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Abstract 

Durbin's rank test is widely used for testing treatment effects in Balanced Incomplete Block Designs (BIBDs) 
which have wide applications in sensory analysis. This test is failed for BIBDs when ties data occur. An adjusted 
version of Durbin rank test for this kind of data is given to solve this problem. Chi-square approximation, which is 
commonly used for this test, is not adequate for small BIBDs. For this case, we investigate permutation approach 
for adjusted Durbin rank test. Also, in this study the tests used in BIBDs are compared by simulation study for tied 
data, which have not been discussed in the sensory literature. 
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1. Introduction 

The judges or consumers compare many products 
by ranking in sensory analysis. Data assigned by 
each consumer is well known preference ranking. 
Considering consumers as blocks and products as 
treatments we can say that a blocked design has 
been used. Accordingly the Friedman rank test is 
the most frequently used nonparametric method for 
testing treatment effects in randomized complete 
block design. This test is based on within-block 
ranking. Sometimes there are too many products for 
a consumer to reliably compare at one sittings. Due 
to sensory fatigue inaccurate results may be 
produced. In this situation BIBDs can be used, so 
each consumer compares only some of the 
products. In BIBDs Durbin’s rank test which is 
based on Friedman-type test is widely used for 
testing treatment effects. Also, Skillings and Mack 
[1] introduced a test based on Friedman-type test 
for randomized (both balanced and unbalanced 
incomplete) block designs [2]. Hence Durbin’s 
statistic is also called the Durbin–Skillings–Mack 
statistic [3]. Bi [4] has discussed some computer 
intensive methods including Monte Carlo test and 
permutation test for Durbin rank test. Durbin rank 
test is failed for BIB data when ties data occur. Best 
et al. [5] suggest an adjusted procedure for tied data 
in BIBDs. Chi-square approximation, which is 
commonly used for this test, is not adequate for 
small BIBDs. 
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In this study we investigate permutation approach 
for adjusted Durbin rank test, especially in small 
BIBDs, which have not been discussed in the 
sensory literature. Also, we gave brief definitions of 
Durbin rank test, adjusted Durbin rank test for tied 
data and Skilling-Mack tests in Section 2. We 
compare the performance of these tests with 
simulation according to type I error rates and 
powers of tests. A summary of our findings is given 
in Section 3. 

2. Test statistics 

In this section, definition of BIBDs and the 
common terms of test statistics are given. BIBD is 
the one of the most popular designs used in 
experimental designs. We have t treatments, b 
blocks, every block has k treatments and every 
treatment occurs in r different blocks. Also, every 
treatment pair occurs exactly   blocks. (t, k,) 
notation is used for BIBDs. The parameters are not 
independent. The parameters in a BIBD satisfy the 
restrictions λ(t-1)=r(k-1), rt=bk and b t . The 
BIBDs are called symmetrical BIBD if t=b or 
equivalently, r=k. Otherwise, we called this kind of 
BIBDs asymmetrical BIBDs. 

2.1. Durbin rank test 

Durbin rank test is a natural extension for BIBDs 
of the Friedman statistic applied to the case of a 
complete randomization block design [6]. In Durbin 
rank test, the linear effect of ith product, Mi, is 
given in Eq. (1) 
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The definition of Mi involves a difference 

between the sample mean rank for product i and its 
expected value assuming a uniform spread of ranks. 
The values mi of Mi separate the products according 
to mean rankings. The test statistic 
 

2

1

t

ii
D M


                                                     (2) 

 
is the Durbin's rank test that looks for average rank 
differences between products. The Durbin rank test 
statistic D has chi-square distribution with t-1 
degrees of freedom under null hypothesis [7]. 

2.2 Adjusted durbin rank test for tied data 

The Durbin's rank test analyses the data from 
BIBD with no ties. This situation forces the judges 
or consumers to choice ranking situation. When 
there are ties, the Durbin rank test statistic D no 
longer has chi-square distribution. In this situation, 
linear effects, Mi, need adjustment by a factor 
which depends on g(j) [5]. According to Adjusted 
Durbin rank test, (AD) statistic can be written as  
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The adjustment factor a is 
 

rtUgga                                                        (4) 
 
where ))(),...2(),1(( kgggg   and the (d,w)th 

element of U=(Uij) counts the times rank d and rank 
w are tied. If for any judge the ranks d,…d+m-1 are 
tied, then 1/m is added to each of the m2 cells 
corresponding to the submatrix of U, that is to the 
elements Uij for i,j=d,…d+m-1. Since the matrix is 
constructed by summing over all judges, it is 
symmetric. Also, the adjusted effect can be written 

as aM i / . AD test has an approximate chi-

square distribution with t-1 degrees of freedom 
under null hypothesis [5]. 

2.3 Skilling and mack test 

Skilling and Mack [1] gave other test statistics in 
incomplete block designs for tied data. In this 

paper, we give the rearranged case according to 
BIBDs. For each block the ranks are given from 1 
to k. If ties occur, the average rank is given 
according to Durbin rank test for tied data. Let rij be 
the assigned rank for jth block and ith treatment. If 
ith treatment is not in the jth block, rij is taken as 
(k+1)/2. The adjusted treatment effect of ith 
treatment is: 
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The variances of ci (i=1,2,…,t) and the 

covariances between ci and cj (i≠j) can written as 
follows: 
 

( ) ( 1)iVar c t        for i=1,2,…t.                   (6) 
 

( , )i jCov c c         for i≠j=1,2,…t                 (7) 
 
Let c be the column vector of treatments effects ci 

(i=1, 2,…t). The variance-covariance matrix of c is 
defined as: 
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The test statistic by using Eq. (5) and Eq. (8) is 

written as T G c c , where G  is the 
generalized inverse of G. It can be seen that the 
rank of G is t-1. So T statistic has approximately 
chi-square distribution with t-1 degrees of freedom 
under null hypothesis. 

2.4. Permutation approach for adjusted durbin rank 
test 

Fisher [8] firstly proposed permutation approach 
for experimental design. Bi [4] has discussed this 
approach for Durbin rank statistic on ranks and 
BIBDs in the sensory literature. Permutation 
approach can be used when we do not know the 
sampling distribution of a test statistic. To estimate 
the sampling distribution of the test statistic we 
need many samples generated under the null 
hypothesis. If the null hypothesis is true, changing 
the exposure would have no effect on the outcome. 
By randomly shuffling the exposures we can make 
up as many data sets as we like. The ranking of the 
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real test statistic among the shuffled test statistics 
gives a p-value.  

Best et al. [5] gave an adjusted version of Durbin 
rank test for tied data. But chi-square 
approximation, which is commonly used for this 
test, is not adequate for small BIBDs, as in this 
case, we investigate permutation approach for 
adjusted Durbin rank test (ADP). The algorithm for 
calculating p-value using the Permutation approach 
could be given as shown below. Algorithm: 
1) Compute AD test statistic in Eq. (3) for the 

original data.  
2) Choose permutation resample from the data 

without replacement in a way that is consistent 
with the null hypothesis of the test and with the 
study design. By the same way, generate 
artificial sample a large number of times (say, M 
times) 

3) For each of these replicated samples, 
recalculated the AD test statistic in Eq. (3). 

4) Let these recalculated AD test statistic values be 
* *
1 ,..., MAD AD . So the permutation distribution 

of the test statistic is found. 

5) Calculate the p value as: p-value=  *# iAD AD

M

 , 

i=1,…,M. Reject the null hypothesis of no 
treatment effects if p<α and accept null 
hypothesis otherwise. 

3. Simulation study 

In this section, we compared the D, AD, T and ADP 
tests according to their simulated type 1 error rates 
and powers of these tests using the Matlab code. 
For this simulation study symmetric with 2-(4u-
1,2u-1,u-1) (u=2,3,4,5,6) parameters and 
asymmetric with 2-(2u, u, u-1) (u=3,4,5,6) 
parameters BIBDs are considered. This selected 
design, which has the highest efficiency in BIBDs 
is widely used in practice [9]. 

The designs are generated from using Hadamard 
matrices. The data for BIBD is generated from 
binomial with n=9 and pi (i=1, 2,…t) for each 
treatment. So this corresponds to the judgment 
which gives the product rank 1 to 9. For nominal 
level =0.05 we used 5000 runs for design to 
calculate the simulated type 1 error rates and 
powers of these tests. Table 1-2 display the 
simulated type 1 error rates of tests for selected 
designs. 

From Table 1, one can see that, the D and T tests 
seem to have a type I error rate lower than the 
nominal level. The type I error rate of AD test is 
close to the nominal level as moderately large 
BIBDs. The ADP test performs superior to the other 
tests for especially small parameters of designs. 
 

 
Table 1. Estimated type 1 error rates of tests for 

symmetric designs for α=0.05 
 

Design Tests 
2-(4u-1,2u-1,u-1) D AD T ADP

2-(7,3,1) 0.000
5

0.002
5

0.000
5

0.044
02-(11,5,2) 0.005

5
0.035

5
0.018

5
0.052

02-(15,7,3) 0.004
5

0.036
0

0.019
5

0.050
02-(19,9,4) 0.012

0
0.050

0
0.027

0
0.050

12-(23,11,5) 0.013
5

0.050
1

0.028
0

0.050
3 

Table 2. Estimated type 1 error rates of tests for 
asymmetric designs for α=0.05 

 
Design Tests 

2-(4u-1,2u-
1,u-1) 

D AD T ADP 

2-(6,3,2) 0.007 0.032 0.013 0.063 
2-(8,4,3) 0.011 0.039 0.024 0.065 

2-(10,5,4) 0.009 0.044 0.021 0.056 
2-(12,6,5) 0.009 0.047 0.022 0.054 

 
From Table 2, it can be see that, the D and T tests 

have similar results as Table 1. While the AD test 
seems to have a type I error rate lower than the 
nominal level, the ADP test exceeds the nominal 
level for small BIBDs. But the difference between 
type I error and nominal level of these tests is close 
to each other. 

The ADP test generally performs better than other 
tests, especially small BIBDs for symmetric and 
asymmetric design. 

We also compare the D, AD, T and ADP tests 
when products are divided into two and three 
different groups with different binomial 
probabilities. We take differences between binomial 
probabilities of group 0.05, 0.10 and 0.20. So the 
rejection rate of each testing procedure is calculated 
and compared with the nominal level when the 
treatment effects are not all equal. When treatments 
were divided into two groups, Tables 3-4 display 
the power of tests for symmetric and asymmetric 
design, respectively. When treatments were divided 
into three groups Table 5-6 display the power of 
tests for symmetric and asymmetric design, 
respectively. 
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Table 3. Power of tests for symmetric design when treatments were divided into two groups 

 
Binomial 

probabilities 
Design 

2-(4u-1,2u-1,u-1) 
D AD T ADP 

0.15, 0.25 

2-(7,3,1) 0.0005 0.0095 0.0005 0.0865 
2-(11,5,2) 0.0360 0.1706 0.1046 0.2361 
2-(15,7,3) 0.1381 0.4037 0.2861 0.4487 
2-(19,9,4) 0.3240 0.6660 0.5430 0.6970 

2-(23,11,5) 0.5788 0.8389 0.7734 0.8524 

0.15, 0.35 

2-(7,3,1) 0.0005 0.0265 0.0015 0.2386 
2-(11,5,2) 0.3042 0.6143 0.5503 0.7134 
2-(15,7,3) 0.8779 0.9710 0.9640 0.9775 
2-(19,9,4) 0.9940 0.9995 0.9995 0.9995 

2-(23,11,5) 1.0000 1.0000 1.0000 1.0000 

0.45, 0.55 

2-(7,3,1) 0.0005 0.0060 0.0010 0.0775 
2-(11,5,2) 0.0250 0.1141 0.0735 0.1621 
2-(15,7,3) 0.0775 0.2436 0.1801 0.2871 
2-(19,9,4) 0.1770 0.4070 0.3440 0.4410 

2-(23,11,5) 0.3527 0.5958 0.5448 0.6268 

0.40, 0.60 

2-(7,3,1) 0.0005 0.0185 0.0010 0.1821 
2-(11,5,2) 0.2256 0.4742 0.4082 0.5698 
2-(15,7,3) 0.6923 0.8859 0.8649 0.9065 
2-(19,9,4) 0.9590 0.9910 0.9900 0.9930 

2-(23,11,5) 0.9980 1.0000 1.0000 1.0000 
 

Table 4. Power of tests for asymmetric design when treatments were divided into two groups 
 

Binomial probabilities 
Design 

2-(4u-1,2u-1,u-1) 
D AD T ADP 

0.15, 0.25 

2-(6,3,2) 0.1033 0.1795 0.0505 0.1770 
2-(8,4,3) 0.1963 0.2793 0.0815 0.2760 

2-(10,5,4) 0.3948 0.4388 0.1320 0.4384 
2-(12,6,5) 0.5820 0.6302 0.2596 0.6302 

0.15, 0.35 

2-(6,3,2) 0.3668 0.5144 0.1718 0.5092 
2-(8,4,3) 0.7798 0.8450 0.5232 0.8452 

2-(10,5,4) 0.9604 0.9702 0.8278 0.9706 
2-(12,6,5) 0.9960 0.9970 0.9725 0.9970 

0.45, 0.55 

2-(6,3,2) 0.0666 0.1252 0.0220 0.1220 
2-(8,4,3) 0.1418 0.2102 0.0512 0.2100 

2-(10,5,4) 0.2505 0.2955 0.0845 0.2920 
2-(12,6,5) 0.3800 0.4340 0.1600 0.4400 

0.40, 0.60 

2-(6,3,2) 0.2610 0.3858 0.1322 0.3806 
2-(8,4,3) 0.6166 0.7072 0.3948 0.7078 

2-(10,5,4) 0.8730 0.8970 0.6836 0.8968 
2-(12,6,5) 0.9768 0.9840 0.9024 0.9840 
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Table 5. Power of tests for symmetric design when treatments were divided into three groups 
 

Binomial 
probabilities 

Design 
2-(4u-1,2u-1,u-1) 

D AD T ADP 

0.15, 0.20, 0.25 

2-(7,3,1) 0.000 0.007 0.002 0.079 
2-(11,5,2) 0.019 0.105 0.062 0.157 
2-(15,7,3) 0.058 0.248 0.158 0.292 
2-(19,9,4) 0.161 0.439 0.341 0.473 

2-(23,11,5) 0.316 0.638 0.529 0.663 

0.15, 0.25, 0.35 

2-(7,3,1) 0.000 0.013 0.002 0.173 
2-(11,5,2) 0.165 0.438 0.347 0.523 
2-(15,7,3) 0.576 0.830 0.804 0.860 
2-(19,9,4) 0.911 0.984 0.979 0.987 

2-(23,11,5) 0.996 0.999 0.999 0.999 

0.45, 0.50, 0.55 

2-(7,3,1) 0.000 0.004 0.000 0.073 
2-(11,5,2) 0.021 0.073 0.048 0.117 
2-(15,7,3) 0.044 0.162 0.119 0.200 
2-(19,9,4) 0.076 0.246 0.193 0.279 

2-(23,11,5) 0.167 0.403 0.332 0.425 

0.40, 0.50, 0.60 

2-(7,3,1) 0.000 0.007 0.001 0.147 
2-(11,5,2) 0.112 0.302 0.243 0.393 
2-(15,7,3) 0.387 0.659 0.629 0.705 
2-(19,9,4) 0.780 0.931 0.920 0.940 

2-(23,11,5) 0.959 0.993 0.994 0.994 
 

Table 6. Power of tests for asymmetric design when treatments were divided into three groups 
 

Binomial probabilities 
Design 

2-(4u-1,2u-1,u-1) 
D AD T ADP 

0.15, 0.20, 0.25 

2-(6,3,2) 0.015 0.071 0.029 0.124 
2-(8,4,3) 0.031 0.146 0.087 0.215 

2-(10,5,4) 0.073 0.258 0.177 0.301 
2-(12,6,5) 0.130 0.387 0.298 0.443 

0.15, 0.25, 0.35 

2-(6,3,2) 0.081 0.222 0.123 0.347 
2-(8,4,3) 0.295 0.568 0.480 0.669 

2-(10,5,4) 0.593 0.853 0.806 0.884 
2-(12,6,5) 0.826 0.957 0.956 0.970 

0.45, 0.50, 0.55 

2-(6,3,2) 0.016 0.061 0.025 0.109 
2-(8,4,3) 0.029 0.102 0.059 0.148 

2-(10,5,4) 0.053 0.148 0.123 0.187 
2-(12,6,5) 0.076 0.249 0.194 0.297 

0.40, 0.50, 0.60 

2-(6,3,2) 0.060 0.141 0.082 0.243 
2-(8,4,3) 0.206 0.410 0.332 0.519 

2-(10,5,4) 0.442 0.687 0.636 0.724 
2-(12,6,5) 0.661 0.867 0.847 0.887 
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We observe the following from the numerical 

results in Table 3-6. The powers of A, AD, T tests 
are not high enough, especially in small BIBDs. 
The ADP test is superior to other tests for 
symmetric and asymmetric design, especially small 
BIBDs. Also, the AD test appears to be more 
powerful than the D and T tests in this situation. 
While ADP test is more powerful than AD test in 
Table 3 the ADP and AD tests exhibit close power 
properties, especially small BIBDs in Table 4. 
When the block size increases, i.e. large BIBDs, it 
is seen that the power of all three tests is getting 
higher. In large BIBDs, the AD and ADP tests 
exhibit close power properties that appear to be 
more powerful than the other tests. However, the 
difference between the powers of the AD and ADP 
tests for symmetric design are much higher than the 
difference between the powers of these tests for 
asymmetric design. For example, while the 
difference between these tests is 0.072 for (7, 3, 1) 
design from Table 5, this difference is 0.053 for (6, 
3, 2). It shows that the power of the ADP tests for 
symmetric design is much higher than its power for 
asymmetric design.  

As expected, the powers of all these tests increase 
when the differences between binomial 
probabilities of groups are increased. In the same 
differences between binomial probabilities, the 
powers of all these tests increase when these 
probabilities are at extremes in most situations. In 
all conditions it is seen that ADP test is superior to 
other tests. 

4. Conclusion 

We studied some nonparametric tests for ranked 
data with ties data under balanced incomplete block 
design. Also, distribution of AD test was obtained 
via permutation approach. We compared the 
performance of the defined tests according to the 
size and power of the tests.  

Finally, it can be said that the ADP test appears to 
be more powerful than the other tests, especially 
small parameters of designs. Also, in this study the 
tests used in BIBDs are compared by simulation 
study for tied data, which has not been discussed in 
the sensory literature. Although the size and power 
comparisons are limited they illustrate that the ADP 
test is preferable to AD test for tied data in small 
BIBDs. 
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