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Abstract 

In this paper the lowest order constrained variational (LOCV) method has been used for calculation of liquid 	ଷ݁ܪ 
along different isentropic paths employing the Aziz potential. Some thermodynamic properties such as energy per 
particle, pressure, temperature, chemical potential, velocity of sound, adiabatic index and compressibility for 
normal liquid 	ଷ݁ܪ have been calculated. Our results indicate that the sound velocity is always less than the 
velocity of light in vacuum (c) showing that all calculated equations of state obey the causality condition. Finally, 
our calculations show that the adiabatic index is not constant and its value depends on both density and entropy of 
the system. 
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1. Introduction 

Helium 3 is one of the two stable isotopes of helium 
(	ଷ݁ܪ and 	ସ݁ܪ) [1]. The quantum natures of the 
two isotopes of helium are qualitatively different. 
	ସ݁ܪ atoms behave as an ideal Bose gas whose 
properties are described by Bose-Einstein statistics, 
while the 	ଷ݁ܪ atoms behave as an ideal Fermi gas 
with properties described by Fermi- Dirac statistics. 
Liquid 	ଷ݁ܪ changes from a classical to a quantum 
liquid as it is cooled to the millikelvin region and it 
forms a liquid having the lowest known boiling 
point of 3.19		ܭ and only solidifies under the 
pressure of 3.45		ܽ݌ܯ. 

Different many-body techniques have been used 
for investigating the properties of liquid 	ଷ݁ܪ. 
These calculations are mainly based on the Green's 
function Monte Carlo (GFMC) [2], FN-DMC, 
DMC, VMC and EMC simulations [3-6], correlated 
basis functions (CBF) [7, 8] and Fermi hyper-netted 
chain (FHNC) [9-13]. In this article, we use the 
lowest order constrained variational (LOCV) 
method in the calculations for normal liquid 	ଷ݁ܪ. 

The LOCV method which is based on the cluster 
expansion of the energy functional, has been 
developed to study the bulk properties of the 
quantal fluids [14-16].  
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In our previous papers, by employing the LOCV 
method, we have calculated some properties of the 
normal and polarized liquid 	ଷ݁ܪ at finite 
temperature with the spin-independent correlation 
function [17-19]. We have also studied polarized 
liquid 	ଷ݁ܪ with the spin-independent and spin-
dependent correlation function at zero temperature 
[20-22]. These calculations have been also 
extended for the normal and polarized liquid 	ଷ݁ܪ 
in the case of spin-dependent correlation function at 
finite temperatures [23, 24].  

The LOCV method has several advantages with 
respect to the other many-body formalisms. This is 
a fully self-consistent method and does not 
introduce any free parameter to the calculations. 
The crucial point in this method is the functional 
minimization with respect to the two-body 
correlation function subjected to the normalization 
constraint which finally leads to the Euler-Lagrange 
differential equation. The convergence of its results 
has been shown by computing the three-body 
cluster energy term [22, 25]. 

In this article, the LOCV method is used to 
compute the thermodynamic properties of normal 
liquid 	ଷ݁ܪ along the isentropic paths with the spin-
independent correlation function employing the 
Aziz potential. 

2. Lowest Order Constrained Variational 
Method 
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We consider a system of ܰ interacting 	ଷ݁ܪ atoms. 
For this system, the Fermi-Dirac distribution 
function is [26]. 
 
݊ሺ݇, ܵ, ሻߩ ൌ

ଵ

௘ഁሾഄሺೖ,ೄ,ഐሻషഋሺೄ,ഐሻሿାଵ
 (1)                            	ڄ

 
In the above equation ߚ ൌ

ଵ

௞ಳ்
 is the chemical ߤ ,

potential, ߩ is the number density and ߝ is the single 
particle energy of a 	ଷ݁ܪ atom. In our formalism, 
the single particle energy, ߝ,of a 	ଷ݁ܪ atom with 
momentum ݇ is approximately written as  
 

,ሺ݇ߝ ܵ, ሻߩ ൌ
԰మ௞మ

ଶ௠
൅ ܷሺܵ,  ሻ.                                  (2) (2)ߩ

 
ܷሺܵ,  ሻ is the momentum independent singleߩ

particle potential. The chemical potential, ߤ, and the 
temperature, ܶ, at any adopted values of the entropy 
(ܵ) and the number density (ߩ), are determined by 
applying the following constraints,  
 
ܰ ൌ ∑ 	௞ ݊ሺ݇, ܵ,  ሻ                                                 (3)ߩ
 
ܵ ൌ െ݇஻ ∑ 	௞ ሼሾ1 െ ݊ሺ݇, ܵ, ݈݊ሾ1	ሻሿߩ െ ݊ሺ݇, ܵ, ሻሿߩ ൅
݊ሺ݇, ܵ, ,ሻ݈݊݊ሺ݇ߩ ܵ,  ሻሽ.                                          (4)ߩ
 

These are implicit equations which can be solved 
numerically. 

To calculate the energy of this system we 
consider up to the two-body term in the cluster 
expansion of the energy functional [27],  
 
,ሺܵܧ ሻߩ ൌ ,ଵሺܵܧ ሻߩ ൅ ,ଶሺܵܧ  ሻ                              (5)ߩ
 
where 
 

,ଵሺܵܧ ሻߩ ൌ 			
԰మ

ଶగమ௠ఘ
׬ 	
ஶ
଴ ݊ሺ݇, ܵ,  ሻ݇ସ݀݇                 (6)ߩ

 
and  
 
,ଶሺܵܧ ሻߩ ൌ

ଵ

ଶே
∑ 	௜௝ 〈݆݅|ܹሺ12ሻ|݆݅ െ ݆݅〉                   (7) 

 
In the above equation, ܹሺ12ሻ is  

 

ܹሺ12ሻ ൌ
԰మ

ெ
ሾ݂׏ሺ12ሻሿଶ ൅ ݂ሺ12ሻܸሺ12ሻ݂ሺ12ሻ,     (8) 

 
where ܸሺ12ሻ is the two-body potential and ݂ሺ12ሻ is 
the two-body correlation operator. After some 
calculations, the following final expression for the 
two body energy ܧଶሺܵ,  .ሻ has been derivedߩ
 

,ଶሺܵܧ 	ሻߩ
԰మఘమ

ଶ௠
׬ 	
ஶ
଴ ሾሺ݂ᇱሺݎሻሻଶ ൅

௠

԰మ
݂ଶሺݎሻܸሺݎሻሿܽଶሺݎ, ܵ,  (9)                              ,ݎଶ݀ݎሻߩ

 
where  
 

ܽଶሺݎ, ܵ, ሻߩ ൌ 1 െ
ଵ

ଶ
ሺ
ఊሺ௥,ௌ,ఘሻ

ఘ
ሻଶ  (10)                            ڄ

 
In the above equation ߛሺݎ, ܵ,   ,ሻ is as followsߩ

 

,ݎሺߛ ܵ, ሻߩ ൌ 	
ଵ

గమ
׬  
∞

଴
௦௜௡௞௥

௞௥
݊ሺ݇, ܵ,            (11)	ሻ݇ଶ݀݇.ߩ

 
We impose the normalization constraint on the 

two-body correlation function. This means that the 
correlation function is required to heal to the Pauli 
function ௣݂ሺݎ, ܵ,   ,ሻ [25]ߩ
 

௣݂ሺݎ, ܵ, ሻߩ ൌ ሾ1 െ
ଵ

ଶ
ሺ
ఊሺ௥,ௌ,ఘሻ

ఘ
ሻଶሿି

భ
మ (12)                      ڄ

 
Now, we minimize ܧଶሺܵ,  ሻ with respect to theߩ

variation in the correlation function. This gives us 
the following Euler- Lagrange differential equation 
 
݃ᇱᇱሺݎ, ܵ, ሻߩ െ ሾ

௔ᇲᇲሺ௥,ௌ,ఘሻ

௔ሺ௥,ௌ,ఘሻ
൅

௠

԰మ
ሺܸሺݎሻߣሻሿ݃ሺݎ, ܵ, ሻߩ ൌ 0,  (13) 

 
where 
 
݃ሺݎ, ܵ, ሻߩ ൌ ݂ሺݎ, ܵ, ,ݎሻܽሺߩ ܵ, ሻߩ  (14)                        ڄ
 
 is the Lagrange multiplier. In the above ߣ

equations, primes mean differentiation with respect 
to ݎ. The two-body correlation function is obtained 
by numerically integrating Eq. (13), the energy per 
particle of the system can be determined afterwards. 
Now by calculating ܧሺܵ,  ሻ, we can calculate theߩ
thermodynamic properties of normal liquid 	ଷ݁ܪ 
along different isentropic paths. 

3. Results and discussion 

The internal energy per particle for the normal 
liquid 	ଷ݁ܪ as a function of density along six 
different constant entropy paths (ܵ ൌ 1.0, 1.5, 2.0, 
2.3, 2.4, and 2.5		݇஻) has been shown in Fig. 1. In 
this Fig., it is seen that for all densities, the internal 
energy increases by increasing the entropy. It is 
also shown that at high densities the difference 
between the energies of different isentropic paths 
decreases. We have found that the internal energy 
shows a minimum at some entropies. Minimum 
point in the plot of internal energy versus density 
for any entropy, shows density where the system is 
stable (equilibrium state). When liquid 	ଷ݁ܪ is in 
equilibrium state, the mean free path between the 
He atoms is such that, these atoms are bound 
together, due to the negative potential energy. 
However, this minimum disappears for the 
entropies greater than ܵ; 2.3		݇஻. We can conclude 
that for the entropy less than 2.3		݇஻, the system at 
a certain density shows a bound state. Table 1 
shows the internal energy at the minimum point 
(saturation energy) and the corresponding density 
(saturation density) at different entropies. This table 
shows that the saturation energy increases by 
increasing the entropy. 
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Fig. 1. Internal energy per particle (ܧ) for the normal 
liquid 	ଷ݁ܪ as a function of density (ߩ) at ܵ ൌ 1.0, 1.5, 
2.0, 2.3, 2.4 and 2.5		݇஻ 
 
Table 1. The saturation energy (ܧ଴) and saturation 
density (ߩ଴) for  the normal liquid	ଷ݁ܪ along different 
isentropic  paths 
 

ܵሺ݇஻ሻ ߩ଴ሺିܣଷሻ ܧ଴ሺܭሻ 
1.0 0.011 -1.016 
1.5 0.011 -0.481 
2.0 0.010 0.353 

 
Figure 2 shows the temperature (ܶ) of normal liquid 
	ଷ݁ܪ as a function of density for different values of 
entropy. From this Fig. it is seen that the 
temperature increases by increasing both density 
and entropy. We can see that the rate of increasing 
temperature versus density increases by increasing 
the entropy. 
 

 
 
Fig. 2. Temperature (ܶ) of normal liquid 	ଷ݁ܪ as a 
function of density (ߩ) at ܵ ൌ 1.0, 1.5 and 2.0		݇஻ 
 
The chemical potential (ߤ) of normal liquid 	ଷ݁ܪ as 
a function of density along three constant entropy 
paths has been presented in Fig. 3. This Fig. 
indicates that the chemical potential increases 
(decreases) by increasing density (entropy). 

 
 
Fig. 3. Chemical potential (ߤ) of normal liquid 	ଷ݁ܪ as a 
function of density (ߩ) at ܵ ൌ 1.0, 1.5 and 2.0݇஻ 
 
The pressure (ܲ) can be obtained from the energy 
per particle, ܧ, using the following relation,  
 

ܲ ൌ ଶߩ
பா

பఘ
ቚ
ௌ
.                                                        (15) 

 
We have drawn our results for the pressure of 
normal liquid 	ଷ݁ܪ versus density at different 
entropies in Fig. 4. In this Fig., it is seen that the 
pressure is zero for the saturation density (stable 
state), and nonzero everywhere else. We have 
found that the pressure increases by increasing both 
density and entropy. It is seen that at high densities, 
the increasing of pressure by increasing the entropy 
becomes faster. Our results show that as the entropy 
increases, the equation of state of normal liquid 
	ଷ݁ܪ becomes stiffer. 
 

 
 
Fig. 4. Pressure (ܲ) of normal liquid 3݁ܪ as a function of 
density (ߩ) at ܵ ൌ 1.0, 1.5 and 2.0		݇஻ 
 
One of the interesting parameters in the isentropic 
process, which checks the obeying causality 
condition by equations of state, is the velocity of 
sound ( ௦ܸ). It can be expressed as  
 

௦ܸ ൌ ൤ට
ப௉

பఘᇲ
		൨
ௌ
,                                                     (16) 
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where ߩᇱ ൌ
௠ே

௏
 is the mass density and ݉ is the 

atomic mass of 	ଷ݁ܪ atom [28]. In Fig. 5, we have 
plotted ௌܸ for normal liquid 	ଷ݁ܪ as a function of 
the density for ܵ ൌ 1.0, 1.5 and 2.0		݇஻. This Fig. 
shows that the velocity of sound increases with 
increasing both density and entropy. However, it is 
seen that for densities less than about 0.023		ିܣଷ, 
ௌܸ for different values of entropies are nearly 

identical. 
 

 
 
Fig. 5. Velocity of sound ( ௦ܸ) in the normal liquid 	ଷ݁ܪ as 
a function of density (ߩ) at ܵ ൌ 1.0, 1.5 and 2.0݇஻ 
 
Our results for the velocity of sound in the normal 
liquid 	ଷ݁ܪ versus pressure at different entropies 
have been shown in Fig. 6. It is seen that the 
velocity of sound increases by increasing the 
pressure. Our results show that for a specific value 
of pressure, ௦ܸ decreases by increasing the entropy. 
However, from both Figs. 5 and 6, we see that ௦ܸ is 
always less than the velocity of light in vacuum (c). 
Therefore, we can conclude that all calculated 
equations of state obey the causality condition. In 
Fig. 6, our results for the velocity of sound have 
also been compared with the experimental results 
[1]. These experimental results show ௦ܸ as a 
function of pressure at finite ܶ ൌ  which is ܭ		0.1
relevant to low densities in our calculations. We 
can see that in this range our results for velocity of 
sound are in overall agreement with those of the 
experiment [1]. 
 

 
 
Fig. 6. Velocity of sound ( ௦ܸ) in the normal liquid 	ଷ݁ܪ as 
a function of pressure (ܲ) at ܵ ൌ 1.0, 1.5 and 2.0		݇஻. 
The experimental results [1] (dashed dotted) have also 
been given for comparison. 

In Fig. 7, we have compared our results for the 
velocity of sound in the normal liquid 	ଷ݁ܪ versus 
temperature with those of the experiment for 
ܲ ൌ  We can see that there is an .[30 ,29] ܽܲܯ		0.1
overall agreement between our results and the 
experimental data, especially at higher temperatures. 
 

 
 
Fig. 7. Velocity of sound ( ௦ܸ) in the normal liquid 	ଷ݁ܪ as 
a function of temperature (ܶ) at ܲ ൌ  The .ܽܲܯ		0.1
experimental results [29, 30] (dashed) have been shown 
for comparison. 
 
Another interesting parameter in the isentropic 
calculations is the adiabatic index, Γ, which can be 
calculated using the following equation: 
 

Γ ൌ
ఘ

௉
ቀ
ப௉

பఘ
ቁ
ௌ
 (17)                                                       ڄ

 
Figure 8 shows the adiabatic index for normal 
liquid 	ଷ݁ܪ as a function of density at ܵ ൌ 1.0, 1.5 
and 2.0		݇஻. From this figure, it can be found that 
unlike the ideal gas model, Γ does not have a 
constant value. We can conclude that this is due to 
the interactions between the helium atoms in the 
system. In this Fig. it can be seen that for densities 
less than about 0.022ିܣଷ, the adiabatic index 
decreases by increasing both density and entropy. 
However, for densities greater than about 
 ଷ, the adiabatic index increases byିܣ0.022
increasing both density and entropy. Note that as 
the entropy increases, the minimum point of Γ 
decreases. 
 

 
 
Fig. 8. Adiabatic index (Γ) of normal liquid 	ଷ݁ܪ as a 
function of density (ߩ) at ܵ ൌ 1.0, 1.5 and 2.0݇஻ 
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The isentropic compressibility can be obtained from 
the following relation,  
 

ௌߚ ൌ െ
ଵ

௏
ቀ
ப௏

ப௉
ቁ
ௌ
,                                                   (18) 

 
where ܸ ൌ

௏

ே
ൌ

ଵ

ఘ
 [30]. In Fig. 9, we have plotted 

the isentropic compressibility of normal liquid 	ଷ݁ܪ 
as a function of the density for different values of 
entropy. From this Fig. we can see that the 
compressibility of normal liquid 	ଷ݁ܪ decreases by 
increasing the density. This Fig. shows that for a 
certain value of density, the compressibility of 
different entropies are nearly constant. 
 

o

 
 
Fig. 9. Isentropic compressibility (ߚ௦) of normal liquid 
	ଷ݁ܪ as a function of density (ߩ) at ܵ ൌ 1.0, 1.5 and 
2.0		݇஻  

4. Summary and Conclusions 

In this work, some thermodynamic properties of 
liquid 	ଷ݁ܪ along different isentropic paths using 
the lowest order constrained variational (LOCV) 
method were calculated. The Aziz potential was 
employed in our calculations. It is seen that for all 
densities, the internal energy increases by 
increasing the entropy. We have found that the 
minimum point of energy (saturation energy) 
increases by increasing the entropy, and it 
disappears for the entropies greater than about 
2.3		݇஻. It can be concluded that for the entropies 
less than about 2.3		݇஻, the system at a certain 
density shows a bound state. We have shown that 
the pressure and temperature of normal liquid 	ଷ݁ܪ, 
as well as the velocity of sound in normal liquid 
	ଷ݁ܪ increases by increasing both density and 
entropy. It is shown that the velocity of sound in the 
normal liquid 	ଷ݁ܪ increases (decreases) by 
increasing the pressure (entropy and temperature). 
However, the velocity of sound is always less than 
the velocity of light in vacuum (c). Therefore, we 
can conclude that all calculated equations of state 
obey the causality condition. Our results show that 

the chemical potential increases by increasing 
density and decreases by increasing entropy. Our 
calculations indicate that in spite of the ideal gas 
model, the adiabatic index does not have a constant 
value; this is due to the interactions between helium 
atoms in the system. We have indicated that for 
densities less (greater) than about 0.022		ିܣଷ, the 
adiabatic index decreases (increases) by increasing 
both density and entropy. Finally, it is seen that the 
compressibility of normal liquid 	ଷ݁ܪ decreases by 
increasing the density, and for a specific value of 
density, the compressibility remains nearly constant 
with increasing the entropy. 
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