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Abstract 

In this paper, the use of weighted pairwise likelihood instead of the full likelihood in estimating the parameters of 
the multivariate AR(1) is investigated. A closed formula for typical elements of the Godambe information 
(sandwich information) is presented. Some efficiency calculations are also given to discuss the feasibility and 
computational advantages of the weighted pairwise likelihood approach relative to the full likelihood approach. 
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1. Introduction 

The multivariate autoregression model is an 
essential and informative tool for describing the 
dynamic behavior of the applied sciences, e.g. 
neurosciences, biomedical research, business, 
economic, environmental, industrial and financial 
time series, see Schelter et al. and therein references 
for more examples and applications [1]. In 
multivariate models, the standard likelihood-based 
inference often involves high-dimensional integrals 
which become more difficult to evaluate when the 
sample size increases, Xu [2] and Parner [3]. In the 
case that the likelihood function is difficult to 
evaluate or cannot be solved, certain methods based 
on modifications of the likelihood are used by 
several authors, e.g. Besag [4, 5], Cox [6] and 
Lindsay [7]. The conditional Gaussian likelihood 
procedure proposed by Hannan and Rissanen [8] 
has been complemented by Salau [9] to investigate 
the effects of different choices of order for 
autoregressive approximation on the fully efficient 
parameter estimates for ARMA models. 
Asymptotic quasi-likelihood has been advanced by 
Heyde and Lin [10], Heyde [11] and Jung et al. 
[12]. A quasi-maximum likelihood unit root test is 
studied by Rothenberg and Stock [13] and 
Carstensen [14], and the quasi-maximum likelihood 
theory to simulate the likelihood ratio test is given 
by Lee [15] and Ziegler [16]. Parameters estimation 
by quasimaximum likelihood through the 
optimization of a Gaussian log-likelihood function 
is discussed in Bollerslev and Wooldridge [17], 
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Newey and Steigerwald [18] and Rodrigues and 
Rubia [19]. Modified versions of the likelihood 
function to find an approximate sufficient statistic 
for the parameters of the vector-valued 
(multivariate) ARMA models, in terms of the 
periodogram are applied by Kharrati-Kopaei et al. 
[20]. The pseudo-likelihood based estimation 
procedure is also used by many authors. The reader 
is referred to Hu and Zhang [21] and the references 
therein for a short discussion on this subject. 

In recent years, the composite likelihood 
approach (based on the likelihoods of low-
dimensional marginal distributions) has received 
much attention in statistical models. The pairwise 
likelihood, given by Cox and Reid [22], takes the 
bivariate margins to produce the pseudo-likelihood. 
An excellent review on the composite likelihoods 
with emphasis on some applications in genetic, 
longitudinal data, survival analysis and spatial 
statistics can be found in Varin [23]. Recently, Ng 
et al. [24] have established the consistency and 
asymptotic normality properties in a time series 
model with a latent Gaussian autoregressive process 
for various composite likelihood estimators. The 
asymptotic properties of pairwise likelihood 
estimation procedures for linear time series models 
are also studied by Davis and Yau [25]. 

Pairwise likelihood approach in estimating the 
parameters of a multivariate AR(1) is studied by 
Nematollahi and Kazemi [26]. They concentrate on 
the maximum pairwise likelihood estimators 
(MPLE) and specify its efficiency for the arbitrary 
matrix of parameters of multivariate AR(1) model, 
along the line of the equi-correlation normal matrix 
example in Cox and Reid [22]. They have used 
unweighted pairwise likelihood and by some 
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tedious computations, it is shown that the efficiency 
can be low, so that using weighted pairwise 
likelihood-based inferences is recommended. In this 
paper, we discuss the feasibility of the weighted 
pairwise likelihood approach (Joe and Lee [27]) 
and discuss the computational advantages of 
weighted pairwise likelihood relative to the full 
likelihood approach. Practical advantages of the 
weighted MPLE (WMPLE) to MLE are brought to 
light and some efficiency calculations are 
presented. 

This paper is organized as follows: The pairwise 
likelihood function for m-dimensional random 
vector is introduced Section 2. In Section 3, we 
consider the multivariate AR(1) models and 
compute asymptotic variance of the parameters 
based on the pairwise likelihood. Numerical studies 
in Section 4 are in support of our derivations. 

2. Preliminaries 

Let ( )1 2Y = , , , T
mY Y Y  be a m -dimensional 

random vector with joint density  ,θy,f  where 
mRΘθ  is unknown parameter. There are a 

number of situations where it is difficult to specify 
the full m -dimensional distribution in simple form 
but it may be possible to specify some low-
dimensional distributions. Here we consider the 
two-dimensional one, i.e., we concentrate on the 

weighted bivariate densities   ij

ji yyf


θ,,  for all 

,,1,...,=, jimji   where ,1,...,=,, mjiij  
are the suitable nonnegative weights. 

The weighted pairwise likelihood (WPL) from a 
single m -dimensional random vector Y  is 
constructed by  
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see e.g. Cox and Ried [22]. If the true parameter 

value 0θ belongs to the interior of the compact 

parameter space, then the weighted maximum 
pairwise likelihood estimate (WMPLE) of ,θ  

denoted by ~  is the solution of the composite 
score function,  
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Since the composite score is a linear combination of 
valid likelihood score functions, then its 

unbiasedness follows under usual regularity 
conditions. 

We will present the weighted pairwise likelihood 
(WPL) based on n  ( m -dimensional) random 

vectors nYY ,...,1  in Section 3. The information in 

the composite score equation provided by n  
observations is given by 

 

       ,= 1 θJθKθJθG wplwplwpl
  

 

where    
,=

,





 



θ

yθS
θJ wpl

wpl E  and  θK wpl  

is the variance of the composite score matrix given 

by       ].,,[= T
wplwplwpl E yθSyθSθK  The 

standard theory for inference functions [28] can be 
applied to derive the general asymptotic properties 

of ~  Under the theory of estimating equations and 
the regularity conditions on the log-likelihood, it 

can be shown that ~  is consistent and 
asymptotically normal distributed with asymptotic 
mean ,θ  and variance matrix  
 

       ,= 111 θJθKθJθG 
wplwplwpl                (1) 

 
which follows from the Taylor expansion to second 
order. A proof can be found in Godambe [28]. See 
also Zhao [29], Zhao and Joe [30] and Joe and Lee 
[27] for more details. 

In this paper, we consider a multivariate AR (1) 
model which satisfies the difference equation  

 
,= 1 ttt

ZΦXX                                              (2) 

 
where Φ  is mm matrix and tZ is a sequence 

of independent multivariate normal with zero mean 
vector and covariance matrix .Σ  We assume that 
the process is causal in the sense that all 
eigenvalues of Φ are less than 1 in absolute value. 
From the well-known Yule-Walker equations, we 

have    1= hh ΦΓΓ for 1,2,3,=h and 

       ΣΦΦIΓ vecvec 1=0  where the 

" vec" notation for a matrix  nA aaa ,,,= 21   is 

defined by    TT
n

TTAvec aaa ,,,= 21  and 

operator   is the Kronecker product. 
Joe and Lee [27] studied the m -dimensional 

Gaussian AR(1) model with mean m1  and 

covariance matrix ),(2  R  where 
m

kj
kj

1=,
|| ][=)( R  with 1.<<1   They 
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obtained some efficiency results for the estimate of 
one of the parameters assuming the other two to be 
known, using the weighted pairwise likelihoods 
with weights depending on lag. In this paper, we 
study weighted pairwise likelihoods in a more 
general case with the weights constructed based on 
the autoregressive property of the time series and 
considering the serial dependence within each 
component series and interdependence between the 
different component series. Using this kind of 
weights, we will show that the loss of efficiency 
compared to maximum likelihood estimation is 
acceptable and balanced by the computational ease. 

3. The weighted pairwise likelihood inferences 

Let },...,{ 1 nXX  be a set of m -dimensional 

observations, where tX =   ,,,,
21

T

tmtt
XXX   

nt 1,...,= . Following Nematollahi and Kazemi 

[26], consider a 1mn  vector X  constructed by  
 

 TT
n

TT XXXX ,,,= 21   

).,,,,,,,,,,(= 21,22221,11211
T
nmnnmm XXXXXXXXX   (3) 

 
The vector-valued (multivariate) time series 

}{ tX  having not only serial dependence within 

each component series }{ tiX , but also 

interdependence between the different component 

series }{ tiX  and }{ tjX , ji  . According to the 

autoregressive property, each }{ tX  is also 

dependent on }{ 1tX . So, we will consider the 

weighted pairwise likelihood for X  as 
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where 

 



 

otherwise.0,

),1,1=(or)<,1=(1,
=

mcbijmcbji
ijbc  

 
Remark 1. Note that in order to use all of the 
information in the time series, we have to write X  

and  θx,wplL  as above, since in the multivariate 

time series the vector of observations at different 
times are dependent and it is also dependent with 
other observations. In (4), the first term is the 
likelihood function of the observations within 

the }{ nX  and the second term is the counterpart 

between groups }{ nX and }{ 1nX , this is one 

justification for considering the weights ijbc  as 

given above. Another justification is the 
autoregressive property. 
 
Remark 2. The pairwise likelihood function 
considered by Nematollahi and Kazemi [26] can be 

easily derived by setting p = 1,ijbc  for all bji ,,  

and .c  

Now, suppose that },1,2,=,{ ntt X is a set 

of n  mean-zero m -dimensional Gaussian time 
series with covariance matrix 

   T
jiEji XXK =, , then for a nm -dimensional 

Gaussian vector X  , we can say 
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then (5) can be written as  
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Now, using (6) the logarithm of the weighted 

pairwise likelihood function ),( θxwplL  reduces to 
 

)),((log( θx=)θ wplwpl Ll  
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where  ΣΦθ ,=  is the unknown parameter of 

model, 
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where 1)/2)((=  mmmmq  is the number of 

unknown parameters. Then using (7), we have 
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To compute the above quantities, first note 

that 
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Now we can state the following theorem which 

plays the main role in computing the asymptotic 
variance-covariance matrix of the WMPLE.  

 
Theorem 1. The typical ),( lk th element of the 

matrices )(θJwpl  and )(θK wpl  have the form 
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Proof: The proof of (10) is simply done by using 

the following fact. If   ,= 0XE  then 

   ,= AΩAXX trE T  where  .= TE XXΩ  

To prove (11), at first note that, 
 

    ,=)/()/( 1632122   lk wlwlE θθ  
 
where the equations 1 up to 16 can be divided 

to 4 groups as below. Note that for the four 
following groups  rq,  varies in 

        11,,1,0,10,,0,0   according to s , 

varying from 1 up to 4 for the first group, from 5 up 
to 8 for the second group, from 9 up to 12 for the 
third group and from 13 up to 16 for the forth 
group, respectively. 

Group1: for s , 1,2,3,4=s  we have, 
 

.
4

1
=

)(log)(log

,, 























lw

r'c'b

kw

qbc

'c'b'
ri

cbqi
s

MM
  

 
Group2: for s , 5,6,7,8=s  we have, 
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Group3: for s , 9,10,11,12=s  we have, 
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Group4: for s , 613,14,15,1=s  we have, 
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Note that in the all of the above groups, if 

qi varies from 1 up to n-1 then both b,c vary from 

1 up to m  and if qi  varies from 1 to n then b,c 

vary from .<1 mcb   
For simplifying these expressions, we have to use 

the following useful facts. 

(I) If   0X =E then    AΩAXX trE T =  
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(III) For simplifying 1613,... we have used the 

following well-known result (Searle, [31]). Let 

( )i iiX N 0,C  and ( )Tij i jC = E X X  then,  
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0.==== 84736251    
 

And also by using (I) and (II) we can have, 
 

,
4

)(
=

)(log)(log

,, 














 






lw

r'c'b

kw

qbc

'c'bcb
s

nf MM
  

 
for 9,10,11,12=s . If 9=s  and (0,0)=),( rq  then 
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Similarly for 161514 ,,  we have, 
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By simplifying the quantities 

1621 ,,,    then (11) holds. 

 
Remark 3. The asymptotic variance-covariance 
matrix can now be derived, by using the relations 
(10) and (11) via (1). 
 

Remark 4. For 1,=ijbc  for all cji ,,  and ,b  

(10) and (11) reduce to the formulas obtained by 
Nematollahi and Kazemi [26]. 

4. Simulation studies 

In the following section we have conducted some 
simulation studies to study the asymptotic relative 
efficiency of the WMPLE with respect to the MLE 
(ARE). The optimization method for the weighted 
pairwise likelihood function is the quasi-Newton 
method, with a relative tolerance of 810 , 
implemented by the fmincon function of the 
software package Matlab 2009a, v7.8. The fmincon 
function is a numerical optimization routine, 
including sequential quadratic programming 
algorithm to solve for constrained optima. 

This section consists of three parts. In the first 
part, we assume that 2=m  and the variance-
covariance matrix Σ  is known and is given by 
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We compare the variance of WMPLE computed 

by (3.8) and (11) with respect to MLE. We will 
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study the relative efficiency of WPMLE with 

respect to MLE in terms of 11  by letting 

0.9=0,== 222112   and 11  varying in the 

set .,0.90.1,0.2,.. . 

The condition required for the existence of a 
causal stationary solution of the multivariate AR(1) 
is all the eigenvalues of Φ  are less than 1 in 
absolute value, i.e., provided that  

 
0,)(  ΦI zdet                                         (12) 

 
for all complex values of ,z  such that 1|| z . For 

the case 2=m , this causality condition, which 
ensure us the existence of a stationary solution of 
the considered model can be written as 
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1
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for all complex values of ,z  such that 1|| z . In 

the first example, this condition reduces to 

1|<| 11  and 1|<| 22 , which are satisfied for 

0.9=0,== 222112   and 11  varying in the 

set .,0.90.1,0.2,.. . 

To compute the asymptotic variance of the MLE 
of matrix of coefficients Φ  we use the matrix 

  )0(1/ 1ΓΣn , see Reinsel [32] and Shumway 

and Stoffer [33] for more details. 

In Table 1, for various values of 11 , the 

asymptotic variance of the WMPLE (avar( 11

~ )), 

MLE (avar( 11̂ )), and ARE of the WMPLE with 

respect to the MLE for n=100 are reported.  

 

Table 1. The avar( 11

~ ), the avar( 11̂ ) and the ARE for n=100 

 
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

11  

0.0042 0.0076 0.0103 0.0124 0.0141 0.0155 0.0165 0.0171 0.0175 avar( 11̂ ) 

0.0044 0.0093 0.0143 0.0195 0.0268 0.0321 0.0339 0.0312 0.0226 avar( 11

~ ) 

0.9613 0.8233 0.7205 0.6372 0.5291 0.4827 0.4864 0.5494 0.7716 ARE 
 
 

The asymptotic variances of the WMPLE ( 11

~ ), 

MLE ( 11̂ ), and ARE of the WMPLE with respect 

to the MLE for different values of 11  are plotted in 

Fig. 1. 

 

      
 

Fig. 1. The asymptotic variances of the WMPLE ( 11

~ ), MLE ( 11̂ ) (left) 

and the relative efficiency of the WMPLE with respect to the MLE  

(ARE) (right)for different values of 11  
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As seen, the loss of efficiency is acceptable and 

balanced by the computational ease, however, the 

role of the values of mn,  and 11  in the value of 

efficiency is crucial. 
In the second part, given 2=m  and the 

variance-covariance matrix Σ  considered in the 
first part, we present a preliminary study on 
performance of WMPLE in which all parameters in 
the matrix of coefficients are unknown but we limit 

attention to the case 2211 =   and =12  21 . The 

causality condition given by (4.1) of the above 
model, in this case, reduces to the following 
constraints 

1.|<|1,|<| 12111211    
 

We simulate 500  multivariate time series of the 

above AR(1) model with length 1000.=n  For 
evaluating our estimator, we have reported the 

asymptotic variance of WMPLE ( avar( 11

~ )), and 

the asymptotic variance of the MLE ( avar( 11

~ )). 

In Table 2, for various values of 11  and 12 , the 

sample means and standard errors of the WMPLE 
and MLE are reported. 

 
Table 2. Sample means and standard errors of the WMPLE and MLE of the parameters 11 and 12  

 

Parameters True values Mean of WMPLE Mean of MLE SE of WMPLE SE of MLE 

 1211,  (0,0) (.0063,.0114) (.0091,.0088) (.0352,.03) (.0346,0.0283) 

 1211,  (.75,.05) (.7325,.0624) (.7417,.0503) (.0279,.02) (.02,.02) 

 1211,  (.75,.15) (.7250,.1661) (.7391,.1503) (.03,.02) (.0173,.0173) 

 1211,  (.95,0) (.9417,.0004) (.9415,-.0014) (.0084,.01) (.0082,.01) 

 1211,  (-.95,0) (-.9386,-.0012) (-.9388,.0013) (.0173,.0079) (.0173,.0079) 

 
As shown in Table 2, the WMPLE performs very 

well. 
In the third part, we simulate 500  multivariate 

time series of the considered AR(1) model with 
3=m  and length 500.=n  We assume that the 

variance-covariance matrix Σ  is known and is 

given by .

10.50.6

0.510.7

0.60.71

=
















Σ  The ARE is 

studied by letting the matrix of parameters be 
 

.

0.5000.0300.070

0.0300.6000.030

0.0700.0300.500
















=Φ  

 
Note that the condition required for the existence 

of a causal stationary solution of the multivariate 
AR(1) given by (4.1) is again satisfied for this 
proposed Φ . In the following table, the sample 
means and standard errors of the WMPLE and 
MLE for all parameters in Φ  including the ARE of 
the WMPLE with respect to the MLE are reported. 

As Table 3 shows, the loss of efficiency is 
roughly more than one-half and acceptable. 

As shown in Tables 1, 4.2 and 4.3 the WMPLE 
has a good practical performance. It is consistent, 
sufficiently accurate and acts as good as the MLE 
for the large sample size. 

5. Discussion 

In this paper, we have shown how weighting can be 
considered for inferences about the parameters in 
the multivariate AR(1) time series. By using the 
analytical and numerical computations, we showed 
that where the unweighted pairwise likelihood does 
poorly in efficiency and may be computationally 
very slow, difficult and complicated, the weighted 
pairwise likelihood is suggested as a practically 
good choice. 

It also seems that dimension parameter m  is a 
key variable here, which should be brought into 
play, as m  is the key variable in increasing the 
computational complexity that might encourage one 
to use pairwise. 
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Table 3. Sample means, standard errors and ARE of the WMPLE with  

respect to the MLE of the parameters of the matrix Φ  
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