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Abstract 

The asymptotically AdS solutions of the Einstein gravity with hyperbolic horizons in the presence of So(n(n-1)/2-
1,1) Yang-Mills fields governed by the non-Abelian Born-Infeld Lagrangian are presented. We investigate the 
properties of these solutions as well as their asymptotic behavior in various dimensions. The properties of these 
kinds of solutions are like the Einstein-Yang-Mills solutions. But the differences seem to appear in the role of the 
mass, charge and born-Infeld parameter β, in the solutions. For example, in Einstein-Yang-Mills theory the 
solutions with non-negative mass cannot present an extreme black hole while that of in Einstein-Yang-Mills-Born 
Infeld theory can. Also, the singularities in higher dimensional Einstein-Yang-Mills theory for non-negative mass 
are always spacelike, while depending on choosing the parameters, we can find timelike singularities in the similar 
case of Einstein-Yang-Mills-Born-Infeld theory. We also extend the solutions of Einstein to the case of Gauss-
Bonnet and third order Lovelock gravities. It is shown that, these solutions in the limits of  β0, and β , 
represent pure gravity and gravity coupled with Yang-Mills fields, respectively. 
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1. Introduction 

Non-linear electrodynamics was proposed in the 
1930's to remove singularities associated with 
charged pointlike particles. Among the non-linear 
theories of electrodynamics Born-Infeld (BI) theory 
[1] is distinguished, since BI type actions arise in 
many different contexts in superstring theory [2, 3]. 
Also, in the case of a D-brane, it is known that the 
effective action on the brane is Born-Infeld action if 
all derivative terms are neglected [4]. The effective 
action of several D-branes is very important in the 
development of the understanding of the non-
perturbative superstring theory, such as Matrix 
theory [5]. Tseytlin [6] proposed that if all 
derivative terms are neglected, the effective action 
on the branes is a non-Abelian generalization of the 
Born-Infeld action. There are many outstanding 
classical solutions to both the Abelian and non-
Abelian Born-Infeld theories. Born-Infeld black 
holes in (A)dS spaces have been discussed in [7]. A 
type of a particle-like solution in the non-Abelian 
Born-Infeld model was obtained by Gal'tsov and 
Kerner (GK) [8]. A much closer relationship between 
these two particle-like configurations becomes clear 
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in [9, 10, 11]. Among theories of non-Abelian 
gauge fields, the Yang-Mills theory may be 
regarded as the most fundamental one in 
elementary particle physics. The role of the Yang-
Mills field in gravity has become an interesting 
topic of studies. Physical significance of the 
particle-like solutions of Einstein-Yang-Mills 
(EYM) field equations found by Bartnik and 
McKinnon (BK) [12], as well as their possible role 
in the string-inspired models remains rather 
obscure. The attention towards the Einstein-Yang-
Mills system became even more after the discovery 
of the first known example of hairy black holes [13, 
14], which are not uniquely characterized by their 
conserved charges and so violate manifestly the no-
hair conjecture theory. In particular, particle-like, 
soliton-like and black hole solutions in the 
combined Einstein-Yang-Mills (EYM) models in 
different dimensions, shed new light on the 
complex features of compact object in these models 
[15]. (See [16] for an overview). 

With the advent of string theory, the possibility to 
have extra-dimensions became one of the most 
promising possibilities to extend the standard model 
of particles physics. Higher dimensional theories of 
gravity may present some new features which are 
absent in four dimensions. Indeed in four 
dimensions the only gravitational action that can be 
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built from curvature invariants leading to second 
order equations in the metric is the Einstein-Hilbert 
action. The situation changes in higher dimensions. 
In five dimensions one can add, for example, a 
Gauss-Bonnet term to the action. In higher 
dimensions one can add higher curvature powers to 
the action. Such higher curvature power theories 
leading to second order equations for the metric are 
known as Lovelock theories [17]. There are many 
considerable works in Lovelock gravity (for 
example see [18]). 

In the current writing, we will study the 
topological black hole of Lovelock gravity in the 
presence of non-abelian version of Born-Infeld 
theory in (n+1)-dimensions with the gauge group 

1,1)1)/2(( nnSo . The spherically symmetric 

solutions in the presence of Yang-Mills field 
governed by Born-Infeld Lagrangian are obtained 
in [11]. The coupling of the two non-linear, Yang-
Mills and Born-Infeld fields, is a candidate for 
effective action for superstrings and D-branes, 
besides the fundamental importance in the context 
of gravitation theory. To obtain an exact solution, 
we use a modified version of Wu-Yang ansatz [19] 
which was originally introduced in 4=N  field 
theory and for the first time was applied by Yasskin 
[20]. This ansatz has been used to find the EYM 
and GBYM solutions with negative cosmological 
constant in higher dimensions [21, 22]. 

The outline of this paper is as follows. In Section 
2. The field equations of Lovelock gravity in the 
presence of the energy-momentum tensor of the 
coupling of Yang-Mills and Born-Infeld fields is 
introduced. In section 3, we obtain the (n+1)-
dimensional solutions of the Einstein gravity and 
investigate their properties in various dimensions. 
Section 4 is devoted to the general solutions to the 
Gauss-Bonnet and Lovelock gravity, and their 
properties respectively. We finish our paper with 
some concluding remarks. 

2. Field Equations 

As was shown by Lovelock in the early seventies 
[17], the possible corrections to Einstein gravity are 
quite limited, since the only symmetric, divergence 
free tensor that can be constructed out of the metric 
and its first two derivatives in a (n+1)- dimensional 
space-time is 
 

  TGG k
k

n

k

8== )(
/2][

0=

                               (1) 

 

kjkj

kiki

jj

ii
kiii

kjjjk
k RRG 212

212

21

21

2....21

2....211
)( ....

2

1
= 

 


   

 

where /2][d  denotes the integer part of /2d , T  

is the energy-momentum tensor and k  are 

Lovelock constants which represent the coupling of 
the terms in the whole Lagrangian and give the 
proper dimensions. Usually, in order of the Einstein 
gravity to be recovered in the low energy limit, the 

constant 0  should be identified as the 

cosmological constant up to a constant, 

 2=0 , and 1  should be positive (for 

simplicity one may take 1=1 ). As In this 

context, we are interested in asymptotically anti-de 

Sitter (AdS) solutions, we set 21)/2(= lnn  . 

We want to examine the Lovelock-Yang-Mills-
Born-Infeld system for a compact, semi-simple 

gauge group G  with structure constants a
bcC . The 

basic elements of the model are   ),,( aAgM  , 

where M  is the spacetime manifold with metric 

g , and  aA  are the gauge potentials. The metric 

tensor of the gauge group is [21] 
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where N  is the dimension of the gauge group, the 

Latin indices a , b .... go from 1 to N , and the 
repeated indices are understood to be summed over. 

In order to obtain the field equations, we consider 
the EBI action in which, instead of the 
electromagnetic field we employ the non-Abelian 

YM field [23]. Consequently, in Eq.(1), T  is the 

energy momentum tensor given as 
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In the equations (2),(3) and (4),   is the Born-

Infeld parameter which has the dimension of 
2length , )(aF 's are the Yang-Mills-Born-Infeld 

fields, e  is the coupling constant and mL , the 



 
 
 
261                           IJST (2012) A3: 259-266 

matter term, is the F(2) nonabelian and nonlinear 
action density 
 

 .14= 2 mL                                               (5) 
 

In the limit 0 , mL  becomes equal to zero 

and in the limit   it reduces to the standard 

Yang-Mills form, 
 )()(= ba

abm FFL , so we 

expect to obtain the corresponding solutions in both 
these limits. Also, we note that the Born-Infeld 

Lagrangian is obtained, if one substitutes )(aF 's 

with the electromagnetic field, 
 AAF = , 

in which A  is the electromagnetic potential. 

Variation with respect to the gauge potentials A  

yields the YM equations. 
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we consider the metric of a spacetime with 
hyperbolic horizon of the following form: 
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is the line element of 1)( n - dimensional 

hypersurface with constant negative curvature and 

volume 1nV . 

In order to obtain the gauge potential in higher 
dimensional spacetimes we use the (n+1)- 
dimensional Wu-Yang Ansatz [19] as follows 
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where a  and b  run from 1 to 1n  and n  to 

1)/2( nn , respectively and 
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The Lie algebra of this gauge group is 
1,1)1)/2(( nnSo  with the metric tensor of 

abaab  = , of which there is no sum on a  and 
 












2

1)(
1

111
= nn

an

na

a  

 
Substituting Eqs. (7) and (4) in (3), we have 
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3. Static solutions in Einstein gravity 

In this section the goal is to find the exact solutions 
of Einstein gravity in the presence of YMBI fields. 
In this case, the field equation (1) becomes 
 

.8=
2

1)(
2

(1)
 Tg

l

nn
G


                          (9) 

 

 
(1)
G  is just the Einstein tensor. To find the 

function )(rf , one may use any components of 

Eq. (9). The tt-component of the above equation 
using (2) and (8) is  
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For 5=1= nN  the solution is obtained to be: 
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where 4)=(=4 n . For 5>1= nN  the 

solution of the field equation (10) is: 
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In which )],[],,([12 zcbaF  is hypergeometric 

function. It is apparent that in the limit 0  Eq. 

(11) will be 
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which is the AdS solution to the Einstein equation. 

Using the fact that )],[],,([12 zcbaF  has a 

convergent series expansion for 1|<| z , we can 

find the limit of the )(rf  for large r  and   as 
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As expected, this is the solution to the Einstein-

Yang-Mills equations introduced in [21]. Also, the 
Born-Infeld solution is obtained when e is the 
electromagnetic charge parameter in the Eq (8). 

The global structure of the spacetime is 
characterized by properties of the singularities and 
horizons. It is easy to show that the Kretschmann 

scalar 
 RR  diverges at 0=r  and is finite 

everywhere else, so 0=r  is an essential 
singularity. The behavior of the solution )(rf  at 

infinity is dominated by the term 
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forms in different dimensions. By considering an 
integer number a , we obtain the explicit form of 
the hypergeometric function as follows. 

3.1. n = 8a,a = 1, 2,..  

For these values of ,n  as in     ,,,,12 zcbaF  

c  is always an integer, the integral (12) is 

expected to include a logarithmic term. As a case 
for 8=n  the metric function )(rf  is 
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where 8)=(=8 n . Of course one should note 

that this solution in     reduces to give the 

relation (13) as expected, and the logarithmic term 
vanishes in this case. But other than this case, this 
logarithmic case plays a significant term in the 
properties of the Yang-Mills-Born-Infeld solutions. 
To see these properties we obtain the limit of )(rf  

near 0=r  for these values of  an 8= . In this 
case we obtain: 
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When )(ln> 4  aem , )(rf  is negative and 

as )(rf , when r  , so )(rf  has 

certainly one real root and a black hole with one 
horizon exists. For non-negative mass, if 1>  and 

)(ln< 4  aem , )(rf  is positive near 0=r  

and the solution may present an extreme black hole, 
a black hole with two horizons or a spacetime 
without a horizon. This is a property that does not 
happen in the Einstein-Yang-Mills theory as the 
spacetime always presents naked singularity for 
non-negative mass. 

Also, for non-negative mass of this case the 
singularity at 0=r  is timelike, but in the Einstein-
Yang-Mills theory the singularity for the 
dimensions higher than five is always spacelike. 

For negative mass, the possibility to have 
spacelike singularity exists if 1<  and |  

|)(ln|<| 4  aem , while in EYM gravity the 

singularity for negative mass is timelike. 

3.2. n = 4 (2a 1) , a= 1,2, ... 
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In this case, the hypergeometric function again 
includes a logarithmic term. For the behavior of the 
metric function near 0=r  we have 
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By choosing proper parameters, this term can be 

negative or positive. For negative mass this term 
can be positive if 1< , or if 1>  and also |  

.|)(ln|>| 24  aem  In this case extreme black 

hole exists for the proper choice of the parameters. 
For non-negative mass also, if   be sufficiently 

small and 1< , )(rf  will be positive, the 

solution may present a black hole with one or two 
horizons or a spacetime without a horizon. This is 
also the case that does not happen in Yang-Mills 
theory without Born-Infeld or in Maxwell-Born-
Infeld theory. 
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This is similar to the case that happens in 

Maxwell-Born-Infeld theory and just when 0,<m  

extreme black hole may exist, and for non-negative 
mass spacetime always presents naked singularity. 
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In these two cases, the integral in the relation (12) 
can be solved easily. For example, for 6=n  and 
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where 6  and 10  are the amount of   for 6=n  

and 10=n  respectively. The behavior of )(rf  

near 0=r  for the case 1)2(4= an  is 
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While that of for 1)2(4= an  is as follows 
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So depending on proper choosing of the 

parameters m  and ,e  black hole with one or two 

horizons, an extreme black hole and a naked 
singularity may exist. Also, in these two cases 
spacelike or timelike singularities may exist 
depending on the values of m  and e  and  . 

We know a horizon is a null hypersurface defined 

by hrr =  such that 0=)( hrf  with finite 

curvatures, where hr  is a constant horizon radius. 

For all cases that )(rf  is positive near 0=r , the 

extreme black hole may exist in which therein, both 

)(rf  and )(rf '  are zero on the horizon radius 

ext= rr  and can be calculated from (10) to be 
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For these cases the spacetime of Eqs. (7) and (11) 

presents a naked singularity if ext< mm , an 

extreme black hole for ext= mm  and a black hole 

with two horizons provided ext> mm , where extm  

is 
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The Hawking temperature is given by 
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where r  is the largest real root of )(rf  and 
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)(  rô  is the value of the first derivative of )( rô  

at rr = . It's notable that T  vanishes for 

ext= mm . 

4. Static solutions in Lovelock gravity 

The Gauss-Bonnet-Yang-Mills field equation in the 
presence of YMBI fields may be written as 
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where (2)
G  is the second order Lovelock tensor. 

The tt-component of the above field equation for 
the metric (7) is: 
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where 22 3)2)((=   nn . It is a matter of 

calculation to show that the solution of the field 
equation (28), for 5=1= nN  may be written 
as 
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where 4)=(=4 n . Solving the equation (28) 

for 5N , we get 
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where )(rô  was introduced in (12). There are two 

families of solutions which correspond to the sign 
in front of the square root in Eq. (29). We call the 
family with minus (plus) sign the minus (plus)-
branch solution. The minus-branch solution reduces 

to the solution in the Einstein-Yang-Mills-Born-
Infeld solution in the limit of 0.  On the other 
hand, )(rf  diverges for the plus-branch solution 

in this limit, and there is no counterpart in the 
Einstein theory. 

We notice that )(rf  takes the form 
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 as 0 . Also, in the limit   it takes the 

form 
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This is the solution to the Gauss-Bonnet-Yang-

Mills equation obtained in [22] as expected. 
Of course, one may note that )(rf  is imaginary 

for 0< rr  and real for 0> rr  where 0r  is the 

largest real root of the following equation: 
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Thus one cannot extend the spacetime to the 

region .< 0rr  To get rid of this incorrect extension 

we introduce the new radial coordinate   as 
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With this new coordinate the metric (7) becomes 
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where now one should substitute 2
0

2= rr   

in Eq. (29). The new metric function has a 

singularity at 0=  )=( 0rr . 

Like in Einstein gravity, Gauss-Bonnet gravity, 
black hole with one or two horizons, an extreme 
black hole and a naked singularity may exist. Here, 
we just consider the condition of having extreme 
black holes, for which the temperature vanishes. 
The Hawking temperature can be obtained as 
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where )(  r  was given in Eq. (26) and r  is the 

radius of outer horizon. It is a matter of calculation 

to show that ext= mm , 
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is the solution of 0=T . 

To explicitly find the solutions to the Yang-Mills-
Born-Infeld equation in third order Lovelock 
gravity in the presence of cosmological constant, 
the third order Lovelock-Yang-mills field equation 
must be considered as 
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where now (3)
G  is the third order Lovelock tensor 

introduced in (24). The tt-component of the field 
equation (32) for the metric ansatz (7) is derived to 
be: 
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where prime denotes the derivative with respect to 

r  and we define 3)2)(/(= 22  nn
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simplicity. 
First, we solve the equation (33) for the case 

7.=1= nN  The equation in this case admits 
the solution: 
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Where 6 , as was mentioned before, is the 

amount of  , for 6=n . Also, for 7>1= nN  
the generalized solution is the same as the relation 
(34) with )(rj  being: 
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Now for this solution as 0,  )(rk  reduces 

to 
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which gives the solution to the Third order 
Lovelock gravity as expected and for ,  

)(rj  will be 
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The solution given by Eqs. (34) and (37) 

represents the AdS solution to the Third order 
Lovelock-Yang-Mills equation. 

To see the asymptotic behavior of the solution to 
the Third order Lovelock gravity, we write it for a 

special case that .= 2
23   The solution then will 

be 
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This solution has a singularity at 0=r  as the 

Kretschmann scalar diverges at 0=r . 
The Hawking temperature for this solution is 

given by: 
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Where r  is the radius of event horizon. Also, in 

this case, we see that the black hole solutions may 
present an extreme black hole with horizon radius 

extr , where extr  is one of the real roots of 0=T . 

Now by solving the equations in second and third 
order Lovelock theories, we deduce that the tt-
component of the field equation in Lovelock 
gravity is 
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We can solve this equation to obtain the general 

solution in Lovelock gravity as 
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5. Concluding Remarks 

The solutions to Einstein and Lovelock theories 
were obtained considering the coupling of two non-
linear fields, Yang Mills and Born-Infeld fields and 
the properties of the solutions were investigated. 
The properties of these kinds of solutions are like 
the Yang-Mills solutions. But the difference seems 
to appear in the role of the mass in the solutions, as 
for small r's in Yang-Mills gravity the dominant 
term is the term containing m , but in the the Yang-
Mills-Born-Infeld, the dominant term indicates both 
m  and ô(r) which includes ,  the Born-Infeld 

parameter and e . As the function ô(r) takes 
different forms in different dimensions, we saw that 
this term modifies the properties of the solutions. 
For example, in Einstein-Yang-Mills theory the 
solutions with nonnegative mass cannot present an 
extreme black hole but we found conditions for 
some of the solutions in Einstein-Yang-Mills-Born 
Infeld theory in which an extreme black hole or 
naked singularity can exist for non-negative mass. 
The singularities in Einstein-Yang-Mills theory are 
always spacelike and therefore unavoidable, but the 
singularities in Einstein-Yang-Mills-Born-Infeld 
theory can be spacelike or timelike depending on 
the choice of parameters. We also obtained the 
solutions for the second and third order Lovelock 
theories and from that the solution for the n-order 
Lovelock-Yang-mills-Born-Infeld theory was 
introduced. 
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