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Abstract 

Maji et al. introduced the concept of fuzzy soft sets as a generalization of the standard soft sets and presented an 
application of fuzzy soft sets in a decision making problem. In this paper, we apply fuzzy soft sets to  -
hyperrings. The concept of ( , )q     -fuzzy soft  -hyperideals of  -hyperrings is first introduced. Some 

new characterizations are investigated. In particular, a kind of new  -hyperrings by congruence relations is 
obtained. 
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1. Introduction 

Uncertainties, which could be caused by 
information incompleteness, data randomness 
limitations of measuring instruments, etc., are 
pervasive in many complicated problems in 
biology, engineering, economics, environment, 
medical science and social science. Alternatively, 
mathematical theories, such as probability theory, 
fuzzy set theory [1], vague set theory, rough set 
theory [2] and interval mathematics, have been 
proven to be useful mathematical tools for dealing 
with uncertainties. However, all these theories have 
their inherent difficulties, as pointed out by 
Molodtsov in [3]. Nowadays, works on the soft set 
theory are progressing rapidly. Maji et al. [4, 5] 
described the application of soft set theory to a 
decision making problem. Ali et al. [6] proposed 
some new operations on soft sets. Chen et al. [7] 
presented a new definition of soft set 
parametrization reduction, and compared this 
definition to the related concept of attribute 
reduction in rough set theory. In particular, fuzzy 
soft set theory has been investigated by some 
researchers, for examples, see [8, 9]. Recently, the 
algebraic structures of soft sets have been studied 
increasingly, see [10-18]. 

On the other hand, the theory of algebraic 
hyperstructures (or hypersystems) is a well 
established branch of classical algebraic theory. In 
the literature, the theory of hyperstructure was first 
initiated by Marty in 1934 [19] when he defined the 
hypergroups and began to investigate their properties 
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with applications to groups, rational fractions and 
algebraic functions. Later on, many people 
observed that the theory of hyperstructures also has 
many applications in both pure and applied 
sciences, for example, semi-hypergroups are the 
simplest algebraic hyperstructures which possess 
the properties of closure and associativity. Some 
review of the theory of hyperstructures can be 
found in [20-23], respectively. One well-known 
type of a hyperring, is called the Krasner hyper-ring 
[24]. Krasner hyperrings are essentially rings with 
approximately modified axioms in which addition 
is a hyperoperation (i.e., a + b is a set). This 
concept has been studied by a variety of authors, 
see [25-28]. In particular, the relationships between 
the fuzzy sets and algebraic hyperstructures have 
been considered by Ameri, Cristea, Corsini, 
Davvaz, Leoreanu, Zhan and many other 
researchers [18, 29-42]. 

The concept of  -rings was introduced by 
Barnes [43]. After that, this concept was discussed 
further by some researchers. The notion of fuzzy 
ideals in a Γ-ring was introduced by Jun and Lee in 
[44]. They studied some preliminary properties of 
fuzzy ideals of  -rings. Jun [45] defined fuzzy 
prime ideals of a  -ring and obtained a number of 
characterizations for a fuzzy ideal to be a fuzzy 
prime ideal. In particular, Dutta and Chanda [46] 
studied the structures of the set of fuzzy ideals of a 
 -ring. Ma et al. [47, 48] considered the 
characterizations of  -hemirings and  -rings, 
respectively. Recently, Ameri et al. [4] considered 
the concept of fuzzy hyperideals of  -hyperrings. 
By a different way of [49], Yin et al. [50] 
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investigated some new results on  -hyperrings. 
Ma et al. [51] considered the (fuzzy) isomorphism 
theorems of  -hyperrings. At the same time, 
Davvaz et al. [52] considered the properties of  -
hypernear-rings and derived some related results. 

After the introduction of fuzzy sets by Zadeh [1], 
there have been a number of generalizations of this 
fundamental concept. A new type of fuzzy 
subgroup, that is, the ( , )q -fuzzy subgroup, 

was introduced in an earlier paper of Bhakat and 
Das [53] by using the combined notions of 
“belongingness” and“quasicoincidence” of fuzzy 
points and fuzzy sets. In fact, the ( , )q -

fuzzysubgroup is an important generalization of 
Rosenfeld’s fuzzy subgroup. It is now natural to 
investigate similar types of generalizations of the 
existing fuzzy subsystems with other algebraic 
structures, see [28, 31, 33, 37, 39]. 

In this paper, we introduce the concept 
of ( , )q     -fuzzy soft  -hyperideals of  -

hyperrings. Some new characterizations of them are 
investigated. In particular, a new kind  -
hyperrings are obtained by congruence relations. 

2. Preliminaries 

A hypergroupoid is a non-empty set H  together 
with a mapping “◦” : * ( )H H P H  , where 

* ( )P H  is the set of all the non-empty subsets of 

H . 
A quasicanonical hypergroup (not necessarily 

commutative) is an algebraic structure 
( , )H  satisfying the following conditions: 

(i) for every , ,x y z H ， ( ) ( )x y z x y z     ; 

(ii) there exists a 0 H  such that 0 x x  ，  for 
all x H ; 
(iii) for every x H ，  there exists a unique 

element 'x H  such that , '0 ( ) ( )x x x x    ；  

“(we call the element x  the opposite of x )” 
(iv) z x y   implies y x z   and x z y  . 

Quasicanonical hypergroups are also called 
polygroups. 

We note that if x H  and A ; B  are non-empty 
subsets in H , then by A B , A x  and x B  we 

mean that 
,a A b B

A B a b
 

   ， { }A x A x    and 

{ }x B x B   , respectively. Also, for all 

,x y H , we have ( )x x    ，−0 = 0, 

where 0 is unique and ( )x y y x     . 

A sub-hypergroup A H  is said to be normal if 
x A x H    for all x H . 
A normal sub-hypergroup A  of H  is called left 
(right) hyperideal of H  if xA A  

( Ax A respectively) for all x H . Moreover, 
A is said to be a hyperideal of H if it is both a left 

and a right hyperideal of .H A canonical 
hypergroup is a commutative quasicanonical 
hypergroup. 
 
Definition 2.1. [24] A hyperring is an algebraic 
structure ( , , )R    which satisfies the following 

axioms: 
(1) ( , )R   is a canonical hypergroup; 

(2) Relating to the multiplication, ( , )R   is a 

semigroup having zero as a bilaterally absorbing 
element, that is, 0 0 0x x     for all x R ；  
(3) The multiplication is distributive with respect to 
the hyperoperation “+” that is, ( )z x y z x z y       

and ( )x y z x z y z       for all , ,x y z R . 

For the sake of simplicity, we shall omit the 
symbol “ · ”, writing ab  for a b ( , )a b R . 

 
Definition 2.2. [49, 50] Let ( , )R    and ( , )   be 

two canonical hypergroups. Then R  is called a  -
hyperring, if the following conditions are satisfied 
for all , ,x y z R and for all ,   , 

(1) x y R  ; 

(2) ( )x y z x z y z      

( )x y a y x y      , 

( )x y z x y x z     , 

(3) ( ) ( )x y z x y z    . 

In the sequel, unless otherwise stated, ( , , )R    

always denotes a  -hyperring. 
A subset A  in  R is said to be a left (right)  -

hyperideal of R  if it satisfies the following 
conditions: 
(1) ( , )A   is a normal sub-hypergroup of ( , )R  ; 

(2) x y A   ( y x A   respectively) for all x R , 

y A and   . 

A  is said to be a  - hyperideal of R  if it is both 
a left and a right  -hyperideal of R . 

 
Definition 2.3. [51] A fuzzy set   of a  -

hyperring R  is called a fuzzy  -hyperideal of R  
if the following conditions hold: 
(1) min{ ( ), ( )} inf ( )

z x y
x y z  

 
  for all ,x y R ; 

(2) ( ) ( )x x    for all x R ; 

(3) max{ ( ), ( )} ( )x y x y     for all ,x y R  

and for all    
(4) ( ) inf ( )

z y x y
x z 

  
  for all ,x y R . 

 
Example 1. [51] Let R be a  -ring such that 

( )x y x y     for all ,x y R  and   . 
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Denote { { , } }R x x x x R    and 

{ { , } }        . 

Define the hyperoperations on R  and   as 
follows: { , }x y x y x y    , { , }          

and x y x y   for all ,x y R  and ,   . 
Then ( , , )R    is a  -hyperring. 

 
Example 2. [51] Let ( , )G   be a group and G  . 

Denote 0 0 {0}G G     and define 

x y x y    for all ,x y G  and   . Then 
0 0( , , )G    is a 0 -hyperring with respect to the 

hyperoperation “ ” on 0G and 0 , defined by 

0 0 { }x x x    for all 0x G , 
0 \{0}x x G   for all 0 \{0}x G , 

{ , }x y x y  for all 0, \{0}x y G with x y , and 

0 0 { }      for all 0  , 
0 \{0}     for all 0 \{0}  , 

{ , }      for all 0, \{0}   with   , 

respectively. 
 
Definition 2.4. [51] If R  and 'R  are  -
hyperrings, then a mapping ':f R R  such that 

( ) ( ) ( )f x y f x f y   and ( ) ( ) ( )f x y f x f y   

for all ,x y R  and   , is called a  -

hyperring homomorphism. 
Clearly, a  -hyperring homomorphism f is an 

isomorphism if f  is injective and surjective. We 

write 'R R  if R  is isomorphic to 'R . 
If N  is a  -hyperideal of R , then we define 

the relation *N  by 
x congruent y  ( )x y N    .  

This is a congruence relation on R . 
Let N  be a  -hyperideal of R . Then, for 

,x y N , the following are equivalent: 

(1) ( )x y N    , 

(2) x y N  , 

(3) y x N  . 

The class x N  is represented by x  and we 

denote it with * ( )N x . Moreover, 
* *( ) ( )N x N y  if and only if (mod )x y N . We 

can define /R N  as follows: 
 

*/ { ( ) }R N N x x R  . 
 

Define a hyperoperation  and an operation   

on /R N  by 
 

* * * * *( ) ( ) { ( ) ( ) ( )}N x N y N z z N x N y    ; 
* * *( ) ( ) ( )N x N y N x y   

 
for all * *( ), ( ) /N x N y R N . 

Then, ( / , , )R N    is a  -hyperring, see [51]. 

3. Fuzzy soft sets 

A fuzzy set   of R  of the form 
 

( 0) ,
( )

0 ,

t if y x
y

if y x


 
  

 

 
is said to be a fuzzy point with support x and value 
t and is denoted by tx . A fuzzy point tx  is said to 

be “belong to” (resp.,“ quasi − coincident with” ) a 
fuzzy set  , written as tx   (resp., tx q ) if 

( )x t   (resp., ( ) 1x t   ). If tx   or tx q , 

then we write tx q . If ( )x t   (resp., 

( ) 1x t   ), then we say that tx   (resp., tx q ). 

We note here that the symbol q  means that 

q  does not hold. 

Let , [0,1]   be such that   . For a fuzzy 

point rx  and   of X , we say 

(1) rx    if ( )x r   . 

(2) rx q   if ( ) 2x y   . 

(3) rx q     if rx    or rx q  . 

(4) rx q     if rx    or rx q  . 

Molodtsov [41] defined the soft set in the 
following way: let U be an initial universe set, E  a 
set of parameters and A E . 

A pair ( , )F A is called a soft set over U , where 

F  is a mapping given by 
 

: ( )F A P U . 
 

In other words, a soft set over U  is a 
parameterized family of subsets of the universe U . 
For A  , ( )F  may be considered as the set of 

 -approximate elements of the soft set ( , )F A . 

 
Definition 3.1. [8] Let U  be an initial universe set, 

E  a set of parameters and A E . Then ( , )F A  is 

called a fuzzy soft set over U , where F  is a 

mapping given by : ( )F A P U .  

In general, for every x A , ( )F x  is a fuzzy set 

in U  and it is called fuzzy value set of parameter 
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x . If for every x A , ( )F x  is a crisp subset of 

U ,  

Then ( , )F A  is degenerated to be the standard 

soft set. Thus, from the above definition, it is clear 
that fuzzy soft sets are a generalization of standard 
soft sets. 

Let A E  and ( )F F U . Let ( , )F A  be a 

fuzzy soft set by ( )F F  for all A  . For any 

fuzzy point rx  in U , define ( , )rx A  as a fuzzy soft 

set by [ ]r rx x   for all A  . 

The notions of AND, OR and bi-intersection 
operations of fuzzy soft sets can be found in [3, 4]. 

Now, we introduce a new ordered 
relation;“ ( , )q    ”on the set of all fuzzy soft 

sets over U . 

For two fuzzy soft sets ( , )F A  and ( , )G B  over 

U , by ( , )( , ) ( , )F A q G B   we mean that 

A B and [ ] [ ]r rx F x q G        for all 

A  , x U and ( ,1]r  . 

 

Definition 3.2. For two fuzzy soft sets ( , )F A  and 

( , )G B  over U , we say that ( , )F A  is an 

( , )rx q     -fuzzy soft subset of ( , )G B , if 

( , )( , ) ( , )F A q G B   . 

( , )F A  and ( , )G B  are said to be 

( , )rx q     -equal if ( , )( , ) ( , )F A q G B    

and ( , )( , ) ( , )G B q F A   .This is denoted by 

( , )( , ) ( , )F A G B   

The following two lemmas are obvious. 
 

Lemma 3.3. Let ( , )F A  and ( , )G B  be two fuzzy 

soft sets over U . Then ( , )( , ) ( , )F A q G B   if 

and only if max{ [ ]( ), } min{ [ ]( ), }G x F x     for 

all A  , x U . 
 

Lemma 3.4. Let ( , )F A  ( , )G B  and ( , )H C be 

fuzzy soft sets over U such that 

( , )( , ) ( , )F A q G B   and 
( , )( , ) ( , ).G B q H C   Then 

( , )( , ) ( , )F A q H C   . 

It follows from Lemmas 3.1 and 3.2 that 
“ ( , )  ”is an equivalence relation on the set of all 

fuzzy soft sets overU . 
Now, let us define some operations of fuzzy 

subsets of R . 
 

Definition 3.5. Let , ( )F R    and   . We 

define fuzzy subsets ,    and @   by 
 

( ) ( )x x    , 

( )( ) sup min{ ( ), ( )}
x y z

x y z   
 

   

 
and 
 

sup min{ ( ), ( )}, , ,
( @ )( )

0,

x y z
y z if y z R x y z

x
otherwise


  

  
   



 

 
respectively, for all x R  and   . 

 

Definition 3.6. Let ( , )F A  and ( , )G B  be two fuzzy 

soft sets over R . The sum of ( , )F A  and ( , )G B , 

denoted by ( , ) ( , )F A G B , is defined to be the 

fuzzy soft set ( , ) ( , ) ( , )F A G B F G C    over 

R , where C A B   and 
 

[ ]( ) ,

( )[ ]( ) [ ]( ) ,

( [ ] [ ])( ) ,

F x if A B

F G x G x if B A

F G x if A B

 

  

  

  
   
   

 

 
for all C  ∈ C and x R . 

 

Definition 3.7. Let ( , )F A  and ( , )G B  be two fuzzy 

soft sets over R . The  -product of ( , )F A  

and ( , )G B , denoted by ( , )@( , )F A G B , is defined 

to be the fuzzy soft set ( , )@( , ) ( @ , )F A G B F G C  

over R , where C A B   and 
 

[ ]( ) ,

( @ )[ ]( ) [ ]( ) ,

( [ ]@ [ ])( ) ,

F x if A B

F G x G x if B A

F G x if A B

 

  

  

  
  
  

 

 
for all C  ∈ C and x R . 

4. ( , )q     -fuzzy soft -hyperideals 

In this section, we concentrate our study on 
the ( , )q     -fuzzy soft  -hyperideals of  -

hyperrings.  
 

Definition 4.1. A fuzzy soft set ( , )F A over R  is 

called an ( , )q     -fuzzysoft left (resp., right) 

 -hyperideal of R if for all A  , , ( ,1]r s   and 

,x y R : 



 
 
 
129                              IJST (2012) A2: 125-135 

(F1a) [ ]rx F   and [ ]sy F   imply 

min{ , } [ ]r sz q F    for all z x y  ; 

(F2a) [ ]rx F   implies ( ) [ ]rx q F     ; 

(F3a) [ ]rx F   implies ( ) [ ]ry x q F     

(resp., ( ) [ ]rx y q F    ); 

(F4a) [ ]rx F   implies [ ]rz q F     for all 

z y x y    . 

A fuzzy soft set ( , )F A  of R  is called an 

( , )q     )-fuzzy soft -hyperideal of R  if it is 

both an ( , )q     -fuzzy soft left and 

an ( , )q     -fuzzy soft right Γ-hyperideal of R . 

 
Example 3. Let {0,1, 2}R     be two canonical 

hypergroups with hyperoperation   as follows: 
 

0 1 2

0 0 1 2

1 1 1

2 2 2

R

R



 
 
Define a mapping R R R  a b a b     by a 

for all ,a b R  and   , where “·” is the 

following multiplication. 
 

0 1 2

0 0 0 0

1 0 1 2

2 0 1 2



 
 

So it can be easily verified that ( , , )R    is a  -

hyperring. 
Let 1 2{ , }E e e  be a set of parameters. Define a 

fuzzy soft set ( , )F E  over R by 
 

1

0.6 0.7 0.3
( )

0 1 2
F e     

 
and  
 

2

0.5 0.5 0.3
( )

0 1 2
F e     

 
Then ( , )F E  is an 0.3 0.3 0.6( , )q   -fuzzy soft  -

hyperideal of R . 
 

Lemma 4.2. Let ( , )F A be a fuzzy soft set over R . 

Then (F1a) holds if and only if one of the following 
conditions hold: for all A  and ,x y R , 

(F1b) 

   max inf [ ]( ), min [ ]( ), [ ]( ),
z x y

F z F x F y    
 

 ; 

(F1c) ( , )( , ) ( , ) ( , )F A F A q F A    . 

 

Proof: (F1a)  (F1b) Let A   and ,x y R . 

Suppose if possible that z H be such that 
z x y  and max{ [ ]( ), } min{ [ ]( ), [ ]( ), }.F z r F x F y       

Then [ ]( )F x r  , [ ]( )F y r  , [ ]( )F z r   , 

hence, , [ ]r rx y F   and [ ],rz q F     a 

contradiction. Hence (F1b) is valid. 
(F1b)  (F1c) Let A  , ( ,1]r  and x R  be 

such that ( )[ ]rx F F   Suppose if possible, 

that [ ]rx q F    . Then [ ]rx F   

and [ ]rx q F  , i.e., [ ]( )F x r  and 

[ ]( ) 2F x r   which implies that [ ]( )F x  . 

If x y z   for some ,y z R , by (F1b), we have 
 

max{ [ ]( ), } min{ [ ]( ), [ ]( ), },F x F y F z      
 

it follows from [ ]( )F x  that 
 

max{ [ ]( ), } min{ [ ]( ), [ ]( )}F x F y F z    . 
 
Hence we have  
 

( )[ ]( ) sup min{ [ ]( ), [ ]( )}

sup max{ [ ]( ), } max{ [ ]( ), }

x a b

x a b

r F F x F a F b

F x F x

  

   
 

 

  

 
 

 
a contradiction. Hence (F1c) is satisfied. 
(Flc)   (F1a) Let A  , , ( ,1]r s  and ,x y R  

be such that , [ ]r sx y F  . Then for any 
z x y  ,we have, 
 

( )[ ]( ) sup min{ [ ]( ), [ ]( )}

min { [ ]( ), [ ]( ) } min{ , } .

x a b

x a b

F F z F a F b

F x F y r s

  

   
 

 

 

  
 

 
Hence 
 

min{ , } [ ]r sz qF 
 

 
and so  
 

min{ , } [ ],r sz qF   
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by (Flc). Hence (Fla) holds. 

For any fuzzy soft set ( , )F A  over R , denote by 
1

( , )F A


the fuzzy soft set defined 

by
1
[ ]( ) [ ]( )F x F x 


  for all A   

and x R . 
 

Lemma 4.3. Let ( , )F A be a fuzzy soft set over R . 

Then (F2a) holds if and only if one of the following 
conditions hold: for all A  and ,x y R , 

(F2b)    max [ ]( ), min [ ]( ), ;F x F x      

(F2c) 
1

( , )( , ) ( , ).F A q F A 


   

 
Proof: It is similar to the proof of Lemma 4.2. 
 

Lemma 4.4. Let ( , )F A  be the fuzzy soft set over 

R . Then (F3a) hold if and only if one of the 
following conditions hold: for all A   and 

,x y R , 

(F3b)    max max [ ]( ), min [ ]( ),F y x F x      

(resp.,    max [ ]( ), min [ ]( ),F y x F x     ); 

(F3c)     ( , ), @ , ( , )R A F A q F A     

(resp.,     ( , ), @ , ( , )RF A F A q A    ). 

Proof. It is similar to the proof of Lemma 4.2. 
 

Lemma 4.5. Let ( , )F A  be a fuzzy soft set over R . 

Then (F4a) holds if and only if one of the following 
conditions hold: for all A    and ,x y R , 

(F4b)
max{ inf [ ]( ), }

min{ [ ]( )}, [ ( ), ];

z y x y
F z

F x F y

 

  
  


 

(F4c) 1 1 ( , )( , ) ( , ) ( , ) ( , )x A F A x A q F A      

 
Proof: It is similar to the proof of Lemma 4.2. 
 

From the above discussion, we can immediately 
get the following two theorems: 
 
Theorem 4.6. A fuzzy soft set ( , )F A  over R is an 

( , )q    -fuzzy softΓ-hyperideal of R  if 

and only if it satisfies (F1b), (F2b), (F3b) and 
(F4b). 
 

Theorem 4.7. A fuzzy soft set ( , )F A over R  is an 

( , )q    -fuzzy softΓ-hyperideal of R  if 

and only if it satisfies (F1c), (F2c), (F3c) and (F4c). 
For any fuzzy soft set ( , )F A over R , A   and 

[0,1]  , we define  

( ) { | [ ]}r rF x R x F    , 

[ ] { | [ ]},r rF x R x q F
     

and [ [ ]] { | [ ]}.r rF x R x qF     

It is clear that  
 

[ [ ]] [ ] [ ] .r r rF F F    
 

 
The next theorem provides the relationships 
between ( , )q     -fuzzy softΓ-hyperideal of 

R and crisp Γ-hyperideals of R . 
 
Theorem 4.8. Let ( , )F A  be a fuzzy soft set over 

R . Then 

(1) ( , )F A is an ( , )q      -fuzzy soft Γ-

hyperideal of R .if and only if non-empty set 

[ ] .rF   is a Γ-hyperideal of R .for all A   and 

( , ).r    

(2) If 2 1   , then ( , )F A  is an ( , )q     -

fuzzy softΓ-hyperideal of R and only if non-empty 

set [ ]rF   is a Γ-hyperideals of R . for all A   

and ( ,1]r  . 

(3) If 2 1   , then ( , )F A  is an ( , )q     -

fuzzy softΓ-hyperideal of R and only if non-empty 

set [ ]rF  is a Γ-hyperideals of R . for all A   

and ( ,1]r  . 

 
Proof: We only show (3). The proofs of (1) and (2) 

are similar. Let ( , )F A  be an  ( , )q     -fuzzy 

soft Γ-hyperideal of R . and , [ ]rx y F   for 

some A  and ( ,1]r   

Then [ ]rx q F    and [ ]ry q F   , 

i.e， , [ ]( )F x r   

or [ ]( ) 2 2 1F x r        , 

and [ ]( )F y r  or [ ]( ) 2 1F y     . 

Since ( , )F A  is an ( , )q     -fuzzy softΓ-

hyperideal of R and  min{ [ ]( )}, [ ( ), ]F x F y r    , 
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we have [ ]( ) min{ [ ]( )}, [ ( ), ]F Z F x F y    for all 

z x y  . We consider the following cases: 

Case 1: ( , )r   . Since ( , )r   , we have 

2 r   . 

Case 1a: [ ]( )F x r   or [ ]( )F y r  . 

Then

[ ]( ) min{ [ ]( ), [ ]( ), }F z F x F y r      

Hence 
 

rz  [ ]F  . 
 

Case 1b: [ ]( ) 2F x r    and [ ]( ) 2F y r    

then  
 

[ ]( ) min{ [ ]( ), [ ]( ), }F z F x F y       
 

and so 
 

( ) 2 .f z r r       
 

Hence 

[ ]rz q F 
. 

Case 2. ( ,1]r  . Since ( ,1],r  we have 

2 r r    . 

Case 2a: [ ]( )F x r   and [ ]( )F y r  . 

Then

[ ]( ) min{ [ ]( ), [ ]( ), }F z F x F y      , 

and so ( ) 2f z r r      . 

Hence [ ]rz q F  . 

Case 2b: [ ]( ) 2F x r    or [ ]( ) 2F y r   . 

Then 

[ ]( ) min{ [ ]( ), [ ]( ), } 2F z F x F y r      
Hence [ ]rz q F  . Thus in any case, [ ]rz q F    , 

i.e., [ ]]rz F   for all z x y  . Similarly we 

can show that the other conditions hold. 

Therefore, [ ]]rF  is aΓ-hyperideal of R . 

Conversely, assume that the given condition 
holds. Let A   and ,x y R . If there exists 

z R such that z x y   and 

max{ [ ]( ), } min{ [ ]( ), [ ]( ), },F z r F x F y     

then [ ]( )F x r  , [ ]( )F y r  , [ ]( )F z r   , 

i.e., , [ ]r rx y F   but [ ]rz q F    . Hence 

, [ ]]rx y F   but [ ]]rz F  , a contradiction. 

Therefore, max{ [ ]( ), } min{ [ ]( ), [ ]( ), }F z F x F y      

for all z x y  . This proves (F1b) holds. 

Similarly we can show that (F2b), (F3b) 

and (F4b) hold. Therefore ( , )F A  is an 

( , )q     -fuzzy soft Γ-hyperideal of R by 

Theorem 4.7. 
  

Remark 4.9. For any ( , )q    -fuzzy soft 

Γ-hyperideal of R , we can conclude that 

(1) [ ]F   is an ( , )q    -fuzzy soft Γ-

hyperideal of R ， for all A  . When 0   and 

1   (see[51]); 

(2) ( , )F A  is an ( , )q  -fuzzy soft Γ-hyperideal 

of R .When 0  , 0.5  . 

 

Theorem 4.10. Let ( , )F A  and ( , )G B  be 

two ( , )q     -fuzzy soft Γ-hyperideals of R . 

Then ( , ) ( , )F A G B is an ( , )q     -fuzzy 

soft Γ-hyperideal of R  if and only if 

( , )( , ) ( , ) ( , ) ( , ).F A G B G B F A   
 

 
Proof: If 

( , )( , ) ( , ) ( , ) ( , ).F A G B G B F A     

then (( , ) ( , )) (( , ) ( , ))F A G B F A G B    

= ( , )F A  (( , ) ( , )) ( , )G B F A G B   

= ( , )  ( , )F A  (( , ) ( , )F A G B ) ( , )G B  

= (( , ) ( , ))F A F A (( , )G B ( , ))G B  

( , ) ( , ) ( , ).q G B F A   
 

Hence (( , ) ( , )) (( , ) ( , ))F A G B F A G B    

 ( , )q   ( , )) ( , )F A G B . 
This proves that (F1c) holds. 

Now for any A B    and x R , 

Case 1. A B   .Then 

max{( )[ ]( ), } max{ [ ]( ), }F G x F x        
min{ [ ]( ), } min{( )[ ]( ), }F x F G x       

Case 2. B A   . Analogous to case 1, we have 

max{( )[ ]( ), }F G x    

min{( )[ ]( ), }F G x    

Case 3. B A   . 

max{( )[ ]( ), }F G x    

max{ sup min [ ]( ), )[ ]( ), }
x a b

F a G b  
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( ) ( )
sup min{min{ [ ]( ), },

min{ [ ]( ), }}

x a b
F a

G b

 

 
   


 

( ) ( )
min{ sup min{ [ ]( ), [ ]( )}, }

x a b
F a G b  

   
  

min{( )[ ], }.F G     

Thus, in any case, 

max{ [ ]( ), }F x 

min{( )[ ]( ), }F G x   . 
This proves that (F2b) holds. Similarly, we can 
prove that (F3b) and (F4b) hold.Therefore, 

( , ) ( , )F A G B is an ( , )q    -fuzzy  

soft Γ-hyperideal of  R . Then for any B A     

Case 1. A B   .Then  

( )[ ] [ ] ( )[ ]F G F G F      . 
Case 2: B A   .Then  

( )[ ] [ ] ( )[ ]F G G G F      . 

Case 3. A B   . Then for any x R . 

    
    

max ,

max min , ,

F G x

F G

 

  



 
 

     min max , ,F G x      

  
  

,
min max sup min , ,

x a b

F a

G b


 

  

              
       

 

   
   

max , ,
min sup min ,

max ,x b a

F a

G b

 


  

         
     

 

   
   

min , ,
min sup min ,

min ,x b a

F a

G b

 


  

         
     

 

       min sup min , ,
x b a

F a G b  
 

    

     ,min xFG   
It follows that  

    
     

max min , ,

max min , , .

F G x

G F x

  

  



 
 

In a similar way, we have  

     
     

max min , ,

max min , , .

G F x

F G x

  

  



 
 

Thus, in any case, we have  

         
,

, , , ,F A G B G B F A
 

   , as required. 

The following proposition is obvious. 
 

Proposition 4.11. Let ( , )F A be an  , q     -

fuzzy soft  -hyperideal of ,R then 

         1 1,
, , , ,F A x A x A F A

 
   for all .x R  

Let  be an equivalence relation on a -

hyperring R , then we say that A B if it satisfies 

the following conditions: 
(1) , ,x A y B     such that x y ; 

(2) , ,b B a A    such that a b . 

 
Definition 4.12. An equivalence relation on R is 
said to be a congruence relation on R if for any 

, ,x y z R and   ,    

, ,x y x z y z z x z y z x z y         
and .x z y z    

 

Theorem 4.13. Let ( , )F A be an  , q      -

fuzzy soft  -hyperideal of R , A  and 

   ,min 0 ,r F      . Define a relation 

 r
F  

on R by 

      1min , ,
r

xF y x F y r     
  

for all , .x y R  Then  r
F  

 is a congruence 

relation on R .  
 

Proof: Let ( , )F A be an  , q  -fuzzy soft  -

hyperideal of ,R  A  and    ,min 0 ,r F     
. 

Then we have  

(1)  r
F  

is reflexive on R . In fact, for any x R , 

we have 
 

    
  

   

1min ,

min sup ,

min 0 , .

x x a

x F y

F

F r

 

 

 
 





 

 

 

Hence  r
xF  

, and so  r
F  

is reflexive. 

(2)  r
F  

is symmetric on R by Proposition 4.11. 

(3)  ,F A is transitive on R . In fact, let 

, ,x y z R be such that  r
xF y 

 and  r
xF z 

.  

Then     1min ,x F y r    

and     1min ,x F y r   . 
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From        ,, , , ,rF A F A q F A    we have 

           1 1,, , , , ,rx A F A F A q x A F A     , 

and so 

    
    

   
   

        

1

1

1

1

1 1

min ,

min ,

,
min sup min ,

min , , .

a R

x F y

x F F y

x F a

x F z

x F y y F z r

 

 






  





  

         
     

   

 

It follows that     1min ,x F z r   since 

r , i.e.,  r
xF z 

. Hence  r
F  

is transitive. 

Summing the above arguments,  r
F  

is an 

equivalence relation on R . Next let , , ,x y z a R be 

such that  r
xF y 

and .a x z   Then 

    1min , .y F x r     

From Proposition 4.11, we have 

     
    
    

   
   

1

1

1

1 1

min ,

min ,

min ,

,
min sup min ,

b r

y z F y

y z F a

y z F a

y F b

b z a

 

 

 






 

  

  

         
     

 

        
    

1 1

1

min , ,

min , .

y F x x z a

y F x r

  

 

  

  
 

Hence there exists c R  such that 

c y z   and     1min , ,c F y r   i.e., 

 r
aF c 

. Similarly, if d y z   for some d R , 

then there exists e R such that d x z   

and  r
dF e 

, Hence  r
x zF y z   . In a 

similar way, we have   .
r

z xF z y    Finally, let 

, ,x y z R and   be such that   .
r

xF y 
Then 

   1min , .y F x r   

From Proposition 4.11, we have 

    
   

    

1min ,

min sup min ,

min sup min ,

y x a

b R

x F a

F a

F b r

 

 

 

 





   
 

 

 

and so , 

     
   

   
    

1
min ,

min sup min ,

min ,

min min ,

z y z x a

z x F z y

F a

F z b

F b r

 

   

 

  

 

 



   
 



 

 

that is,  * .
r

z zF z y    In a similar way, we have 

 * .
r

x zF y z    Therefore,  r
F  

 is a congruence 

relation on R . This completes the proof. 
 

Let    r
F x 

be the equivalence class 

containing the element x . We denote by  /
r

R F  
 

the set of all equivalence classes, i.e., 

      *
/ .

r r
R F F x x R     Since  r

F  
is a 

congruence relation on R , we can easily deduce the 
following theorem. 
 

Theorem 4.14. Let ( , )F A be an  , q     -fuzzy 

soft  -hyperideal of R , A  and 

   ,min 0 , .r F      Then   *
/ , ,

r
R F     

is a  -hyperideal with respect to the 
hyperoperation   and the operation @: 

            * * *

r r r
F x F y F z z x y       

and            * * *
@ ,

r r r
F x F y F x y    for all 

,x y R and   . 

5. Conclusion 

In this paper,we consider the  , q     -fuzzy 

soft  -hyperideal of  -hyperideal. In particular, 

we obtain a kind of new -hyperideal by 
congruence relations. In our future study of fuzzy 

structure of -hyperideal, the following topics 
could be considered:  

1. To consider the (m,n)-  -hyperideals;  
2. To establish three (fuzzy) isomorphism theorems 

of (m,n)-  -hyperideals; 

3. To describe the fuzzy soft (m,n)-  -hyperideals 
and their applications. 
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