ,m. 

 
It follows that the solutions to (9) and (10) with 

boundary conditions (7) can be expressed as 
 

, , ,
1

( ; ) (0; ) ( ; )
m

i n j n i j
j

V u b V b W u n


  , u=0,1 ,b. 

 
or in matrix notation 
 

( ; ) ( ) (0; )n n nu b u bV W V
 

, u=0,1 ,b.      (13) 
 
where

1, 2, ,( ; ) ( ( ; ), ( ; ), , ( ; ))T
n n n m nu b V u b V u b V u bV


  is 

an m×1 column vector and 
, , 1( )=( ( ; ))m

n i j i ju W u n W  

is an m×m matrix. The value of 

vector (0; )n bV


can be obtained from the boundary 

conditions (7), 
 

1, ( ; )nV b b  ,0
( 1; )

n

i kk

n

k
V b b



   
 

 , 

 
for i = 1,2 , m, which can be rewritten in the 
following matrix form 
 

1

0

( ; ) ( 1; ) ( 1; )
n

n n k
k

n
b b b b b b

k





 
    

 
V V V

  
.    (14) 

 
Setting u = b and b－1 in (13) and plugging them 

into (14) gives 
 

1(0; ) [ ( ) ( 1)]n n nb b b   V W W


   

1

0

( 1; )
n

k
k

n
b b

k





 
  

 
 V


,                                      (15) 

 

where 0 ( 1; ) (1,1, ,1)Tb b V


 is an m×1 

column vector and ( 1; )k b bV


for k = 1,2 , 

n－1 can be calculated repeatedly using (13) by 
setting u = b－1 and n = k. 

Then we have the following matrix factorization 

formula for ( ; )n u bV


: 
 

1( ; ) ( )[ ( ) ( 1)]n n n nu b u b b   V W W W


  

1

0

( 1; )
n

k
k

n
b b

k





 
  

 
 V


,                                      (16) 

 
in particular, when n = 1, we have the following 
matrix factorization formula for expected present 

value of total dividends 1 ( ; )u bV


: 
 

1
1 1 1 1 1( ; ) ( )[ ( ) ( 1)]u b u b b   V W W W I
 

,  

0,1, , ,u b                                                     (17) 
 

where 1 (1,1, ,1)TI


  is the m×1 column vector. 

We know that W1,j(u;n), W2,j(u;n), , Wm,j(u;n)  be 
the particular solutions of (11) and (12) with the 
initial conditions Wi,j(0;n)=I(i=j), for j = 1,2 ,m, 
where I(·) is the indicator function. Then 
 

, , ,
1

(0; ) (1 ) (1; )
m

n
i j i i k k j

k

W n v q p W n


    

, , 1
1

(1 ) (0; )
m

n
i i k k j

k

v q p W n f


      

, , , 1 1
1 1

(1 ) (1 ) (0; )
m m

n n
i i k k k l l j

k l

v q q p v p W n f g 
 

     ,   (18) 

 
and for 1, 2, ,u    
 

, , ,
1

( ; ) (1 ) ( 1; )
m

n
i j i i k k j

k

W u n v q p W u n


    

1

, ,
1 1

(1 ) ( 1 ; )
m u

n
i i k k j h

k h

v q p W u h n f


 

      

, ,
1 1

( 1 ; )
m

n
i i k k j h l

k h l u

v q p W u h l b f g
   

     .   (19) 

 
where i, j = 1,2 ,m. The matrix form of (18) is  
 

, , 1 1(1 ) ( (1; )) (1 )m
n i j i j nq W n q f   I v P v P  

1 1(1 )(1 ) g n nq q f    v Pv P ,                    (20) 
 
where I is the m×m identity matrix, 

nv =diag( 1
nv , 2

nv ,  , n
mv ). 

We now apply the tool of generating functions to 
find the particular solutions Wi,j(u;n) to the 
particular Eqs.(19). 
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Let , ,0
( ; ) ( ; )u

i j i ju
W s n s W u n 


  be the 

generating function of Wi,j(u;n). Taking generating 
functions on both sides of Eqs.(19) yields 
 

1
, ,( ; ) (0; ) (1 )n

i j i j iW s n W n v q s    

, , , ,
1

[ ( ; ) (1; ) (0; )]
m

i k k j k j k j
k

p W s n W n s W n


     

1
, ,

1

(1 ) ( ; ) ( )
m

n
i i k k j

k

v q s p W s n f s 



    

1
, ,

1

( ; ) ( ) ( )
m

n
i i k k j

k

v q s p W s n f s g s  



  ,         (21) 

 
where Wi,j(0;n)=I(i=j) and i,j = 1,2, ,m . In 
matrix form,  
 

1 1 1( (1 ) (1 ) ( ) ( ) ( ) )n n nq s q f s s q s f s g s       I v P v P v P  

(s)nW 1
, , 1I (1 ) ( (1; )) (1 )m

n i j i j nq W n q s    v P v P ,   (22) 
 

where , , 1(s)=( ( ; ))m
n i j i jW s n W . Plunging (22) into 

(20) yields 
 

1
1 1 1(s) [ (s)] {( (1 ) (1 )(1 ) gn n nq f s q q f s      W A I v P

(1 ) ) }nq  I v P  
*

1 1 1

(s)
{( (1 ) (1 )(1 ) g

det[ (s)]
n

n
n

q f s q q f s      
A

I v P
A

(1 ) ) }nq  I v P ,                                               (23) 
 
where

(s)= ((1 ) (1 ) ( ) ( ) ( ))n ns q q f s q f s g s     A I v P   , 

and * (s)nA  is the adjoint matrix of (s)nA . 

In particular, let m = 1, that is to say, r1 = r2 =   
= rm = r, that is to say, the interest rate is constant r 
in each period, then the expected present value of 
total dividend payments up to ruin, V1(u;b), with the 
definition 
 

1
1

( ; ) E (0)
(1 )

uT
k

bk
k

D
V u b U u

r

 
   

 , 0,1, , .u b   

 
can be expressed as  
 

1
1( ; ) ( )[ ( ) ( 1)]V u b W u W b W b    ,          (24) 

 

where W(0)=1. Let (s)W  be the generating 

function of W(u), then (s)W satisfies the following 

expression: 
 

1
1 1 1

1

( (1 ) (1 )(1 ) g (1 ) )
(s)

1 ((1 ) (1 ) ( ) ( ) ( ))

q f q q f v q s v
W

q q f s q f s g s vs

  
 





     


    


  
,  (25) 

 
where v = 1/ (1 + r).  

Similar to the method of Yuen and Guo [2], we 
construct two new generating functions 

( ,1)h s =1－q+ (1 ) ( )q f s  + ( ) ( )q f s g s    and 

( , ) [ ( ,1)]kh s k h z  , －1 < R(s) < 1. We denote 

the probability function of ( , )h s k by h(i; k). Note 

that the denominator on the right-hand side of (25) 

is 1－v 1( ,1)h s s . Rewriting [1－v 1 1( ,1) ]h s s   

in terms of a power series in s, we have 
 

1 1 1
0

( ) ( (1 ) (1 )(1 ) g ) ( , )k k

k

W s q f q q f v v v h s k s  






      

( 1)

0

(1 ) ( , )k k

k

q v v h s k s


 



    . 

 
Comparing the coeffcients of su in both sides 

gives, for u = 1, 2,   , b, 
 

1 1 1
1

( ) ( (1 ) (1 )(1 ) g ) ( , )i u

i u

W u q f q q f v v v h i i u  




 

     
1

2

(1 ) ( , 1)i u

i u

q v v h i i u


 

 

     

1
1 1 1

1

[( (1 ) (1 )(1 ) g ) ( , )i

i

v q f q q f v h i u i  






       

(1 ) ( 1, )]q h i u i    .                                   (26) 
 

The above result together with (24) gives us the 
explicit expression for V1(u; b). 

When m > 1, (s)nW  can be inverted if each 

element is a rational function, while each element is 
a rational function if and only if claim size 
distributions have rational p.g.f. or the claim size 
distributions have finite support so that the p.g.f. 
are polynomials, as will be seen in the following 
Section. 
 
Remarks: (I) When  = 1, that is to say, each main 

claim induces a by-claim to a certainty. Xie and 
Zou [20] studied the expected present value of total 

dividends 1 ( ; )u bV


 in this case. When   = 1 and 

 = 1, that is to say, in any time period, each main 

claim induces a by-claim, the main claim and its 
associated by-claim occur simultaneously. Actually, 
this case is very similar to the one proposed by Li 
[24]. In our set-up, there is a by-claim, Y, occuring 
simultaneously with the main claim X. Hence, the 
only difference is that we use X + Y as our claim 
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amount random variable while Li simply considers 
X. Hence our results in this paper include the 
corresponding results of Xie and Zou [20] and Li 
[24]. 
(II) When m = 1, from the expressions for V1(u; b) 
in (24) and W(u) in (25), we can see that, for a fixed 
initial surplus u, the optimal dividend barrier b* 
which maximizes V1(u; b) or minimizes the 
denominator of (24) is independent of u, since the 
denominator of (24) is a function independent of u. 

(III) If m > 1, Vi;1(u; b) = 1 ( ; )T
ie u bV


, where ie


 

is an m×1 column vector with the i-th element 
being 1 and all other elements being 0. It follows 
from (17) that, for a fixed i and u, Vi;1(u; b) cannot 
be written as product of a function u and a function 
b, therefore the optimal dividend barrier level b* 
which maximizes Vi;1(u; b) depends on the initial 
surplus u.  

4. Two classes of claim size distributions 

In this section, we consider two special cases for 

the claim size distributions such that (s)nW  has a 

rational generating function which can be easily 
inverted. One case is that the probability functions 
of claim sizes have finite support such that their 
p.g.f. are polynomials, and the other case is that 
claim sizes have discrete Kn distributions, i.e., the 
p.g.f. of X and Y are the ratio of two polynomials 
with certain conditions. 

4.1. Claim amount distributions with finite support 

Now assume that the distributions of X1 and X1 + 
Y1 have finite support, e.g., for N = 2, 3, , 
 

1Pr( )x xf X x    , x = 1,2, , N－1, 
 
and  
 

1 1( * ) Pr( )x yf g X Y y     , y = 2,3, , N, 
 
where * denotes convolution. Then 
 

1

1

( )
N

x
x

x

f s s 




  and 
2

( ) ( )
N

x
x

x

f s g s s 


  , 

 
－1 < R(s) < 1, are the polynomials of degree 
N－1 and N, respectively, so det[An(s)] is a 
polynomial of degree N﹒m and each element 
ofA*

n(s) is a polynomial of degree N(m－1). Let 

1 , 2 , , N m   be the roots of equation 

det[An(s)]=0, then ( )

1

det[ ( )] ( )
N m

n
n N m i

i

s a s 





 A , 

where ( )n
N ma   is the leading coefficient of the 

polynomial det[An(s)]. For simplicity, we assume 

that 1 , 2 , , N m  are distinct. It follows from 

partial fractions that (23) can be rewritten as 
 

( )

1

(s)=
( )

nN m
i

n n
i i s





 
  
 M

W v P ,             (27) 

 
where  
 

*
( )

1( )

1,

( )
{(1 ) (1 )

( )

n n i
i iN mn

N m i jj j i

q q
a

   
 

  

   


A
M I I

2(1 )(1 ) }n iq q      v P  
 
i = 1,2, , N﹒m, is an m×m matrix. Inverting (27), 
yields 
 

( ) ( 1)

1

( )=
N m

n u
n i i n

i

u 


 



 
  
W M v P , n N .  

 

Once Wn(u) is obtained, ( ; )n u bV


 can be 

calculated using (15) and (16), then  
 

 
1

( ) ( 1)

1

(0; )
N m

n b b
n i i i n

i

b  



  



       
V M v P


 

1

0

( 1; )
n

k
k

n
b b

k





 
  

 
 V


,                                      (28) 

 
and for u = 1, 2,  ,b, 
 

 
1

( ) ( 1) ( ) ( 1)

1 1

( ; )
N m N m

n u n b b
n i i i i i

i i

u b   
 

    

 

  
     
 V M M



1

0

( 1; )
n

k
k

n
b b

k





 
  

 
 V


,                                      (29) 

 

where ( 1; )k b bV


 for k = 1, 2,  , n－1 can be 

calculated repeatedly using ( ; ) ( ) ( 1; )n n nu b u b b V W V
 

 

by setting u = b－1 and n = k. 
 
Example 1. In this example, we assume f1 = g1 = 1. 
Then Sk－Sk－1 can only take three possible values: 
1, 0, or －1. This generalizes De Finetti's [8] 
original model where periodic gains are +1 or -1. 

Then N = 2, ( ) ((1 ) (1 )n s s q q s    A I  
2 ) nq s v P  and 
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*
( )

2( )
2 1,

( )
{(1 ) (1 )

( )

n n i
i imn

m i jj j i

q q
a

  
 

 

   


A
M I I

(1 )(1 ) }n iq q     v P , i= 1, 2,  , 2m.  
 

From (28) and (29), we can get 
 

 
1

2
( ) ( 1)

1

(0; )
m

n b b
n i i i n

i

b  


  



       
V M v P


 

1

0

( 1; )
n

k
k

n
b b

k





 
  

 
 V


,                                      (30) 

 
and for u = 1, 2,  ,b, 
 

 
12 2

( ) ( 1) ( ) ( 1)

1 1

( ; )
m m

n u n b b
n i i i i i

i i

u b   


    

 

  
     
 V M M


 

1

0

( 1; )
n

k
k

n
b b

k





 
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 
 V


,                                      (31) 

 
In particular, let m = 1, the interest rate is constant r 
in each period. The generating function of W(u) in 
(25), has a simplified expression 
 

2

2

(1 ) [ (1 ) (1 )(1 ) ]
( )

[1 (1 )] (1 )

v q q v q q v s
W s

vq s vq s v q

  
 

     


    
 .     (32) 

 
Let R1 and R2 be the solutions of the equation 

2vq s  [1 (1 )] (1 )vq s v q     =0, then 
 

2 2

1

1 (1 ) (1 (1 )) 4(1 )

2

qv qv q q v
R

qv

  


      
 , 

 
and 
 

2 2

2

1 (1 ) (1 (1 )) 4(1 )

2

qv qv q q v
R

qv

  


      
 , 

 
where 0 < q < 1, 0 < < 1, and 0 < v < 1. From 

the expansion formulae of 2(1 )qv qv   and 
2 2(1 (1 )) 4(1 )qv q q v     , it follows that 

2 2 2(1 ) (1 (1 )) 4(1 )qv qv qv q q v         ,  

then we can know that R1 < 1. Moreover, it is easy 
to see that R1R2 = (1－q)/(q ) > 0 and R1 + R2 

=[1－vq(1－ )]/(vq ). In this case, the positive 

safety loading condition, q(1 + ) < 1, implies that 
 

1 2

1
1 1 2

vq v vq
R R

vq vq 
 

      . 

 

From these discussions, it follows that 
0<R1<1<R2. By partial fractions, (32) can be 
rewritten as 
 

1 2

1 2

1
( )

a a
W s

q R s R s
 

    
 , 

 
where  
 

1
1

1 2

[ (1 ) (1 )(1 ) ] (1 )q q q v R q
a

R R

       



, 

2
2

2 1

[ (1 ) (1 )(1 ) ] (1 )q q q v R q
a

R R

       



, 

 

inverting the generating function ( )W s  yields 
 

 ( 1) ( 1)
1 1 2 2

1
( ) u uW u aR a R

q
     .           (33) 

 
Substituting (33) into (24) gives, for u = 0, 1,  , 

b, 
 

( 1) ( 1)
1 1 2 2

1 ( 1) ( 1)
1 1 1 2 2 2

( , )
(1 ) (1 )

u u

b b

aR a R
V u b

a R R a R R

   
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


  
.       (34) 

 
Another value of interest in this case is the 

optimal dividend barrier b*, which is the optimal 
value of b that maximizes V1(u; b) for a given u. 
From (34) we know that b* is the solution of 
equation 
 

 ( 1) ( 1)
1 1 1 2 2 2

d
(1 ) (1 ) 0

d
b ba R R a R R

b
        

 
we have 
 

1 2 1 1

* 2 1 2 2

1 2

(1 ) ln( )
ln

(1 ) ln( )

ln( ) ln( )

a R R R
a R R R

b
R R

 





, 

 
which does not depend on the initial surplus u. 
Practically, we round b* to the closest integral 
value. Furthermore, we can prove the following 
result. 
 
Theorem 4.1. If the interest rate is constant r in 
each period, then the expected present value of the 
dividend payments up to the time of ruin in the risk 
model considered in Example 1, V1(u; b), increases 
as the probability of a delay of the by-claims is 
increasing as well.  
 
Proof: The theorem can be proved by the following 
fact: 
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(1 ) (1 )

b u

b b

R R R R q qv

a R R a R R
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  
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  
  

 1 2 1 1 2 2( 1 ) (1 ) 0u b b uR R R R R R      , 

 
since 0 < R1 < 1 < R2. 

In Example 1, we assume that q = 0.3 and the 
interest rates have three possible values: r1 = 0.02, 
r2 = 
0.05, r3 = 0.08. The transition probability matrix P 
is  
 

0.75 0.15 0.1

0.2 0.3 0.5

0.05 0.8 0.15

 
   
 
 

P . 

 
Table 1 summarizes the results for Vi,1(u; b)(i = 1, 

2, 3) with fixed  = 0.4 and  = 0.6 for u = 

0,1,2,3,4,6,8, 10 and b = 1,2,3,4,5. From Table 1, 
we can see that for u = 0, the optimal dividend 
barrier b* which maximizes Vi(u; b) is 1 for i = 
1,2,3. For u≥1, the optimal dividend barrier b* is 
equal to the initial surplus u for i = 1,2,3. 
Furthermore, as expected, Vi(u; b)(i = 1; 2; 3) is 
increasing in u for fixed b and i. 

In Table 2, the 2th moments of the present values 
of dividend payments up to the time of ruin Vi,2(u; 
b)(i = 1,2,3) with fixed  = 0.4 and  = 0.6 for u = 

0,1,2, 3, 4, 6,8,10 and b = 1,2,3,4,5 are provided. 
The numbers show that the higher the initial surplus 
of the insurance company, the higher the 2th 
moment of the present value of dividend payments 
up to the time of ruin for fixed b. 

4.2. Kh claim amount distributions 

Li [30] studied a class of discrete Sparre 
Andersen risk models in which the claims inter-
arrival times are Kh distributed. This class of 
distributions includes geometric, negative binomial, 
discrete phase-type, as well as linear combinations 
(including mixtures) of these. 
For the two independent claim amount random 
variables X1 and Y1, if they have Kh distributions, so 
does their sum. Therefore, in this Section, we 
assume that fx = Pr(X1 = x) and gx = Pr(Y1 = x) are 
Kh distributed and Kl distributed, respectively, for x 
= 1,2, , and h,l = 1,2, , i.e., the p.g.f. of  f  and 
g are given by 
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where 0 < i  < 1, 0 < j < 1, for i = 1, 2, , h, j = 

1, 2,  ,l, Eh(s) is a polynomial of degree h with 

Eh(0) = 0, Eh(1) =
1
(1 )

h

ii



  and Fl(s) is a 

polynomial of degree l with Fl(0) = 0, Fl(1) 

=
1
(1 )

l

jj



 .  

Then (s)nW  can be transformed to the following 

rational function 
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where 
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Then det[ ( )n sB ] is a polynomial of degree 

m(h+l+1) and each element of * ( )n sB is a 

polynomial of degree (m－1)(h + l + 1). 
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Table 1. Values of ,1( ; )( 1,2,3)iV u b i  when 1f  1 1g  , 0.4  ,and 0.6   

 

\u b  1 2 3 4 5 0R  

0u    1.92093379  1.09186542  0.67173379  0.41593782  0.25594156 1 0 .02r   

 0.27576488  0.05729057  0.01199763  0.00251272  0.00052625 2 0 .05r    

 0.11200906  0.01108302  0.00109854  0.00010889  0.00001079 3 0 .08r   

1u    2.9209337  1.66026889  1.02142507  0.63246679  0.38917966 1 0 .02r   

 1.27576488  0.26504209  0.05550435  0.01162455  0.00243457 2 0 .05r    

 1.11200906  0.11003057  0.01090616  0.00108102  0.00010715 3 0 .08r   

2u     2.66026889  1.63664173  1.01340918  0.62358727 1 0 .02r   

  1.26504209  0.26492146  0.05548381  0.01162014 2 0 .05r    

  1.11003057  0.11002555  0.01090571  0.00108097 3 0 .08r   

3u      2.63664173  1.63260956  1.00460363 1 0 .02r   

   1.26492146  0.26491874  0.05548274 2 0 .05r    

   1.11002555  0.11002552  0.01090571 3 0 .08r   

4u      2.63260956  1.61993975 1 0 .02r   

    1.26491874  0.26491581 2 0 .05r    

    1.11002552  0.11002551 3 0 .08r   

5u       2.61993975 1 0 .02r   

     1.26491581 2 0 .05r    

     1.11002551 3 0 .08r   
 

Table 2. Values of ,2 ( ; )( 1, 2,3)iV u b i  when 1f  1 1g  , 0.4  , and 0.6   
 

\u b  1 2 3 4 5 0R  

0u    8.63081524  4.28771261  2.54467326  1.53733911 0.93821331 1 0 .02r   

 0.40011079  0.07791821  0.01549515  0.00308215 0.00061308 2 0 .05r    

 0.12551688  0.01144682  0.00104884  0.00009610 0.00000881 3 0 .08r   

1u    13.4726828  6.69310957  3.97222914  2.39978283 1.46454883 1 0 .02r   

 1.95164054  0.38006559  0.07558145  0.01503397 0.00299047 2 0 .05r    

 1.34953501  0.12307413  0.01127703  0.00103330 0.00009468 3 0 .08r   

2u     11.0136473  6.53638349  3.94889125 2.40994475 1 0 .02r   

  1.91014978  0.37986048  0.07555836 0.01502962 2 0 .05r    

  1.34313528  0.12306873  0.01127666 0.00103327 3 0 .08r   

3u      10.8096669  6.53055307 3.98549139 1 0 .02r   

   1.90970342  0.37986066 0.07555962 2 0 .05r    

   1.34311983  0.12306872 0.01127666 3 0 .08r   

4u      10.7957722 6.58848596 1 0 .02r   

    1.90969814 0.37986578 2 0 .05r    

    1.34311976 0.12306872 3 0 .08r   

5u       10.8283655 1 0 .02r   

     1.90969741 2 0 .05r    

     1.34311974 3 0 .08r   
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1 1(1 )(1 ) (1 ) ) }n nq q f g s q     v P I v P ,    (35) 
 
where 
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Then det[ ( )n sB ] is a polynomial of 

degree m(h+l+1) and each element of 
* ( )n sB is a polynomial of degree (m－1)(h 

+ l + 1). 
Let 1 , 2 , , ( 1)m h l    be the roots of 

equation det[ ( )n sB ] = 0. Then 
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where ( )

( 1)
n

m h lb    is the leading coefficient of 

the polynomial det[ ( )n sB ]. For simplicity, 

we assume that 1 , 2 , , ( 1)m h l    are 

distinct. It follows from partial fractions 
that (35) can be rewritten as 
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t = 1, 2, , m(h+l+1), is an m×m matrix. 

Inverting (s)nW  yields 
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Example 2. In this example, we assume 
that the main claim X1 follows a geometric 
distribution with fx = 1(1 )x   , 0 < < 
1, x = 1, 2, , and the by-claim Y1 follows 
a geometric distribution with gx = 

1(1 )x   , 0 < < 1, x = 1, 2, , so that  
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Here h = l = 1, i = , 1 = and Eh(s) 

= (1 )s , Fl(s) = (1 )s . 
From (39) and (40), we can get 
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and 
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As an example, let q = 0.4,  = 0.6,  = 0.3 and 

the interest rates have two possible values: r1 =0.02, 
r2 = 0.07. The transition probability matrix P is 
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0.3 0.7

 
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P . 

 
The values of Vi,1(u; b)(i = 1, 2) with fixed  = 

0.5 for  = 0, 0.25, 0.5, 0.75, 1 and u = 0, 1, 2, 3, 4, 
6, 8, 10 are listed in Table 3. We observe that Vi,1(u; 
b)(i = 1, 2) is an increasing function with respect to 
u, and a decreasing function over   for fixed  . 

Also, if the main claim once induce a by-claim, the 
impact of the delay of by-claims on the expected 
present value of dividends is reduced for a higher 
initial surplus of the company. 

In Table 4, the expected present values of 
dividend payments Vi,1(u; b) (i = 1; 2) with fixed   
= 0.4 for  = 0.1, 0.3, 0.5, 0.7, 1 and u = 0, 1, 2, 3, 

4, 6, 8, 10 are provided. We observe that Vi,1(u; b) (i 
= 1; 2) is decreasing in   for fixed  . Also, the 

impact of the occurrence of by-claim on the 
expected present value of dividends is reduced for a 
higher initial surplus of the company. 

Let 1 , 2 , , ( 1)m h l    be the roots of 

equation det [ ( )n sB ] =0. Then  
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m h lb    is the leading coefficient of the 

polynomial det[ ( )n sB ]. For simplicity, we assume 

that 1 , 2 , , ( 1)m h l    are distinct. It follows 

from partial fractions that (35) can be rewritten as 
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5. Ruin probabilities under constant interest rate 

In this section, we show that the ruin is certain in 
the risk model described in (2) when m = 1. In this 
case, the interest rate is constant in each period. For 
b = 1, since 1 1(0;1) (1 ) (0;1)q g     and 0 < q 

< 1, then 1(0;1) (0;1)  . Moreover, 0 

(0;1) (1;1)     

=
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1 1(1 ) 1q f g  , then the inequality gives 

(0;1)  (1;1) =0. The following theorem 

shows that ruin is certain for b≥2 under certain 
conditions. 
 
Theorem 5.1. The ruin probability in a compound 
binomial risk model with delayed claims and a 
constant dividend barrier is one, i.e., ( ; )u b 1, 

for u = 0, 1,  ,b, provided that 
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b 2. 
 
Proof: Since ( ; ) ( ; )u b b b  for u = 0, 1,  ,b, 

then it is sufficient to prove that ( ; )b b  = 1 or 

( ; )b b = 0 for b 2. 

Conditioning on the occurrences of claims at the 
end of the first time period gives 
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Table 3. Values of ,1( ;10)( 1,2,3)iV u i  for geometric distributed claims when 0.5   

 

,1( ;10)iV u  0   0.25   0.5   0.75   1   0R  

0u   0.00179411 0.00179281 0.00179153 0.00179026 0.00178901 1 0 .02r   

 0.00039267 0.00039249 0.00039233 0.00039216 0.00039199 2 0 .07r   

1u   0.00380748 0.00380599 0.00380453 0.00380308 0.00380165 1 0 .02r   

 0.00094427 0.00094407 0.00094388 0.00094368 0.00094349 2 0 .07r   

2u   0.00778571 0.00778444 0.00778318 0.00778194 0.00778071 1 0 .02r   

 0.00220681 0.00220665 0.00220648 0.00220632 0.00220616 2 0 .07r   

3u   0.01569298 0.01569196 0.01569096 0.01568997 0.01568899 1 0 .02r   

 0.00510867 0.00510854 0.00510841 0.00510829 0.00510816 2 0 .07r   

4u   0.03145598 0.03145518 0.03145440 0.03145363 0.03145286 1 0 .02r   

 0.01178977 0.01178968 0.01178958 0.01178949 0.01178939 2 0 .07r   

6u   0.12574307 0.12574259 0.12574212 0.12574165 0.12574119 1 0 .02r   

 0.06264570 0.06264565 0.06264559 0.06264554 0.06264549 2 0 .07r   

8u   0.50185430 0.50185399 0.50185369 0.50185339 0.50185310 1 0 .02r   

 0.33268421 0.33268418 0.33268415 0.33268412 0.33268408 2 0 .07r   

10u   2.00248358 2.00248331 2.00248305 2.00248305 2.00248253 1 0 .02r   

 1.76663865 1.76663862 1.76663859 1.76663857 1.76663854 2 0 .07r   

 
Table 4. Values of ,1( ;10)( 1,2,3)iV u i  for geometric distributed claims when 0.4   

 

,1( ;10)iV u  0.1   0.3   0.5   0.7   1   0R  

0u   0.00319672 0.00237088 0.00179204 0.00135708 0.00090657 1 0 .02r   

 0.00064217 0.00050042 0.00039239 0.00030945 0.00021897 2 0 .07r   

1u   0.00638572 0.00491201 0.00380512 0.00296171 0.00205488 1 0 .02r   

 0.00146526 0.00117352 0.00094396 0.00076249 0.00055785 2 0 .07r   

2u   0.01235870 0.00978404 0.00778368 0.00622089 0.00448474 1 0 .02r   

 0.00326553 0.00267940 0.00220655 0.00182373 0.00137959 2 0 .07r   

3u   0.02363833 0.01921910 0.01569136 0.01286461 0.00962613 1 0 .02r   

 0.00722384 0.00606493 0.00510847 0.00431667 0.00337311 2 0 .07r   

4u   0.04500964 0.03755649 0.03145471 0.02644319 0.02052789 1 0 .02r   

 0.01594222 0.01368983 0.01178962 0.01018219 0.00821596 2 0 .07r   

6u   0.16251169 0.14273297 0.12574231 0.11110739 0.09280539 1 0 .02r   

 0.07750633 0.06960326 0.06264561 0.05650726 0.04860482 2 0 .07r   

8u   0.58600609 0.54165427 0.50185382 0.46604879 0.41882187 1 0 .02r   

 0.37665024 0.35370333 0.33268416 0.31339754 0.28734616 2 0 .07r   

10u   2.11268371 2.05505952 2.00248315 1.95438885 1.88962393 1 0 .02r   

 1.83028964 1.79732073 1.76663861 1.73803697 1.69864159 2 0 .07r   
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1
1

( ; ) ( ; )
u

n
n

u b u n b g


    , u = 0, 1,  ,b.      (44) 

 
Substituting (44) into (43) yields 

 

1

( ; ) (1 ) ( ; ) (1 ) ( ; )
b

k
k

b b q b b q b k b f


       
( ; ) k h

k h b

q b k h b f g
 

    .  

 
It follows from the inequality 
( ; ) ( ; )b n b b b    for 1 n b that 

 

1

( ; ) (1 ) ( ; ) (1 ) ( ; )
b

k
k

b b q b b q b b f


         

( ; ) k h
k h b

q b b f g
 

   .                                   (45) 

 

Since 
1

b

kk
f

 < 1, then k hk h b
f g

  < 1. From 

these discussions, it follows that 0 < (1 q) + 

q(1  )
1

b

kk
f

 k hk h b
q f g

 
  <1. Since 

0 ( ; )b b 1, then inequality (45) 

gives ( ; )b b = 0, this implies that ( ; )b b = 1. 

This completes the proof. 

6. Concluding Remarks 

In this paper, we study a compound binomial risk 
model with a constant dividend barrier in a 
financial market driven by a time-homogeneous 
Markov chain. In this risk model, there are two 
types of individual claims: main claims and by-
claims, each main claim induces a by-claim with 
probability  , and the main claim doesn't induce a 

by-claim with probability 1  . Moreover, if the 

main claim induces a by-claim, the by-claim and its 
associated main claim may occur simultaneously 
with probability  , or the occurrence of the by-
claim may be delayed to the next time period with 
probability 1  . The interest rates are assumed to 
follow a Markov chain with finite state space. We 
study how to compute the nth moment of the 
discounted dividend payments prior to ruin in this 
risk model. The results show that, unlike the 
constant interest rate case, the optimal dividend 
barrier level depends on the initial surplus, the 
initial interest rate, the probabilities of occurrence 
and delay of the by-claim. The results also illustrate 
the impact of the occurrence and delay of by-claim 
on the nth moment of the present value of 
dividends. The formulae are readily programmable 
in practice and they can be used to approximate the 

corresponding results in the compound Poisson risk 
model with delayed claims under stochastic interest 
rates and a barrier dividend strategy. We also prove 
that the ruin probability in this delayed claims risk 
model under constant interest rate is one. In 
particular, when the claim amounts are of constant 
size, we give the optimal dividend barrier b* and 
prove the expected present value of the dividend 
payments up to the time of ruin increases as the 
probability of the delay of the by-claims is 
increasing. 
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