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Abstract 

Using the electrostatic capacity of a condenser, the existence of a distance function on a Finsler space is discussed. 
This distance function divides Finsler spaces into the two classes, denoted here by I and II. The topology 
generated by this distance on the Finsler spaces of class II coincides with its intrinsic topology. This work 
provides a natural extension of mathematical analysis tools needed for developing some prominent features of 
differential geometry in the large. 
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1. Introduction 

Recently, one of the present authors in a joint work 
has classified Finsler spaces through the conformal 
transformations, [1]. Here, we give another 
classification of Finsler spaces by using a distance 
function determined by the notion of conformal 
capacity on Finsler spaces, previously introduced 
by the present authors [2] and [3]. 

More intuitively, the concept of capacity as a set 
function arising in potential analysis is analogous to 
the physical concept of the electrostatic capacity of 
a condenser, that is, an open set with a relatively 
compact subset inside. 

The capacity of a set as a mathematical concept 
was introduced first by N.Wiener in 1924 and was 
subsequently developed by several French 
mathematicians in connection with the potential 
theory. The notion of capacity has since been 

extensively developed for n particularly by M. 
Vuorinen. 

This notion was also used by G. D. Mostow to 
prove his famous theorem on the rigidity of 
hyperbolic spaces [4]. As a positive response to the 
question asked by Vuorinen in [5], J. Ferrand 
proved that the concept of capacity can be used to 
define a distance function on Riemannian geometry, 
[6] and [7]. Her work provides important tools in 
the studies of global properties of Riemannian 
spaces. Specifically, she used this theory to give a  
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rigorous and complete proof to the famous 
“Lichnerowicz conjecture” in conformal 
transformations groups of Riemannian spaces [8]. 
Her proof is quite elementary and is based on the 
behavior of sequences on the whole conformal 
group of the Riemannian space under consideration. 

Defining such a distance function in Finsler 
spaces seems desirable, since Finsler geometry has 
come up in many applications particularly in 
physics. Moreover, Finsler space is a natural 
generalization of Riemannian and hence Euclidean 
space. This fact is discovered after the Elie Cartan’s 
Euclidean connection, in 1933, [9] and [10]. 

The present work has established a distance 
function which provides an elementary account of 
some tools in analysis needed for developing 
Finsler geometry. More precisely, as an extension 
of Ferrand’s work, we show the existence of a 
distance function determined by notion of a 
conformal invariant function, called capacity, on a 
compact subset of a Finsler space. This function, 

namely M , defined as infimum of capacities of a 

certain subset of the Finsler space, classifies Finsler 
metrics into the two classes denoted here by ܫ and 
 for which some examples are provided. The aim ,ܫܫ
of this work is to study properties of Finsler spaces 
of class ܫܫ. 
 
Theorem A: Let (M,g) be a Finsler space of class 

then for every point 1 ,ܫܫ 2,x x and 3x M we 

have  
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(1) M 1 2 M 2 1(x , x ) (x , x ),    

(2) M 1 2 1 2(x , x ) 0 x x ,     

(3) M 1 3 M 1 2 M 2 3(x , x ) (x , x ) (x , x ).     

Our goal in this paper is the following theorem. 
 
Theorem B For any Finsler space of class   the ,ܫܫ

topology defined by distance function M  

coincides with the canonical topology. 

2. Notations and Preliminaries 

Let M  be an n-dimensional C manifold. For a 

point x M , denote by xT M the tangent space of 

M at x . The tangent bundle TM  on M is the 

union of tangent spaces xT M and 

0TM TM \{0} . We will denote the elements 

of TM  by (x, y) , where xy T M . The natural 

projection : TM M   is given by 
(x, y) : x  . 

A Finsler structure on a manifold M is a function 

0F : TM [0, )   with the following properties: 

(i) F  is C on 0TM , (ii) F  is positively 1-

homogeneous on the fibers of tangent bundle TM , 
that is 0,   F(x, y) F(x, y),    (iii) The 

Hessian of 2F  with elements 

i j

2
ij y y

1
g [F (x, y)]

2
 is positive definite on 

0TM . The pair (M,g)  is called a Finsler space. 

Throughout this paper, we use Einstein summation 
convention for the expressions with repeated 
indices. The Finsler structure F  is Riemannian if 

ijg (x, y)  are independent of y 0 . 

Let : TM M   be the natural projection. 

Collecting all tangent Spaces xT M , we form a 

vector bundle called the pull-back bundle or pull-

back tangent space *TM defined by 
 

*
x 0 xTM : {(x, y, v) | y T M , v T M}    . 

 

Both *TM  and its dual * *T M  are n -

dimensional vector bundles over 0TM  (see, for 

instance, [9] and [11]). If we put 
v

*
v TM

VTM ker ,


   then a non-linear connection 

on TM  is a complementary distribution HTM  
for VTM  on TTM . Therefore, we have the 

following decomposition. TTM VTM HTM.   

We recall that, ijg is a homogeneous tensor of 

degree zero in y  and 
i j

ij xg (x, y)y y g (y, y) , 

where
 xg ( , )  is the local scalar product on the 

fiber xT M of *TM  at any fixed point x M . 

Using the induced coordinates i i(x , y )  on TM , 

we have the local field of frames 
i i

{ , }
x y

 
 

on 

TTM . Let i i{dx ,dy }be the dual of 

i i
{ , }

x y

 
 

, we can choose a local field of  frames 

i i
{ , }

x y

 
 

 adapted to the above decomposition, 

namely 
i

(HTM)
x





 and 

i
(VTM)

y





. 

They are sections of horizontal and vertical sub-
bundle on HTM  and VTM , defined 

by j
ii i j

N
x x y

  
 

  
, where j

iN  are the 

coefficients of non linear connection. Clearly we 

have 
j j k j k r s
i ik ik rsN y C y y ,      

where, 
sj jki is ks

jk k s j

g g g1
: g ( )

2 x x x

  
   

  
, ij[g ]  

is the inverse matrix of ij[g ]  and 
ij

ijk k

g1
C

2 y





, is 

the Cartan torsion tensor. 

3. Finslerian Terminology 

In Riemannian geometry integral of geometric 
objects are taken over the underlying manifold M . 
In Finsler geometry it was first “Lichnerowicz” 
who proposed that for Finsler case, little is lost by 
allowing this integrand to live on the projective 
sphere bundle SM , [12]. The main reason follows 
from the fact that all geometric quantities 
constructed from the Finsler structure F  are 
homogeneous of degree zero in ݕ and thus naturally 
live on SM , even though Finsler structure itself 
does not. With this motivation, in this section we 
are going to define projective sphere bundle and 
determine a Riemannian metric on it. 

Let xS M  be the set consisting of all rays 

[y] : { y | 0}    , where x 0y T M . Here, 
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[y]  is a typical equivalence class that results from 

the identification z ~ y z y    for some 

0  . Geometrically, each (x,[y]) , is a ray 

emanating from the origin of xT M . 

Let x
x M

SM S M


  , then SM has a natural 

(2n 1) dimensional manifold structure and the 

total space of a fiber bundle, called projective 
sphere bundle, or simply sphere bundle over M . 
We denote the elements of SM  by (x,[y]) where 

x 0y T M . Given local coordinates i(x )  on M , 

we can write any xy T M as i
i

y
x




. This 

generates local coordinates i j(x , y ) on SM , 

where the 
jy ’s are now treated as homogeneous 

coordinates. 
Let p :SM M be the natural projection. The 

pull-back tangent space  *p TM is defined by 
 

*
x 0 xp TM : {(x,[y], v) | y T M , v T M}.    

 

The pull-back cotangent space * *p T M is the 

dual of  *p TM . Both *p TM and  * *p T M  are total 

spaces of vector bundles over SM . Using the 
coefficients of a non-linear connection on TM one 
can define a non-linear connection on SM  by 
using the objects which are invariant under positive 
re-scaling  y y . 

In this way the coefficients of non-linear 

connection j
iN are defined on the sphere bundle 

SM . Our preference for remaining on SM forces 

us to work with
j

j k j k r si
ik ik rs

N
l C l l

F
    , where 

i
i y

l
F

 . We also prefer to work with the local 

field of frames 
i j

{ , F }
x y

 
 

and 
j

i y
{dx , }

F


 

which are invariant under the positive re-scaling of 
y , and over SM  they can be used as a local field 

of frames for *p TM and  * *p T M respectively. The 

pull-back tangent bundle 
*p TM  over SM has a 

canonical section l  defined by 
(x,[y])

y
l (x,[y], )

F(x, y)
 . 

Let i i
{ : (x,[y], )}

x


 


 be a natural local field 

of frames for 
*p TM . The natural dual co-frame 

for * *p T M  is i{dx }. We use the following 

lemma from classical differential geometry to 

replace the C functions on 0TM by those on 

SM . 
 
Lemma 3.1. [13] Let   be the function, 

0: TM SM   where (x, y) (x,[y])   and 

0f C (TM ) . Then there exists a 

function g C (SM) satisfying *g f   if and 

only if f (x, y) f (x, y)  , where 

x 0y T M , 0    and * is the pull-back of  . 

Let f  be a C function on M and 
v

0f C (TM )  the vertical lift of f defined by 
vf : TM   , where 

vf (x, y) : f (x, y) f (x)   . 

The vertical lift vf is independent of y  and 

according to Lemma 3.1 there is a function g  on 

C (SM)  related to vf , determined by * vg f  . 

In the sequel, g  is denoted by vf for simplicity. 

Clearly, if the differentiable manifold M  is 
compact then the sphere bundle  SM  is compact 

too, and hence SM  is orientable whether M  is 
orientable or not. 

It turns out that the manifold 0TM has a natural 

Riemannian metric, known in the literature as 
Sasakian metric (see for instance [9], [11] or 

[14]);
i j~

i j
ij ij

y y
g g (x, y)dx dx g (x, y) ,

F F

 
   

where, ijg (x, y)  are the Hessian of Finsler 

structure 2F . They are functions on 0TM  and 

invariant under positive rescaling of y , therefore 

they can be considered as functions on SM . With 
respect to this metric, the horizontal subspace 

spanned by
ix




 is orthogonal to the vertical 

subspace spanned by 
j

F
y




. The metric 
~

g  is 

invariant under the positive rescaling of y  and can 

be considered as a Riemannian metric on SM . 

Therefore, SM  is a natural (2n 1) -dimensional 

Riemannian manifold with its Sasaki type metric 
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induced by the fundamental tensor ijg (x, y) . 

4. Capacity of a compact subset on Finsler 
spaces 

In what follows (M,g)  denotes a connected 

Finsler space of class C and dimension n 2 . 

Let 
~

(SM,g)  be its Riemannian sphere bundle. The 

Finsler structure F(x, y)  induces a canonical 1-

form on SM  defined by i
i: l dx  , where 

j
i ijl g l , called Hilbert form of F . The gradient 

vector field f  of a function f C (SM)  is 

given by 
~ ~ ~ ~

g( f ,X) df (X), X (SM,TTM),     

where (SM,TTM)  is the set of all 

differentiable sections on SM . Using the local 

coordinate system i i(x ,[y ])  on SM , the section 
~

X (SM,TTM)  is given by 
~

i j
i j

X X (x, y) Y (x, y)F ,
x y

 
 

 
 where 

iX (x, y)  and jY (x, y)  are C  functions on 

SM . 
A simple calculation shows that the gradient 

vector field  f  can be written locally as 

ij 2 ij
i j i j

f f
f g F g

x x y y

   
  

   
 . 

The norm of f with respect to the Riemannian 

metric 
~

g  is given by
~

2| f | g( f , f )      

ij 2 ij
i j i j

f f
g F g .

x x y y

   


   
 

We consider the volume element (g)  on SM  

defined in [9] as follows 
 

N
(n 1)( 1)

(g) : (d ) ,
(n 1)!


   


 

 

where 
n(n 1)

N
2


  and   is the Hilbert form of 

F . Let (M)�  be the linear space of continuous 

real valued functions on M , u (M)� and vu its 

vertical lift on SM . For M compact or not we 

denote by H(M) the set of all functions in (M)�  

admitting a generalized nL -integrable gradient 

vu  satisfying 
 

v n

SM

I(u, M) | u | (g) .                          (1) 

 
It should be remarked later in the next section that 

the function I(u, M)  and the corresponding notion 

are finite. 

If M  is non-compact we denote by 0H (M)  the 

subspace of functions u H(M)  for which the 

vertical lift vu  has a compact support in SM .  
A relatively compact subset is a subset whose 

closure is compact. A function u (M)�  will be 

called monotone if for any relatively compact 
domain D of M  

x D x Dsup u(x) sup u(x),   

x D x Dinf u(x) inf u(x).   

Let us denote by *H (M)  the set of monotone 

functions u H(M) . We define notion of 

capacity for Finsler space as follows. 
 
Definition 4.1. The capacity of a compact subset 
C  of a non-compact Finsler space (M,g)  is 

defined by M uCap (C) : inf I(u,M) , where the 

infimum is taken over the functions 0u H (M)  

with u 1  on C  and 0 u(x) 1   for all x . 

These functions are said to be admissible for C . 

A relative continuum is a closed subset C  of M  
such that  C { }  is connected in Alexandrov’s 

compactification M M { }  . To avoid 

ambiguities, the connected closed subsets of 
M which are not reduced to one point will be 
called continua. Using these sets at every double 

point of M  we define the function M as follows. 

 
Definition 4.2. Let (M,g)  be a Finsler space. For 

all 1 2(x , x ) in 
2M : M M   we set 

1 2M 1 2 C (x ,x ) M(x , x ) inf Cap (C),   where 

1 2(x , x )  is the set of all compact continua 

subsets of M,  containing  1x and 2x . 

For any subset S  of M and any u (M)� , the 

oscillation O(u,S)  of u  on  S  is defined by 

1 2x ,x S 1 2O(u,S) : sup | u(x ) u(x ) |  . 
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5. Fundamental properties of capacity 

Lemma 5.1. Let (M,g)  be an open Finsler sub-

manifold of a Finsler space N  then 

(1)
 M NCap (C) Cap (C)  where C  is a 

compact set in M.  

(2)
 M 1 2 N 1 2(x , x ) (x , x )     

for all 1 2x , x  in M.  

 

Proof: Every function 0u H (M) , admissible for 

C  in M  can be extended into an admissible 

function for C  in N  by setting u 0  on N \ M.  
So we have the assertion (1). The assertion (2) 

follows from the definition of M and the assertion 

(1) and we have the lemma. 
Let (M,g)  be an n -dimensional Finsler space, 

and :[a, b] M  a piecewise C curve with 

velocity
i

( t )i

d d
T M

dt dt x 

  
 


. Its integral 

length L( )  is defined by 
b

a

d
F( , )dt

dt


 . For 

0 1x , x M  we denote by 0 1(x , x )  the 

collection of all piecewise C  curves 

:[a, b] M   with 0(a) x   and 1(b) x  . 

Define a map d : M M [0, )    by 

0 10 1 (x ,x )d(x , x ) : inf L( )  . It can be shown 

that (M,d) satisfies the first two axioms of a 

metric space except the symmetry property, but the 
topology defined by the distance d  is equivalent to 
the original manifold topology of M . If the Finsler 
structure F  is absolutely homogeneous, that is 
F(x, y) F(x, y)  , then one also has the 

symmetry property. 
 
Lemma 5.2. Let (M,g)  be an n -dimensional 

Finsler space. For any 0, a M   and any 

neighborhood U of a , there exists a compact 

connected neighborhood V of a , with V U , 

and a function u H(M)  with compact support 

in U  , satisfying I(u,M) , u 1    on V and 

0 u 1   everywhere. 
 

Proof: There exists a local chart a(U , )  of 

M centered at a  with aU U such that   is a 

bi-Lipschitzian map with ratio 2  of aU onto a ball 

B B(0, 2R)  of the n -dimensional Euclidean 

space nE , namely for all 0 1 ax , x U  
 

0 1 0 1 0 1

1
| (x ) (x ) | d(x , x ) 2 | (x ) (x ) |,

2
       

 
where d  is the distance defined by Finsler structure 

([11] P. 149). We can choose r 0 such that 
 

1n
n 1 n 1

2R
ln( ) ( )

r
 




,                                       (2) 

 

where n 1  is the volume of n 1S  . We define a 

real function v on B  by 
 

1                         if           | x | r,

ln R ln | x |
V(X)       if           r | x | R,  

ln R ln r
0                         if           | x | R.  


    



 

 
Clearly by a classical result ([4] P. 80), 

1 n
n 1

R
I(v, B) (ln )

r


  . Let us put u v  , 

since  is 2  quasi-conform ([8]), from relation (2) 

we obtain I(u, M)   , where we have put 
1V (B(0, r))  . Hence the proof is complete. 

 
Lemma 5.3. For any given 0   and any a M  

there exists a neighborhood V of a  such that for 

any 
n*u H (M),O (u, V) I(u, M).    

 

Proof: Let a(U , )  be a chart of M centered at 

a such that  is a bi-Lipschitzian map with ratio 2  

of au onto a ball B B(0, R)  of 
nE . 

If *u H (M) then 1v u   is monotone on the 

ball B , hence its oscillation (t)  on the sphere 

B(0, t) (0 t R)    is the same as that on the 

B(0, t)  and is an increasing function of t . Hence 

for all 
R n

n

r

(t) R
0 r R, dt (r) ln

t r


    . On 

the other hand, from a classical result in [4] we 

have 
R n

n

0

(t)
dt A I(v, B),

t


  where nA  is an 
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absolute constant. By choosing r 0 such that 
n

n2 AR
ln

r



 we find that 

 
R n

n 1 n r

(t)
dt

t
O (u, (B(0, r))) (r)

R
ln

r





    


 

n
n

A I(v, B)
I(v, B) I(u, M),

R 2ln
r


    

 
where the last inequality follows from the fact that 
  is 2 -quasi-conform. Thus the set 

1V (B(0, r))   satisfies the claim and we have 

the lemma. 
 
Lemma 5.4. For any compact continuum set C  in 
the n -dimensional Finsler space (M, g)  there 

exists a constant K(C) , only depending on C , such 

that for all *u H (M) , nO (u,C) K(C)I(u,M) . 

 
Proof: We apply Lemma 5.3 with 1  . For all 

a C  there exists an open neighborhood V(a) of 

a  such that nO (u,V(a)) I(u,M) . We can 

choose a finite covering of C  by 

neighborhoods kV(a ) (k 1,..., p)  such that, 

for all *u H (M),
p

k
k 1

O (u,C) O (u, V(a ))


  . 

Thus we have 
1

nO (u,C) p(I(u, M)) . Hence 

the announced maximization, with nK(C) p . 

This completes the proof of the Lemma. 
 
Remark: The capacity of a compact subset of a 
non compact Finsler space is finite. 

This fact can be easily verified as follows. Let C  
be a compact subset of a non compact Finsler space 
M . We apply Lemma 5.2 with 1  . Denote by 

xV and xu the compact connected neighborhood 

and the function associated with each point x  of 
C , respectively. There exists a covering of C  by a 

finite number of open sets xIntV , denoted by 

ixIntV  for i 1,..., m , where ix C . The 

function 
i1 i m xu sup u  is admissible for C  and 

we have I(u, M) m . 

Lemma 5.5. If C {a}  then MCap (C) 0 . 

 
Proof: This follows from the definition of capacity 
and Lemma 5.2. 
 

Lemma 5.6. For any compact continuum sets 1C  

and 2C  on M  we have 
 

M 1 2 M 1 M 2Cap (C C ) Cap (C ) Cap (C ),   
 

and for any compact set C of a finite number of 

points we have MCap (C) 0 . 

 

Proof: Let iu , (i 1, 2)  be an admissible function 

on iC , then 1 2u sup(u ,u ) is an admissible 

function on 1 2C C . This proves the inequality. 

Now we are in position to show that the function 

M  is a continuous distance function. 

 
Lemma 5.7. Let (M,g) be a Finsler space, then we 

have 

M 1 2 M 2 1(1) (x , x ) (x , x )   , 

M(2) (x, x) 0  , 

M 1 3 M 1 2 M 2 3(3) (x , x ) (x , x ) (x , x )    , 

M(4)   is a continuous function on M M.  

 
Proof: The first assertion follows from definition of 

the function M . The second assertion follows 

easily from Lemma 5.2. To prove 3, we notice that 

1 3
M 1 3 Mx ,x C

(x , x ) inf Cap (C)


  

1 2 3 1 2 1
M M 1x ,x ,x C x ,x C

inf Cap (C) inf Cap (C )
 

   

2 3 2
M 2 M 1 2 M 2 3x ,x C

inf Cap (C ) (x , x ) (x , x ),


  

where 1C  and 2C  are compact continuum sets in 

M . Finally, to prove 4, continuity of M  on the 
2{(x, x) M | x M}   follows easily from Lemma 5.2, 

otherwise on the
 

2
1 2 1 2 1 2{(x , x ) M | x , x M, x x }   , 

we use 3 and the assertion follows. Hence the proof 
is complete. 

6. An invariance property of capacity 

Here we obtain another invariance property of 
capacity. Let D be an open proper subset of a 
locally connected topological space E . For any 
real number c , and any continuous function f on 
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D , let  cDf denote the union of all connected 

components of 1D f (c)  whose closures lie in 

D . For any real number a , let f .a  denote the 

function on D  defined by  
 

a, if x aDf ,
(f .a)(x)

f (x), if x aDf .


  

        (3) 

 
Lemma 6.1. (Lebesgue’s straightening Lemma 
[4]). Let D  be an open proper subset of a locally 
connected topological space and let f  be a 

continuous real valued function on D  with values 

in the bounded interval [r, s] . Let 1 2 na ,a ,..., a ,...  

be an enumeration of the rational numbers in the 

interval [r, s] . Set n 1 2 nf (...((f .a ).a )...).a  then 

nf  uniformly converge on D  to a monotone 

function. 
 
Lemma 6.2. Let  (M,g) be a Finsler space and 

pu  a sequence in H(M) which is uniformly 

convergent on every compact subset of M,  then its 

limit  v  belongs to H(M)  and we have  

p
p

I(v, M) lim inf I(u , M)


 . 

 
Proof: This Lemma is an easy extension of the 
classical one in [8]. 
•Extension of the Lebesgue’s straightening Lemma 
to the Finsler spaces. 
 
Lemma 6.3. Let U  be a proper open subset of a 
Finsler space (M,g) . Then for any bounded 

function u (M)�  there exists a function 

v (M)�  with the same bounds as u , which is 

monotone on U  and equal to u  on M \ U . 

Moreover, if u H(M) � , then v H(M) �  and 

I(v, M) I(u, M) . 

 
Proof: Let U  be an open proper subset of the 
Finsler space M.  For any real number a , and any 

function u H(M) � , let  aUu denote the union of 

all connected components of 1U u (a) whose 

closures lie in U,  then from relation (1) we have 
V n

S(aUu)
I(u.a, M) | u | (g) I(u, M)    , 

where u.a  is defined by relation (3), S(aUu)  is 

the sphere bundle of aUu and V| u |  is defined 

with respect to the Sasaki metric. The proof of this 
lemma follows from Lemmas 6.1, 6.2 and last 
inequality. 
 

Corollary: The value of MCap (C) remains 

invariant if we replace the admissible functions on 
M  by the monotone functions on M \ C. 
 
Proof: If we replace U M \ C  in Lebesgue’s 
Lemma 6.3, then we have the corollary. 

7. A class of Finsler spaces 

The following lemma is an extension of the 
corresponding Euclidean one. 
 
Lemma 7.1. Let (M,g) be a Finsler space. If there 

exists a pair of points 1 2(x , x )  of M  with 

1 2x x  and M 1 2(x , x ) 0  , then MCap (C) 0  

for all compact continuum C  of M and the 

function M is identically zero.  

 
Proof: First assume that the compact continuum 

C does not contain both points 1x  and 2x , and 

let 1x C  for precision. Then we can choose a 

compact continuum   containing C and 2x  in 

1M \{x } . Applying Lemma 5.4 to 1M \{x }  we 

obtain a constant k  such that for all 

*
1u H (M \{x })  we have 

1

nO(u,C ) kI (u,M)  . 

Now 0  be given, it is possible to assume that 

1

k
  . As 

M 1 2(x , x ) 0   there exists a function 

u H (M)   satisfying 0 u 1   everywhere, 
u 1 on a compact continuum C containing 1x  

and 2x , and nI(u,M) ( )
2


 . In accordance to 

Corollary 6 we can assume that u  is monotone on 

M \ C , hence also on 1M \{x } . Then we have 

k
O (u,C )

2


  . As  2u(x ) 1 , it follows that 

k 1
u(x) 1

2 2


    for all x C . Then the function 

v inf(2u,1)  is admissible for C , hence 
n n

MCap (C) I(v, M) 2 I(u, M)    . As   is 

arbitrarily small we have at last MCap (C) 0 . 
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Next, for any 1x M \ {x },  there exists a 

compact continuum C containing x  and 2x  in 

1M \{x }  and the relation MCap (C) 0  

involves M 2(x, x ) 0  . If we observe that a 

compact set of  M  is a proper subset of M , then 
we can use the above argument with a point x  of 

M \{C}  in the place of 1x . Therefore the relation 

MCap (C) 0  still holds if the compact 

continuum C  contains 1x  and 2x . The first 

assertion is now completely proved, and the second 
one follows immediately. Hence, the proof of the 
Lemma is complete. 

Applying the last part of the preceding lemma we 
see that the two following classes of non-compact 
Finsler spaces are complementary. 
•The class ܫ of manifolds M  for which the 

function M  is identically zero. 

•The class ܫܫ of manifolds M  for which the 

function M  is not identically zero. From the 

above lemma it is equivalent to say 

that M 2(x, x ) 0   gives rise to 1 2x x . 

 
Example 1. Let N  be a compact Finsler space. 

Then for any compact Continuum C  of N  the 

open submanifold N \ C is of class ܫܫ and for any 

finite set 1 kS {a ,..., a }  of points in N , the 

punctured manifold N \ S  is of class ܫ. Moreover, 
if two manifolds are conformally equivalent, then 

they belong to the same class. In particular, nE  is 

of class ܫ and every bounded domain of nE  is of 
class ܫܫ. 

Using Lemma 5.7 we have the following 
theorem. 
 
Theorem 7.2. Let (M,g) be a Finsler space of 

class ܫܫ, then for every point  1 2x , x  and 3x M  

we have 

M 1 2 M 2 1(1) (x , x ) (x , x )   , 

M 1 2 1 2(2) (x , x ) 0 x x    , 

M 1 3 M 1 2 M 2 3(3) (x , x ) (x , x ) (x , x )    . 

 
Lemma 7.3. Let (M,g) be a Finsler space of class 

then M ,ܫܫ  is a distance on M . Moreover, for 

any relatively compact domain D  of M , we have 

3
M 1 2 M 1 3x D

(x , x ) inf (x , x ) 0


     for all 1x D  

and all 2x M \ D . 

 
Proof: The first assertion follows from Lemma 5.7 

and Lemma 7.1. For any  1x D , 

2x M \ D and 0  given, there exists a 

compact continuum C  containing 1x  and 2x with 

M M 1 2Cap (C) (x , x )    . Then C  meets 

D and for all 3x C D  , we have 

M 1 3 M M 1 2(x , x ) Cap (C) (x , x )      . 

Since the continuous function M 1 3(x , x )  does 

not vanish on D , we obtain the lemma by letting 
  tend to zero. This completes the proof of the 
Lemma. 
 
Theorem7.4. For any ݊-dimensional Finsler space 
(M,g) of class ܫܫ, the topology defined by distance 

M coincides with the intrinsic manifold topology. 

 

Proof: Every neighborhood of a point 1x  of M  

contains an open connected and relatively compact 

neighborhood D of 1x , and according to Lemma 

7.3, D  contains the  -ball with center 1x   and 

radius
2

M 1 2x D
inf (x , x )


 . In the opposite direction 

it follows from the continuity of M  that every  -

ball 3 M 1 3B {x M | (x , x ) r} (r 0)      is 

a neighborhood of 1x . This completes the proof of 

the theorem. 
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