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Abstract

Using the electrostatic capacity of a condenser, the existence of a distance function on a Finsler space is discussed.
This distance function divides Finser spaces into the two classes, denoted here by | and Il. The topology
generated by this distance on the Finsler spaces of class Il coincides with its intrinsic topology. This work
provides a natural extension of mathematical analysis tools needed for developing some prominent features of

differential geometry in the large.
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1. Introduction

Recently, one of the present authors in ajoint work
has classified Finsler spaces through the conformal
transformations, [1]. Here, we give another
classification of Finder spaces by using a distance
function determined by the notion of conformal
capacity on Finder spaces, previously introduced
by the present authors[2] and [3].

More intuitively, the concept of capacity as a set
function arising in potential analysisis analogous to
the physical concept of the electrostatic capacity of
a condenser, that is, an open set with a relatively
compact subset inside.

The capacity of a set as a mathematical concept
was introduced first by N.Wiener in 1924 and was
subsequently developed by severad French
mathematicians in connection with the potential
theory. The notion of capacity has since been

extensively developed for R" particularly by M.
Vuorinen.

This notion was also used by G. D. Mostow to
prove his famous theorem on the rigidity of
hyperbolic spaces [4]. As a positive response to the
question asked by Vuorinen in [5], J. Ferrand
proved that the concept of capacity can be used to
define a distance function on Riemannian geometry,
[6] and [7]. Her work provides important tools in
the studies of global properties of Riemannian
spaces. Specifically, she used this theory to give a
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rigorous and complete proof to the famous
“Lichnerowicz  conjecture” in  conformal
transformations groups of Riemannian spaces [8].
Her proof is quite elementary and is based on the
behavior of sequences on the whole conformal
group of the Riemannian space under consideration.

Defining such a distance function in Finser
spaces seems desirable, since Finsler geometry has
come up in many applications particularly in
physics. Moreover, Finder space is a naturd
generalization of Riemannian and hence Euclidean
space. Thisfact is discovered after the Elie Cartan’'s
Euclidean connection, in 1933, [9] and [10].

The present work has established a distance
function which provides an elementary account of
some tools in analysis needed for developing
Finsler geometry. More precisely, as an extension
of Ferrand’s work, we show the existence of a
distance function determined by notion of a
conformal invariant function, called capacity, on a
compact subset of a Finsler space. This function,

namely WL, , defined as infimum of capacities of a

certain subset of the Finger space, classifies Finger
metrics into the two classes denoted here by I and
11, for which some examples are provided. The aim
of thiswork is to study properties of Finsler spaces
of classII.

Theorem A: Let (M, Q) be aFinsler space of class

11, then for every point X;,X,and X; €M we
have
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(D) pay (X3, X5) = Ky (X5, Xy),
@ (X X,) =0 X, =X,,

(3) by (X1 X35) < py (X1 X5) + gy (X5, X5).
Our goal in this paper is the following theorem.

Theorem B For any Finsler space of class I, the
topology defined by distance function p,,
coincides with the canonical topology.

2. Notationsand Preliminaries

Let M be an n-dimensional C” manifold. For a
point X € M , denoteby T, M the tangent space of

M at X. The tangent bundle TM on M is the
union of tangent  spaces T M and
TM,=TM \{0} . We will denote the elements
of TM by (X,y),where y e T,M . The natural
projection w:TM —> M is given by
n(X,y) =X.

A Fingler structure on amanifold M isafunction
F:TM, —[0,0) with the following properties:
(i) F is C?on TM, (i) F is positively 1-
homogeneous on the fibers of tangent bundle TM
that is VA >0, F(X,Ay)=AF(X,y), (iii) The

Hessian of F? with elements

gijzé[lzz(x,y)]yiyjis positive  definite  on

TM,. The pair (M, Q) is caled aFinsler space.

Throughout this paper, we use Einstein summation
convention for the expressions with repeated
indices. The Finder structure F is Riemannian if

g; (x,y) areindependentof y = 0.

Let m: TM — M be the natural projection.
Collecting all tangent Spaces T,M , we form a
vector bundle called the pull-back bundle or pull-
back tangent space © TM defined by

T TM ={(X,y,V)|ye T M,,veT M}.

Both m TM and its dud © T M ae n-
dimensional vector bundles over TM, (see, for

instance, [9] and [11]). If we put

VTM = U ker ir,', then a non-linear connection
veTM

on TM is a complementary distribution HTM

foo VTM on TTM . Therefore, we have the

following decomposition. TTM =VTM +HTM.
We recall that, g is a homogeneous tensor of

degree zero in y and g;(X,Y)Y'Y' =0, (¥.Y).
where g, ( , ) isthe local scalar product on the
fiber T,M of 7T TM at any fixed point X € M .
Using the induced coordinates (X',y') on TM ,
0
8y'
TTM. Le {dx',dy'}be the duad of
0

0
we have the local field of frames { :

{—,—=} ., wecan choose alocal field of frames
oX 8y
d

{8 Fy I} adapted to the above decomposition,

namely i e x(HTM) and il ex(VTM).
dx' oy

They are sections of horizontal and vertical sub-
bunde on HTM and VTM, defined
0 0 i 0 i
by—=—-N/—, whee N/ ae the
5x' ox oy’
coefficients of non linear connection. Clearly we
have N :yjikyk _C]ikykrsyrysi
1,004 09 ik ag
g J ks) [gIJ]

where, yijk :=Eg's(axk P

gu .
k,IS
28y

is the inverse matrix of [g;] and C;,

the Cartan torsion tensor.

3. Finderian Terminology

In Riemannian geometry integral of geometric
objects are taken over the underlying manifold M .
In Finder geometry it was first “Lichnerowicz’
who proposed that for Finder case, little is lost by
allowing this integrand to live on the projective
sphere bundle SM |, [12]. The main reason follows
from the fact that al geometric quantities
constructed from the Finder structure F are
homogeneous of degree zero in y and thus naturally
live on SM , even though Finder structure itself
does not. With this motivation, in this section we
are going to define projective sphere bundle and
determine a Riemannian metric on it.

Let SM be the set consisting of al rays
[yl ={Ay|A >0, where yeT M,. Here
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[y] is atypical equivalence class that results from
the identification z~y<>z=LAy for some
A>0. Geometricaly, each (X,[y]), is a ray
emanating from the originof T.M .

Let SM = USXM, then SM has a natural

xeM
(2n—1) dimensiona manifold structure and the

total space of a fiber bundle, called projective
sphere bundle, or simply sphere bundle over M .
We denote the elements of SM by (X,[y]) where

y e T,M,. Given local coordinates (X') on M,
i 0

we can write any YeT Mas y'F' This
X

generates local coordinates (X',y')on SM,

where the yj 's are now treated as homogeneous
coordinates.
Let p:SM — M be the natura projection. The

pull-back tangent space p TM is defined by
pTM ={(x,[y],V)|ye TM,,veTM}.

The pull-back cotangent space P T M is the

dual of p TM .Bothp TM and p T M are total
spaces of vector bundles over SM . Using the
coefficients of a non-linear connection on TM one
can define a non-linear connection on SM by
using the objects which are invariant under positive
re-scaling y —> Ay .

In this way the coefficients of non-linear
connection Nij are defined on the sphere bundle

SM . Our preference for remaining on SM forces

N
us to work Wlth? =y), 1 =CL v  J'I°, where

i
=Y we aso prefer to work with the local

field of frames { : F—} and {dx', 8y
X' F

which are invariant under the positive re-scaling of
y, and over SM they can be used as a local field

of framesfor p TM and p T M respectively. The
pull-back tangent bundle P TM over SMhas a

canonical section | defined by Loy = OIY1, _)

F(x,y)

Let {0, = (X, [y]

of frames for p TM . The natural dua co-frame

foo pPT'M is {dx'}. We use the following
lemma from classica differential geometry to
replace the C”functions on TM by those on

SM.

)} be a natural local field

Lemma 3.1. [13] Let m be the function,
n:TM, > SM where n(X,y) = (X,[y]) and
feC’(TM,). Then there exists a
functiong € C* (SM) satisfying n g="f if and
only if f(x,y)=f(x,Ly), where
yeT,M,,A >0 and n isthe pull-back of 1.

Le¢e f be a C*function on M and
f*eC”(TM,) the vertical lift of f defined by

f':TM > R, where £"(x,y) = for(x,y) =f (x)-

The vertical lift fis independent of y and
according to Lemma 3.1 there is a function g on

C*(SM) related to ", determined by ' g="f".
Inthe sequel, g isdenoted by f " for simplicity.
Clearly, if the differentiable manifold M is

compact then the sphere bundie SM is compact

too, and hence SM is orientable whether M is
orientable or not.

It turns out that the manifold TM , has a natural

Riemannian metric, known in the literature as
Sasakian metric (see for instance [9], [11] or

3y' 8y’
F F'
where, g;(X,y) ae the Hessan of Finder

[14)):0 = g; (x, y)ax'dx’ + g (x,y)—=

structure F*. They are functionson TM;, and
invariant under positive rescaling of Yy, therefore

they can be considered as functions on SM . With
respect to this metric, the horizontal subspace

)
spanned byF is orthogona to the vertical
X

a ~
subspace spanned by FF' The metric g is
y
invariant under the positive rescaling of y and can
be considered as a Riemannian metric on SM .
Therefore, SM is anatural (2n—1) -dimensional
Riemannian manifold with its Sasaki type metric
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induced by the fundamental tensor g (X, Y) - Vu" satisfying
VvV |n
4. Capacity of a compact subset on Finsler I(u,M) = I |VU" [' n(g) < co. 1)
SM

spaces

In what follows (M,g) denotes a connected

Finder space of class C” and dimension n> 2.

Let (SM,Q) beits Riemannian sphere bundle. The
Finder structure F(X,y) induces a canonica 1-

form on SM defined by :=ldx', where
l =gij|j, caled Hilbert form of F. The gradient
vector field Vf of a function f € C*(SM) is
given by g(Vf,X)=df(X), VX eD[(SM,TTM),
where T'(SM,TTM) is the set of all

differentiable sections on SM . Using the local
coordinate system (X',[y']) on SM, the section

X e ['(SM, TTM) is given by
)2=X‘(x,y)i+Yj(x,y)Fi., where
dx' oy’

X'(X,y) and Y!(x,y) are C” functions on

SM.
A simple calculation shows that the gradient

vector field VI can be written localy as
i O 8 gt 0
dx' dx’ oy' oy’

The norm of VT with respect to the Riemannian

Vi=g

metric é isgiven by | Vf = é(Vf , V) =
100 g OO

dx' ox’ oy' oy’
We consider the volume element m(g) on SM
defined in [9] asfollows

g

(_1)N (n-1)
=———oA(do ,
(@)= (=p 0N (@)
where N = n(n_l) and ® isthe Hilbert form of

F. Let C(M) be the linear space of continuous
real valued functionson M, ue C(M)and u"its

vertical lift on SM . For M compact or not we
denote by H(M) the set of al functionsin C(M)

admitting a generalized L"-integrable gradient

It should be remarked later in the next section that
the function 1(u, M) and the corresponding notion
arefinite.

If M is non-compact we denote by H,(M) the
subspace of functionsu € H(M) for which the

vertical lift u" has acompact supportin SM .
A relatively compact subset is a subset whose

closure is compact. A function Ue C(M) will be

caled monotone if for any relatively compact
domain D of M

SUP,cop u(x) =SUP,p u(x),
inf, .o U(x) =inf, 5 u(x).
Let us denote by H (M) the set of monotone

functions ue H(M). We define notion of
capacity for Finder space asfollows.

Definition 4.1. The capacity of a compact subset
C of a non-compact Finder space (M,qQ) is

defined by Cap,, (C) ==inf, 1(u,M), where the
infimum is taken over the functions U € Hy(M)
with U=1 on C and 0<u(x) <1 for al X.

These functions are said to be admissible for C.
A réelative continuum is a closed subset C of M
suchthat CU{ 0} is connected in Alexandrov's

compactification M =MU{oc}. To avoid
ambiguities, the connected closed subsets of

M which are not reduced to one point will be
caled continua. Using these sets at every double

point of M we define the function ., asfollows.

Definition 4.2. Let (M, Q) be aFinder space. For
dl  (X,X,)in M?=MxM we st
Um (le Xz) = infCea(xl,Xz) CapM (<), where
o(X,,X,) is the set of all compact continua
subsetsof M, containing X;and X, .

For any subset S of M and anyu € C(M)), the
oscillation O(U,S) of U on S is defined by

O(u,9 = SUPy, x,es | U(Xl) - U(Xz) |.
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5. Fundamental properties of capacity

Lemma 5.1. Let (M,Qg) be an open Finsler sub-
manifold of aFinsler space N then

(1 Cap,, (C)=Cap,(C) whee C is a
compact setin M.

(@) py (X3, X5) 2 pyy (X, X,)

foral X;,X, in M.

Proof: Every function u € H,(M), admissible for

C in M can be extended into an admissible

function for C in N by setting u=0 on N\ M.
So we have the assertion (1). The assertion (2)

follows from the definition of ,, and the assertion
(1) and we have the lemma.

Let (M,g) bean n-dimensiona Finsler space,
and o:[a,b] > M a piecewise C” curve with
ds do' 0
velocity—=———-¢eT_,M. Its integra

dt  dt ox' 0

b
length L(c) is defined by j F(c,%—f)dt. For

Xg, X, €M we denote by I'(X,,X,) the
collection of al piecewise C” curves
c:[a,b] > M with o(a) = X, ando(b) = X,.
Define a map d:MxM —[0,+x) by
d(Xq,X,) =inf., ., L(c). It can be shown
that (M,d) satisfies the first two axioms of a
metric space except the symmetry property, but the
topology defined by the distance d is equivalent to
the original manifold topology of M . If the Finsler

structure F is absolutely homogeneous, that is
F(x,—-y)=F(x,y), then one aso has the

Ssymmetry property.

Lemma 52. Let (M,g) be an n-dimensiona
Finder space. For any €>0,aeMand any

neighborhood Uof a, there exists a compact
connected neighborhood V of a, with Vc U,
and a function ue H(M) with compact support

inU , satisfying 1(U,M)<¢ , u=1onVand
0<u<1 everywhere.

Proof: There exists a local chart (U,,) of
M centered at @ with U, — U such that ¢ isa

bi-Lipschitzian map with ratio 2 of U, onto a ball
B =B(0,2R) of the n-dimensiona Euclidean
space E", namely for al X,, X, € U,

% 0(Xo) ~ (%) < A(Xo, %) < 2] 0(X5) ~0(x,) |

where d isthe distance defined by Finsler structure
([11] P. 149). We can choose I' > O such that

R, ,2"0, 1\

IN(—) > (—) 4, (2)
r €

where @, , is the volume of S". We define a

real function Von B by

1 if XK,
V(X) = % if r<|x KR,
0 if IXER.

Clearly by a classical result ([4 P. 80),
R

I(v,B)=w, ,(IN—)"". Let us put U=voo,
r

since @ is 2 quasi-conform ([8]), from relation (2)

we obtainl(u,M)<g, where we have put

V = ¢ *(B(0,r)) . Hence the proof is complete.

Lemma 5.3. For any given € >0 andany ae M
there exists a neighborhood V of & such that for

any ue H'(M),0" (u,V) <el(u,M).

Proof: Let (U,,p) be a chart of M centered at
asuch that ¢ isabi-Lipschitzian map with ratio 2
of u,onto a bal B=B(O,R) of E".
If ue H (M) then V = Uo¢ "is monotone on the
ball B, hence its oscillationQ)(t) on the sphere
oB(0,t) (0<t<R) isthe same as that on the
B(0,t) and is an increasing function of t . Hence
Q"1

R
foral 0<r <R, detZQ”(r)lnB.On
g r

the other hand, from a classical result in [4] we

R ~n
have IQT(t)dtSAnI(V,B), where A is an
0
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absolute constant. By choosing I > Osuch that

R_2"A
In—> D wefind that
r €

TQ?Dm
O"(u, ¢ X(B(0,r))) = Q"(r) <t—e—s

In—

r

M_iuv,s) <el(u,M),
R 2"

|n7

where the last inequality follows from the fact that
¢ is 2-quasi-conform. Thus the set
V =9 (B(0,r)) satisfies the claim and we have
the lemma

Lemma 5.4. For any compact continuum set C in
the n-dimensional Finsler space (M,g) there

exists acongtant K (C), only depending onC, such
that for all ue H (M), O"(u,C) <K(C)I(u,M).

Proof: We apply Lemma 5.3 with € =1. For all
a e C there exists an open neighborhood V(&) of

a such that O"(u,V(a)) <I(u,M). wWe can
choose a finite covering of C by
neighborhoodsV (a,) (k=1,...,p) such that,

for al ueH (M), O(u,C) < Zp:O(u,V(ak)) :
k=1

Thus we have O(u,C) < p(I(u,M))". Hence
the announced maximization, withK(C)=p".
This completes the proof of the Lemma.

Remark: The capacity of a compact subset of a
non compact Finsler space isfinite.

This fact can be easily verified asfollows. Let C
be a compact subset of a non compact Finsler space

M . We apply Lemma 5.2 with € =1. Denote by
V,and U, the compact connected neighborhood

and the function associated with each point X of
C., respectively. There exists acovering of C by a
finite number of open sets IntV, , denoted by

IntV, for i=1..m, whee X, €C. The
function U =sup,;, U, is admissible forC and
wehave [(u,M)<m.

Lemmabs.5. If C={a} then Cap,,(C)=0.

Proof: This follows from the definition of capacity
and Lemma5.2.

Lemma 5.6. For any compact continuum sets C1

and C, on M we have

CapM (Cl U C2) < CapM (Cl) + CapM (CZ)’

and for any compact set Cof a finite number of
points we have Cap,, (C) =0.

Proof: Let U, (i =1,2) bean admissible function
onC,, then u=sup(u,,u,)is an admissible
function on C, U C, . This proves the inequality.

Now we are in position to show that the function
L, isacontinuous distance function.

Lemmab.7. Let (M, Q) be aFinser space, then we
have

@ b (X3, X5) =R (X5, %),

(2 py(x,x)=0,

(B b (Xps X3) Sy (X, X5) + 1y (X5, X3)
(4) n,, isacontinuousfunctionon M x M.

Proof: The first assertion follows from definition of
the function p,,. The second assertion follows
easily from Lemma5.2. To prove 3, we notice that

My (X1, X5) = Xli’[(lfec Cap,, (C) <
inf Cap,, (C) < infcl Cap,, (C) +

X1,X5,X3€C

infc Cap,, (C,) = 1y (X3, X5) + 1y (X5, X3),

X5,X3€C,
where C, and C, are compact continuum sets in

M . Finaly, to prove 4, continuity of p,, on the
{(x,x) e M?|x e M} follows easily from Lemma 5.2,
otherwise on the {(x,,x,) e M? | x,,X, € M, X, # X,} »

we use 3 and the assertion follows. Hence the proof
iscomplete.

6. An invariance property of capacity

Here we obtain another invariance property of
capacity. Let D be an open proper subset of a
locally connected topological space E. For any
real number C, and any continuous function f on
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D, let cDf denote the union of al connected
components of D —f ™(C) whose closures lie in
D. For any real number a, let f.a denote the
functionon D defined by

a, if xeaDf,

(f'a)(x)z{f(x), it xeaDf. O

Lemma 6.1. (Lebesgue's straightening Lemma
[4]). Let D be an open proper subset of a locally
connected topological space and let f be a
continuous real valued function on D with values
inthe bounded interval [r,S] . Let &, a,,...,a,,...
be an enumeration of the rational numbers in the
interval [r,s]. Set f, =(...((f.a).a,)...).a, then
f  uniformly converge on 5 to a monotone

n
function.

Lemma 6.2. Let (M,Q) be a Finser space and

u, a sequence in H(M)which is uniformly

convergent on every compact subset of M, then its
limit v belongs to H(M) and we have
I(v,M) <liminf I(u ,M).

p—ow

Proof: This Lemma is an easy extension of the
classical onein[8].

=Extension of the Lebesgue’s straightening Lemma
to the Finder spaces.

Lemma 6.3. Let U be a proper open subset of a
Finser space (M,Qg). Then for any bounded

functionue C(M) there exists a function
Vv e C(M) with the same bounds as U, which is

monotone on U and equal to U on M\U.
Moreover, if Ue H(M), then ve H(M) and

[(v,M)<I(u,M).

Proof: Let U be an open proper subset of the
Finder space M. For any real number @, and any
functionu € H(M), let aUu denote the union of

al connected components of U —u*(a) whose
closures lie in U, then from relation (1) we have

_ vV n
I(ua M) = 1Vu” P n(g) < 1(u,M).
where U.a is defined by relation (3), S(aUu) is

the sphere bundle of aJuand |Vu" | is defined

with respect to the Sasaki metric. The proof of this
lemma follows from Lemmas 6.1, 6.2 and last
inequality.

Corollary: The value of Cap,,(C)remains
invariant if we replace the admissible functions on
M by the monotone functionson M\ C.

Proof: If we replace U=M\C in Lebesgue's
Lemma 6.3, then we have the corollary.

7. A classof Finder spaces

The following lemma is an extension of the
corresponding Euclidean one.

Lemma7.1. Let (M, Q) be aFinder space. If there
exists a pair of points(X,,X,) of M with
X, # X, and p,, (x,,X,) =0, then Cap,, (C) =0
for al compact continuum C of M and the
function p,, isidenticaly zero.

Proof: First assume that the compact continuum
C does not contain both points X, and X,, and

letX, ¢ C for precision. Then we can choose a
compact continuum 7y containing Cand X, in
M\{X,} . Applying Lemma 5.4 to M \{x,} we
obtain a constant Kk such that for all
ueH (M\{x,}) we have O(u,CUy)skI%(u,M)-
Nowe> 0 be given, it is possible to assume that

1
e< g As p,, (X,,X,) =0 there exists a function

ueH (M) satisfying O<U<1 everywhere,

U=1on a compact continuum C_ containing X,

€
and X,, and I(u,M)S(E)”. In accordance to
Corollary 6 we can assume that U is monotone on
M\C,, hence also on M \{X,} . Then we have
O(u,CUy)sk—;- As U(X,)=1, it follows that

u(x) Zl_ﬁ > 1 for all X € C. Then the function
2 2

v=inf(2u,1) is admissble for C, hence
Cap, (C)<I(v,M)<2"l(uM)<e"- As & is
arbitrarily small we have at last Cap,,(C) =0.
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Next, for any XeM\{x;}, there exists a
compact continuum C containing X and X, in
M\{x;} and the relation Cap,, (C)=0
involves p,,(X,X,)=0. If we observe that a

compact set of M is a proper subset of M , then
we can use the above argument with a point X of

M \{C} inthe place of X,. Therefore the relation
Cap,,(C)=0 ill holds if the compact

continuum C contains X; and X,. The first

assertion is now completely proved, and the second
one follows immediately. Hence, the proof of the
Lemmais complete.

Applying the last part of the preceding lemma we
see that the two following classes of non-compact
Fingler spaces are complementary.

The class I of manifolds M for which the

function p,, isidenticaly zero.

*The class II of manifolds M for which the
function p,, is not identically zero. From the
above lemma it is equivalent to say
that i1, (X, X,) = 0 givesriseto X, = X,,.

Example 1. Let N be a compact Finsler space.
Then for any compact Continuum C of N the
open submanifold N\ Cis of class I and for any
finite set S={a,,...,a,} of points in N, the
punctured manifold N\'S is of class I. Moreover,
if two manifolds are conformally equivalent, then
they belong to the same class. In particular, E" is

of class I and every bounded domain of E" is of
classil.

Using Lemma 5.7 we have the following
theorem.

Theorem 7.2. Let (M,Q) be a Finder space of

class 11, then for every point X;,X, and X; € M
we have

(1) MM(Xsz)Zum(Xz’Xl),
(2 H’M(Xl’XZ):O@Xl:XZ’

(B b (X1, X5) S gy (X, X5) + py (X5, X3) -
Lemma7.3. Let (M, Q) be aFinger space of class

11, then ,, is a distance on M . Moreover, for
any relatively compact domain D of M , we have

Py (X1, X,) = in];DuM (X,,%5) >0 foral x, €D

andal x,e M\D.

Proof: The first assertion follows from Lemma 5.7
and Lemma 71 For any X, €D,

X,eM\Dand €>0given, there exists a
compact continuum C containing X, and X, with
Cap,, (C) <y (X;,X,)+€. Then C  meets
ODand for adl Xx,e€C(10D, we have

Wy (X1, X5) < Cap,, (C) <y, (X, X,) + €.
Since the continuous function p,, (X;,X;) does

not vanish on 0D, we obtain the lemma by |etting
€ tend to zero. This completes the proof of the
Lemma.

Theorem7.4. For any n-dimensional Finsler space
(M, Q) of class 1, the topology defined by distance

W, coincides with the intrinsic manifold topology.

Proof: Every neighborhood of a point X; of M
contains an open connected and relatively compact
neighborhood D of X, and according to Lemma

7.3, D containsthe i -ball with center X; and
radius in;D Wy (X4, X,) . In the opposite direction
X,€d

it follows from the continuity of ,, that every -
bal B={x;eM |n, (X;,X;)<r} (r>0) is
aneighborhood of X, . This completes the proof of
the theorem.
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