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Abstract

In this study, 2N -dimensional (n > 2) generalized conformally recurrent Kaehlerian Weyl spaces and

generalized conharmonicaly recurrent Kaehlerian Weyl spaces are defined. It is proved that a Kaehlerian Weyl
space is generalized conformally recurrent if and only if it is generalized recurrent.Also, it is shown that a
Kaehlerian Weyl space will be generalized recurrent if and only if it is generalized conharmonically recurrent.
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1. Introduction

In the review paper "Weyl Geometry in Late 20th
Century Physics" by E. Scholz, the physical
concepts in Weylian geometry has been widely
reviewed (see [1] and references therein). H. Weyl
first introduced a gauge invariant theory to unify
gravity and electromagnetic theories in 1918. This
theory is not acceptable as a unified theory since
the electromangetic potential does not couple to
spinor which is essential for the electromagnetic
theory. This does not mean that Weyl geometry has
a physical meaning as well in different theories and,
in the second part of the 20th century, the Weyl
geometry has been studied in different research
fields of physics such as: quantum mechanics [2],
particle physics [3], gravity [4] and scale invariant
cosmology.

In [4], spaces with complex structures are
considered in Weyl geometry and geodesics of the
spacetime are studied. They consider scalar-flat
Kaehler metrics and hypercomplex structures and
obtain shear-free congruences. Presence of this type
congruence means that a pair of coupled monopole
like solution is equivalent to Einstein-Weyl
equation. In quantum mechanics, discovery of
phenomenon such as Berry phase (geometric
phase), adiabatic transition probability in two level
quantum system caused physicists to consider the
geometry of quantum mechanics more than
Riemannian structure of Hilbert space and
therefore, they consider that physical state for the
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Berry phase is isomorphic to Kahlerian space and
physical state for adiabatic transition may be related
to Kaehlerian-Weyl space [5]. It may also be
worthwhile to study Dirac equation in the
background of these type of spaces to understand
the effects of torsion on spinor fields and to study
gravitational monopoles as an application of
Kacehlerian-Weyl spaces.

Despite the unified theory of Weyl not being
acceptable as physical theory, it introduced a
beautiful theory in differential geometry. The
mathematics of the theory is a generalization of the
Riemannian geometry and the connection is an
instructive example of non-metric connections.

In this work, some generalized Kehlerian Weyl
spaces are considered and some structures on these
spaces are examined.

A differentiable manifold of dimension N having
a conformal metric tensor § and a symmetric

connection V  satisfying the compatibility
condition

Vg=2(T®g) M

where T is a 1-form (complementary covector
field) is called a Weyl space which is denoted by

W, (g, T) . Under the renormalization

g=4g @)

of the metric tensor g, T is transformed by the

law
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T=T+dInA, 3)

where A is a scalar function defined on W, .

An object A defined on W, (0, T) is called a
satellite of O of weight P if it admits a
transformation of the form

A=1PA (4)

under the renormalization (2) of g, [6-9].
The prolonged covariant derivatives of the satellite
A of the tensor @, with weight P is defined in

(6]
V. A=V, A-pT A (5)
Writing (1) in local coordinates we find
09 = Ok = Il — 2T, G =0,

and using (5) we obtain
vV, g = 0

where 1 1|<| are the coefficients of the Weyl

connection given by

Fikl = {Q}_ gim(gmk-ﬁ +0uT— 9T (©

and {lll} being the coefficients of the metric

connection defined by
[ 1 im
{Q}:Eg (k9 + 01 Gn — ) - (7

We note that the prolonged covariant
differentiation preserves the weights of the
satellites.

A Kachlerian Weyl space denoted by KW, is an
N -dimensional (N=2M ) space with an almost

complex structure Fij satisfying

FIFf ==& @®)
9; Fhi ij = On ©
V.Fi=0, (forall i,j,k) (10)

R =0,F=-F, (11)

i ji

Fi=g"F) =-F". (12)

The tensors Fij and F' are of weight 2 and
—2, respectively [9] .

The mixed curvature tensor R;kl and the
covariant curvature tensor Ry of W, (g, T) are

given respectively,

i 0 i 0 i i ~h i h
Rjkl _grjk_%rjl +Fhlrjk_rhkrjl (13)

and Rjk, =0 thkl where ]_'}k's are defined in
).

The Ricci tensor and the scalar curvature of
W, (9,T) are defined by

R?a = Rj > and

Also, it can be seen that the anti-symmetric part
of the Ricci tensor satisfies [6]

R=0'R,. (14)

Rijy =NV T (15)

Pure and hybrid tensors in Kaehlerian Weyl
spaces are defined similar to the definitions in

Riemannian spaces. Let T be a tensor field of type
(0,2) on  KW,. If T  satisfies
T(IX,JY)=T(X,Y) for any vector fields X,
Y and any almost complex structure J on KWn
(in local coordinates TngSJir =T,;) then T is
said to be a hybrid tensor with respect to ] and |

and if T(JIX,JY)=-T(X,Y) (in local
coordinates TerjSJir = —Tji ), then T is said to be

a pure tensor with respect to | and | in a
Kaehlerian Weyl space [10].
Let
H, = LR, F¥, M, = g, R
i _ERjkl » My =0y, (16)

where, Ry = 0, Rj-hkl , R}( = R]hkl g". Then the
following relations hold [10] :

a) w, :("_ZJRJ. Jr%Rji =R +2n(R,-R) (17D

n

b) Hij:_thFih :Mthjh9 (18)
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©) HyF'=-H,F"=M;, (19)
d) H,F"=-M,g" =-R, (20)
e Ry +Ruw =4V, T,9;. (21)
f)H;+H; =0. (22)

2. Generalized conformally recurrent

Kaehlerian Weyl spaces

An n-dimensional Weyl space is called a
generalized recurrent Weyl space if its curavture

tensor Rijk satisfies the condition

Vr Rijk =A Rijk +B (gu Oik — 9« 9 ), (23)

where A and B are non-zero two 1-forms of
weights 0 and -2, respectively, [11]. By putting

Giik = 9 9 — 91 ;; » (23) becomes

Vr Rijk =A Rijk +B Glijk' (24)

If the I-form B is zero, then the Weyl space
reduces to recurrent Weyl space [8].

Now, we introduce the following definitions on
recurrent Kaehlerian Weyl spaces.

Definition 2.1. An N-dimensional (N=2M)
Kaehlerian Weyl space is said to be a generalized
recurrent if its curvature tensor Rijk of weight 2

satisfies the condition
V. Rik = A R + B. Gy (25)

where A and B are two 1-forms of weights 0
and —2, respectively. Such a space is denoted by

GRKW, .
If the 1-form B is zero, then GRKW, is

recurrent Kaehlerian Weyl space.
On the other hand, the conformal curvature tensor

Ci?k of W, is given by Miron [12]
C:I?k :thk +6y L _5jh L +L|;gij _L? Gi—26" Ltjgs (26)
where

R 2 Ry + R, 7
(n-2) n(n-=2) " 2(n-1)(n-2)’

L =

and

Ly =g"L,. (28)
Considering (17), (27) becomes
L =- 1 Mi_+Rji_Rj+ Rg; ’
! n-2 " n(n-2) 2(n-1)(n-2)
and
L. =— ! M. + ! M, -M)
" n-2) " (n-4)(n-2) " 17 (30)
1

2(n—1)(n—2)Rg”'

Also, from (15), (17), (27) and (30) we obtain

1
Ly = n Ry ==VuTy,
1 31)
=———M; -M ).
2(n—-4)
Definition 2.2. An N -dimensional

(n=2m, m> 2) Kaehlerian Weyl space is said
to be generalized conformally recurrent if its

conformal curvature tensor C « of weight 2

lij
satisfies the condition

Vrank =A Clijk +B, Glijk (32)

where A, B are two 1-forms of weights 0 and
—2, respectively and G = Ci?k O, -

We can state the following theorem concerning
the generalized conformally recurrent Kaehlerian
Weyl space.

Theorem 2.1. A Kachlerian Weyl space KW, is

generalized conformally recurrent if and only if it is
generalized recurrent.
Proof: Assume KWn is generalized conformally

recurrent. Transvecting (26) by {,, we get

Clijk :Rlijk +0y Lij =0 L

33
+0; L =i L =29, Ly (2)

By taking the prolonged covariant derivative of
(33) and using (32), (33) we have,
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VRIJk+gkI J_g VI—'k"’g'jV Ly VR =AR,
i r=i r=i i r R | + B G“ (42)
-0 V. L 2gII Liicg (34) jk ijk jk -
:Ar[RIijk +0uLk; —9; L +9; Ly

-0y Ly —29; L[jk]]+ B, Gy -

Transvecting (34) by F X and using (16), (17),
(18) and (30) we obtain

M=oy L vn,
(n—2) r li (n—2) r il

-—————FV,R+——g,F*V M,
(n-1)(n-2) (n—4)

(n—3)HIi . 1
A 0-2 Ty
giIij

- RF, + M,
(n=1)(n-2) (n—4) !

(35)

+18.G,, F .
2

Also, transvecting (35) by F " and using (20) we

get

MB . (36)

V.R=AR+ ) B

On the other hand, multiplying (35) by ¢" and
using (18) we obtain

FHV,M,)=AF*M, +%qu”k|:ikg“. (37)
Since G“ijjkgli =0

FYV M, = AF*M,. (38)

Substituting (36) and (38) in (35) we get

- n-1
V. H, :AHIi+EBr F- (39)

By multiplying (39) by Fji we obtain,

VrMu AM,; - n_ B 9;- (40)
Substituting (36) and (40) into (30) gives us,

VoL =AL+ B g;. (41)

2(n-2)

Using (41), (34) reduces to

Hence, the necessary part of the theorem is
proved.

Conversely, assume that KW, is generalized

recurrent with 1-forms A and B, i.e

Vr Rik = A Rk + B G- (43)
Multiplying (43) by F ™ and using (16) we get

V.H,=AH,+BF,. (44)
Transvecting (44) by F " we obtain

V.R=AR-nB. (45)

Also, since H; =M, Fih and (44) we get

M, =AM, -Bg,. (46)

Hence from (30), (44), (45), we get

. 1

Vr Lij = A Lij +m8r gij 5 (47)
and

Vil = A Ly (48)

Taking prolonged covariant derivative of (33) and
using (47) and (48) we get,

(h-2)g
(n-1)

which implies that sufficiency part of the theorem is
proved.

VrCan AC+ B G (49)

Remark: If, in particular, B, is zero we obtain the

results in [10].

3. Generalized conharmonically recurrent
Kaehlerian Weyl spaces

Let W, (g;,T,) and Wn(gij,'fk) be two Weyl
spaces with connections V| and ﬁk, respectively

and let the map 7:W, =W, be a conformal
mapping. As a special case, let the transformed
expressions of the fundamental metric tensor g
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and the coefficients of Weyl connection /] II<I be in
the following forms

0; = 9> g'=g’,

e | (30)
Iy=Ty+6R+5R-9,9"R

where the vector Ff( is called conformal mapping

vector such that
P=T-T. 51)

Let A be the differentiable harmonic function
with weight { P} defined by

_ cP-de _ _
e C:w )

and the vector field B, satisfies [13]
K 1 k
g VkF?+5(n—2)P R =0. (53)

If a conformal transformation with FL satisfying

(53) transforms a harmonic function into a
harmonic function then it is called conharmonic
transformation.

It is shown that the conharmonic curvature tensor

K”jk oan(gij , T,) canbe given by [13]

R

Klijk = Clijk +me—k, n>?2 (54)

where C, J-

Weyl space and Gy, = 0 Oy — 9 9 -

« 1is the conformal curvature tensor of

Definition 3.1. An N-dimensional (N=2M)
Kachlerian Weyl space is said to be generalized
conharmonically recurrent if its conharmonic

curvature tensor K.

ijk of weight 2 satisfies the

condition
Vr Klijk =A Klijk +B Glijkﬂ (55)

where A and B are non-zero two 1-forms of
weights 0 and —2, respectively.

Theorem 3.1. A Kaehlerian Weyl space is
generalized recurrent if and only if it is generalized
conharmonically recurrent.

Proof: Asume KW, is generalized recurrent, then

Vr F\)ijk =A Rijk +B, Glijk (56)
From Theorem 2.1 and (49) we have
(h-2)g

V CIuk Aclljk

G“jk. 57

(n-1)

By taking the prolonged covariant derivative of
(54) we get

1 .

Ky =V, Cyj + memkvr R. (58)
Using (57) in (58) we obtain,

V lijk Ac\ljk+(n 2) ! R (59)

n-1) B G + n—1(n-2) Gluk r
Considering (45), (59) becomes

n-2
Vv Kluk =A ka (—I)BrGIijk
— G, (AR-NB,).
+(n_1)(n_2) |Ijk( r r)

Therefore, from (54) we get

(n—-4)

vrKnjk =A Klijk L — 1) B Gluk (61)

Hence the necessary part of the theorem is
proved.
Conversely, assume that

Vr Klijk =A Klijk +B, GIijk’ (62)
then, (58) becomes

A Klijk + BrGIijk = vrcnjk

oo R )
Using (54), we have
Ar (Clijk +L6|ijk ]"' BrGIijk

C.+— G..VR
r~lijk (n—l)(n—2) lijk ¥ r

Multiplying both sides of (64) by F I and using
(16), we get
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(nis)Hn‘*' ! Hy - : RF,
oa |2 " =) " (n=Dn-2)
i
-4 9iF M e (65)
+A, (n—l;ﬁan Fls B.Gy F *
(n_3)VrHI|+ 1 er|I7 : F\IVI‘R
=5/ (n=2) (n-2) (n-DH(n-2)
+mgi|F]erM ik
— 1 G, FrVR
(n-1H(n-2) " T

Since G“jk F'F® =2n, by transvecting (20)

with F" and using (20) we obtain

n(n—2)B

V,R=AR- o B

(n>4). (66)

Hence, by using (55) and (58) we get

V,Cipe = A Gy + % B.Gy. (n>4). (67)

From Theorem 2.1.
: _ (n-1)
V. Rik = A Rix +m B G, (n>4). (68)
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