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Abstract 

In this study, 2n -dimensional ( > 2)n  generalized conformally recurrent Kaehlerian Weyl spaces and 

generalized conharmonicaly recurrent Kaehlerian Weyl spaces are defined. It is proved that a Kaehlerian Weyl 
space is generalized conformally recurrent if and only if it is generalized recurrent.Also, it is shown that a 
Kaehlerian Weyl space will be generalized recurrent if and only if it is generalized conharmonically recurrent. 
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1. Introduction 

In the review paper "Weyl Geometry in Late 20th 
Century Physics" by E. Scholz, the physical 
concepts in Weylian geometry has been widely 
reviewed (see [1] and references therein). H. Weyl 
first introduced a gauge invariant theory to unify 
gravity and electromagnetic theories in 1918. This 
theory is not acceptable as a unified theory since 
the electromangetic potential does not couple to 
spinor which is essential for the electromagnetic 
theory. This does not mean that Weyl geometry has 
a physical meaning as well in different theories and, 
in the second part of the 20th century, the Weyl 
geometry has been studied in different research 
fields of physics such as: quantum mechanics [2], 
particle physics [3], gravity [4] and scale invariant 
cosmology. 

In [4], spaces with complex structures are 
considered in Weyl geometry and geodesics of the 
spacetime are studied. They consider scalar-flat 
Kaehler metrics and hypercomplex structures and 
obtain shear-free congruences. Presence of this type 
congruence means that a pair of coupled monopole 
like solution is equivalent to Einstein-Weyl 
equation. In quantum mechanics, discovery of 
phenomenon such as Berry phase (geometric 
phase), adiabatic transition probability in two level 
quantum system caused physicists to consider the 
geometry of quantum mechanics more than 
Riemannian structure of Hilbert space and 
therefore, they consider that physical state for the 
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Berry phase is isomorphic to Kahlerian space and 
physical state for adiabatic transition may be related 
to Kaehlerian-Weyl space [5]. It may also be 
worthwhile to study Dirac equation in the 
background of these type of spaces to understand 
the effects of torsion on spinor fields and to study 
gravitational monopoles as an application of 
Kaehlerian-Weyl spaces. 

Despite the unified theory of Weyl not being 
acceptable as physical theory, it introduced a 
beautiful theory in differential geometry. The 
mathematics of the theory is a generalization of the 
Riemannian geometry and the connection is an 
instructive example of non-metric connections. 

In this work, some generalized Kehlerian Weyl 
spaces are considered and some structures on these 
spaces are examined. 

A differentiable manifold of dimension n  having 
a conformal metric tensor g  and a symmetric 

connection   satisfying the compatibility 
condition  
 

= 2( )g T g                                                   (1) 
 
where T  is a 1-form (complementary covector 
field) is called a Weyl space which is denoted by 

( , )nW g T . Under the renormalization 
 

2g g                                                              (2) 
 
of the metric tensor g , T  is transformed by the 

law  
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= ln ,T T d                                                    (3) 
 
where   is a scalar function defined on nW . 

An object A  defined on ( , )nW g T  is called a 

satellite of g  of weight p  if it admits a 

transformation of the form 
 

pA A                                                             (4) 
 
under the renormalization (2) of g , [6-9]. 

The prolonged covariant derivatives of the satellite 

A  of the tensor ijg , with weight p  is defined in 

[6] 
 

= .k k kA A pT A                                          (5) 
 
Writing (1) in local coordinates we find 
 

2 = 0, = ,h h
k ij hj ik ih jk k ij k k
g g g T g

x
  

    
 

and using (5) we obtain 
 

= 0k ijg  
 

where i
kl  are the coefficients of the Weyl 

connection given by  
 

  ( )i im
kl mk l ml k kl m

i g g T g T g T
kl

         (6) 

 

and  i
kl

 being the coefficients of the metric 

connection defined by 
 

  1
( ) .

2
im

k ml l km m kl
i g g g g
kl

               (7) 

 
We note that the prolonged covariant 

differentiation preserves the weights of the 
satellites. 

A Kaehlerian Weyl space denoted by nKW  is an 

n -dimensional ( = 2  n m ) space with an almost 

complex structure j
iF  satisfying  

 

=j k k
i j iF F                                                       (8) 

 

=i j
ij h k hkg F F g                                                   (9) 

 

= 0,        (   , , )j
k iF for all i j k                   (10) 

 

= = ,k
ij jk i jiF g F F                                        (11) 

 

= =  .ij ih j ji
hF g F F                                      (12) 

 

The tensors ijF  and ijF  are of weight 2  and 

2 , respectively [9] . 

The mixed curvature tensor i
jklR  and the 

covariant curvature tensor ijklR  of ( , )nW g T  are 

given respectively, 
 

=i i i i h i h
jkl jk jl hl jk hk jll k

R
x x
      

  
 

  (13) 

 

and = h
ijkl ih jklR g R  where i

jk 's are defined in 

(6) . 
The Ricci tensor and the scalar curvature of 

( , )nW g T  are defined by  
 

= , a = .a ij
ija ij ijR R nd R g R             (14) 

 
Also, it can be seen that the anti-symmetric part 

of the Ricci tensor satisfies [6]   
 

[ ] [ ]= .ij i jR n T                                                  (15) 
 

Pure and hybrid tensors in Kaehlerian Weyl 
spaces are defined similar to the definitions in 
Riemannian spaces. Let T  be a tensor field of type 

(0, 2)  on nKW . If T  satisfies 

( , ) = ( , )T JX JY T X Y  for any vector fields X , 

Y  and any almost complex structure J  on nKW  

(in local coordinates =s r
sr j i jiT J J T ) then T  is 

said to be a hybrid tensor with respect to j  and i  

and if ( , ) = ( , )T JX JY T X Y  (in local 

coordinates =s r
sr j i jiT J J T ), then T  is said to be 

a pure tensor with respect to j  and i  in a 

Kaehlerian Weyl space [10]. 
Let 
 

1
= ,  = ,

2
kl k

ij ijkl ij ki jH R F M g R                     (16) 

 

where, = ,  = .h k h kl
ijkl ih jkl j jklR g R R R g  Then the 

following relations hold [10] :  
 

)a  2 2
= = 2 ( )ij ij ji ij ji ij

n
M R R R n R R

n n

     
 

     (17) 

 

)b  = = ,h h
ij hj i ih jH M F M F                        (18) 
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)c   = = ,h h
hi j jh i jiH F H F M                       (19) 

 

)d  = = ,hi hi
hi hiH F M g R                       (20) 

 
)e  [ ]= 4ijkl jikl k l ijR R T g  .                          (21) 

 
)f = 0.ij jiH H                                            (22) 

2. Generalized conformally recurrent 
Kaehlerian Weyl spaces 

An n-dimensional Weyl space is called a 
generalized recurrent Weyl space if its curavture 

tensor lijkR  satisfies the condition  
 

= ( ),r lijk r lijk r lj ik lk ijR A R B g g g g          (23) 
 
where A  and B  are non-zero two 1-forms of 
weights 0 and -2, respectively, [11]. By putting 

=lijk lj ik lk ijG g g g g , (23) becomes  
 

= .r lijk r lijk r lijkR A R B G                              (24) 
 

If the 1-form B  is zero, then the Weyl space 
reduces to recurrent Weyl space [8]. 

Now, we introduce the following definitions on 
recurrent Kaehlerian Weyl spaces. 
 
Definition 2.1. An n -dimensional ( = 2 )n m  

Kaehlerian Weyl space is said to be a generalized 

recurrent if its curvature tensor lijkR  of weight 2  

satisfies the condition  
 

= ,r lijk r lijk r lijkR A R B G                              (25) 
 
where A  and B  are two 1-forms of weights 0  
and 2 , respectively. Such a space is denoted by 

nGRKW . 

If the 1-form B  is zero, then nGRKW  is 

recurrent Kaehlerian Weyl space.  
On the other hand, the conformal curvature tensor 
h
ijkC  of nW  is given by Miron [12]   

 

[ ]= 2 ,h h h h h h h
ijk ijk k ij j ik k ij j ik i jkC R L L L g L g L       (26) 

 
where 
 

[ ]

2
= ,

( 2) ( 2) 2( 1)( 2)
ij ij

ij ij

R Rg
L R

n n n n n
  

   
(27) 

 
and 

 

= .h lh
k lkL g L                                                      (28) 

 
Considering (17), (27) becomes 

 
1

= ,
2 ( 2) 2( 1)( 2)

ji ij ij
ij ij

R R Rg
L M

n n n n n


  

   
  (29) 

 
and 
 

1 1
= ( )

( 2) ( 4)( 2)
1

        .
2( 1)( 2)

ij ij ji ij

ij

L M M M
n n n

R g
n n

  
  

 

  (30) 

 
Also, from (15), (17), (27) and (30) we obtain   

 

[ ] [ ] [ ]

1
= =

1
     = ( ).

2( 4)

ij ij i j

ij ji

L R T
n

M M
n

 

 


                (31) 

 
Definition 2.2. An n -dimensional 

( = 2 , > 2)n m m  Kaehlerian Weyl space is said 

to be generalized conformally recurrent if its 

conformal curvature tensor lijkC  of weight 2  

satisfies the condition 
 

=r lijk r lijk r lijkC A C B G                               (32) 
 
where A , B  are two 1-forms of weights 0  and 

2 , respectively and  = h
lijk ijk hlC C g  . 

We can state the following theorem concerning 
the generalized conformally recurrent Kaehlerian 
Weyl space. 
 

Theorem 2.1. A Kaehlerian Weyl space nKW  is 

generalized conformally recurrent if and only if it is 
generalized recurrent. 
 

Proof: Assume nKW  is generalized conformally 

recurrent. Transvecting (26) by hlg  we get 
 

[ ]

=
2 .

lijk lijk kl ij jl ik

ij lk ik lj il jk

C R g L g L
g L g L g L

 
                       (33) 

 
By taking the prolonged covariant derivative of 

(33) and using (32), (33) we have,  
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[ ]

[ ]

2
= [

2 ] .

r lijk kl r ij jl r ik ij r lk

ik r lj il r jk

r lijk kl ij jl ik ij lk

ik lj il jk r lijk

R g L g L g L
g L g L
A R g L g L g L
g L g L B G

      
   

  
  

   
 

     (34) 

 

Transvecting (34) by jkF  and using (16), (17), 
(18) and (30) we obtain 
 
( 3) 1

( 2) ( 2)
1 1

( 1)( 2) ( 4)

( 3) 1

( 2) ( 2)= 1 1

( 1)( 2) ( 4)

1
.

2

r li r il

jk
li r il r jk

li il

r
jk

li il jk

jk
r lijk

n
H H

n n

F R g F M
n n n

n
H H

n nA
R F g F M

n n n

B G F


  

 

   
  

    
  

    



 

 

 (35) 

 

Also, transvecting (35) by liF  and using (20) we 
get 
 

(1 )
= .

( 2)r r r

n n
R A R B

n


 


                             (36) 

 

On the other hand, multiplying (35) by lig  and 

using (18) we obtain 
 

1
( ) = .

2
jk jk jk li

r jk r jk r lijkF M A F M B G F g   (37) 

 

Since = 0jk li
lijkG F g  

 

= .jk jk
r jk r jkF M A F M                               (38) 

 
Substituting (36) and (38) in (35) we get 

 
1

= .
2r li r li r li

n
H A H B F

n


 


                        (39) 

 

By multiplying (39) by i
jF  we obtain, 

 
1

= .
2r lj r lj r lj

n
M A M B g

n


 


                       (40) 

 
Substituting (36) and (40) into (30) gives us,   

 
1

= .
2( 2)r ij r ij r ijL A L B g

n
 


                     (41) 

 
Using (41), (34) reduces to 

 

1
= .

2r lijk r lijk r lijk

n
R A R B G

n


 


                   (42) 

 
Hence, the necessary part of the theorem is 

proved. 

Conversely, assume that nKW  is generalized 

recurrent with 1-forms A  and ,B  i.e:   
 

= .r lijk r lijk r lijkR A R B G                              (43) 
 

Multiplying (43) by jkF  and using (16) we get   
 

= .r li r li r liH A H B F                                   (44) 
 

Transvecting (44) by liF  we obtain   
 

= .r r rR A R nB                                           (45) 
 

Also, since = h
li lh iH M F  and (44) we get 

 

= .r lj r lj r ljM A M B g                                  (46) 
 

Hence from (30), (44), (45), we get 
 

1
= ,

2( 1)r ij r ij r ijL A L B g
n

 


                    (47) 

 
and 
 

[ ] [ ]= .r ij r ijL A L                                               (48) 
 

Taking prolonged covariant derivative of (33) and 
using (47) and (48) we get, 
 

( 2)
= ,

( 1)r lijk r lijk r lijk

n
C A C B G

n


 


               (49) 

 
which implies that sufficiency part of the theorem is 
proved. 
 

Remark: If, in particular, rB  is zero we obtain the 

results in [10]. 

3. Generalized conharmonically recurrent 
Kaehlerian Weyl spaces  

Let ( , )n ij kW g T  and ( , )n ij kW g T   be two Weyl 

spaces with connections k  and k , respectively 

and let the map : n nW W    be a conformal 

mapping. As a special case, let the transformed 

expressions of the fundamental metric tensor ijg  
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and the coefficients of Weyl connection i
kl  be in 

the following forms  
 

, = ,ij ij
ij ij

i i i i im
kl kl k l l k kl m

g g g g

P P g g P   



   

 


            (50) 

 
where the vector kP  is called conformal mapping 

vector such that  
 

= .k k kP T T                                                      (51) 
 

Let A  be the differentiable harmonic function 
with weight { }p  defined by  
 

2(1 )
= , =

2

jc jP du p n
A e A c

          (52) 

 
and the vector field kP  satisfies [13] 
 

1
( 2) = 0 .

2
kl k

k l kg P n P P                         (53) 

 
If a conformal transformation with kP  satisfying 

(53) transforms a harmonic function into a 
harmonic function then it is called conharmonic 
transformation. 

It is shown that the conharmonic curvature tensor 

lijkK  of ( , )n ij kW g T  can be given by [13]  
 

= , > 2
( 2)( 1)lijk lijk lijk

R
K C G n

n n


 
     (54) 

 
where lijkC  is the conformal curvature tensor of 

Weyl space and =lijk lj ik lk ijG g g g g .  

 
Definition 3.1. An n -dimensional ( = 2n m ) 
Kaehlerian Weyl space is said to be generalized 
conharmonically recurrent if its conharmonic 

curvature tensor lijkK  of weight 2  satisfies the 

condition 
 

= ,r lijk r lijk r lijkK A K B G                            (55) 
 
where A  and B  are non-zero two 1-forms of 
weights 0  and 2 , respectively. 
 
Theorem 3.1. A Kaehlerian Weyl space is 
generalized recurrent if and only if it is generalized 
conharmonically recurrent.    
 

Proof: Asume nKW  is generalized recurrent, then  
 

=r lijk r lijk r lijkR A R B G                                (56) 
 
From Theorem 2.1 and (49) we have 
 

( 2)
=

( 1)r lijk r lijk r lijk

n
C A C B G

n


 


 .               (57) 

 
By taking the prolonged covariant derivative of 

(54) we get  
 

1
= .

( 1)( 2)r lijk r lijk lijk rK C G R
n n

   
 

     (58) 

 
Using (57) in (58) we obtain,  

 
( 2) 1

= .
( 1) ( 1)( 2)r lijk r lijk r lijk lijk r

n
K A C B G G R

n n n


   

  
    (59) 

 
Considering (45), (59) becomes 

 
( 2)

=
( 1)

1
( ).

( 1)( 2)

r lijk r lijk r lijk

lijk r r

n
K A C B G

n

G A R nB
n n


 



 
 


            (60) 

 
Therefore, from (54) we get  

 
( 4)

= .
( 1)r lijk r lijk r lijk

n
K A K B G

n


 


           (61) 

 
Hence the necessary part of the theorem is 

proved. 
Conversely, assume that  
 

= ,r lijk r lijk r lijkK A K B G                            (62) 
 
then, (58) becomes  
 

=
1

.
( 1)( 2)

r lijk r lijk r lijk

lijk r

A K B G C

G R
n n

 

 
 



                          (63) 

 
Using (54), we have  

 

( 1)( 2)
1

=
( 1)( 2)

r lijk lijk r lijk

r lijk lijk r

R
A C G B G

n n

C G R
n n

 
    

  
 

 
.  (64) 

 

Multiplying both sides of (64) by jkF  and using 
(16), we get  
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( 3) 1 1

( 2) ( 2) ( 1)( 2)2 1

( 4)

( 1)( 2)

( 3) 1 1

( 2) ( 2) ( 1)( 2)= 2 1

( 4)

1

( 1)( 2)

li il li

r
jk

il jk

jk jk
r lijk r lijk

r li r il li r

jk
il r jk

lij

n
H H R F

n n n nA
g F M

n

R
A G F B G F

n n

n
H H F R

n n n n

g F M
n

G
n n

       
 

  

 
 

          
  

  


 

  



jk
k rF R

 (65) 

 

Since = 2li jk
lijkG F F n , by transvecting (20) 

with liF  and using (20) we obtain  
 

( 2)
= , ( > 4).

( 4)r r r

n n
R A R B n

n


 


           (66) 

 
Hence, by using (55) and (58) we get  

 
2( 2)

= , ( > 4).
( 1)( 4)r lijk r lijk r lijk

n
C A C B G n

n n


 

 
  (67) 

 
From Theorem 2.1.  

 
( 1)

= , ( > 4).
( 4)r lijk r lijk r lijk

n
R A R B G n

n


 


  (68) 
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