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Abstract 

A method has been presented for finding the solution surface of the NPDE: cu  , bounded by a general 

space curve. The method is based on the geometric characteristics of the surface, and is called the “Cone-Slot 
Method”. It has been shown that such a surface can be obtained by movement of a cone inside the slot formed by 
the boundary space curve. An algorithm has been suggested on the basis of mathematics of these considerations. 
In previous methods the boundary curve had to be level. They obtain the surface as an assembly of its contour 
curves. In this method however, the solution surface is obtained as an assembly of its characteristics. The 
boundary curve can also be a general unlevel skew space curve. The method requires no mesh for calculation and 
allows the area of the integral surface and underneath volume to be readily determined. 
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1. Introduction 

Nonlinear PDEs appear in describing many 
physical phenomena of nature. Therefore, their 
solution is of interest to scientists. As in the case of 
linear ones, an attempt has been made to classify 
the nonlinear partial differential equations (NPDE) 
with regard to the order of partial derivatives they 
involve; but the degree of nonlinearity is also 
important in their case because it significantly 
affects the ease of finding their solution, which is 
usually made by linearization.  

The equation that is the subject of this paper is a 
nonlinear first order PDE which appears in many 
areas of science and technology. These include 
wave propagation, electromagnetic, and geometric 
optics. It can be derived from the Maxwell’s 
equations in electromagnetics [1], or equations of 
elastic waves under high frequency [2]. It is 
considered to link the physical (wave) optics and 
nonlinear geometrical (ray) optics [1]. From the 
classification point of view, it belongs to the 
Hamilton-Jacobi (H-J) generation.  

The H-J equations appear in many areas of 
science. An important area is the propagation of 
fronts and interfaces in time. This has many 
applications in computer graphics, seismology, etc 
[3-5]. The more general time-dependent H-J 
equation can be solved by the Level Set Method 
(LSM) developed by Osher and Seithan [6-11].  
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It is a rather difficult task to track the motion and 
changes of the fronts and interfaces with time by 
studying themselves. In LSM, the front at any time 
is treated as the zero level set (contour) of a moving 
integral surface [8, 10, 11]. The LSM removes the 
difficulty of in-time tracking the fronts and 
interfaces by embedding them in a higher 
dimension level set function. The state of the front 
at any time is then determined by considering the 
zero level set of this function. In this way, the 
relatively unpredictable change and movement of 
the front would readily be under control [8, 10, 11].  

The static H-J equations in which the velocity of 
propagation is only a function of location and not 
the time also appear in many areas of science. 
These include electromagnetic [1], wave 
propagation, seismology [4,5], non-linear optics 
[1], mesh generation [12], optimal control [13], 
geodesics and path planning [14], photolithography, 
and robotic navigation, etc. The wave propagation 
problem in this case is a single-pass one, meaning 
the front passes each point only once. If the 
medium is isotropic, the velocity of wave 
propagation does not depend on the direction and 
the NPDE in this case is called “eikonal”, taken 
from “eikon”, the Greek word for image or Figure. 
Two different single-pass methods have been 
developed for solution of this problem [15]. They 
both use the “one-pass” algorithm of Dijkstra for 
finding the shortest (optimal) path on a network 
[16]. Tsitsiklis’s method for solution of eikonal 
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equation can be interpreted as the isotropic min-
time optimal trajectory approach [13]. This 
approach always gives a stair-step type of trajectory 
and does not converge to a continuous one as the 
size of cells in the computation mesh are refined. A 
more efficient method for solution of “eikonal 
equation” is the Fast Marching Method (FMM) 
developed by Sethian [17, 18]. The method is based 
on finite-difference upwinding discretization of the 
“eikonal” equation. In this method, the initial state 
of the front is taken as the boundary value of the 
stationary formulated problem and the 
computations are made at the mesh points in the 
order and direction in which the value of field 
variable is increasing. This direction would be that 
of the gradient which coincides with characteristics 
for eikonal equation. The characteristics can also be 
regarded as the optimal trajectories in the control-
theoretic context. This property makes the Tsitsiklis 
and Sethian approaches efficient and fast because 
they only involve solving decoupled equations 
rather than coupled ones that require iteration. For 
the case of propagation in anisotropic medium in 
which the speed of propagation depends on the 
direction, the Ordered Upwind Method (OUM) has 
been developed by Sethian and Vladimirisky [15, 
19]. The method utilizes partial information about 
the characteristics in order to decouple the 
nonlinear system of equations and keep the 
Dijkstra-like one-pass methodology.   

This paper discusses the solution of eikonal 
equation under an isotropic constant speed. In 
contrast to the previously mentioned wave 
propagation formulations in which the initial curve 
(front) is a level set (contour) of the solution 
surface; the initial curve considered here is a 
general skew space curve. As discussed before, the 
previous methods attempt to find the solution 
surface by resorting to its level sets (contour 
curves). In fact, in some special cases like constant 
speed eikonal equation under a level curve 
boundary, the graphical construction of contour 
curves is readily possible. The graphical 
construction of contours (level sets) has been 
considered as a method for solution of some PDE’s 
[20, 21]. Examples of these types are the graphical 
construction of flow nets in potential problems and 
drawing contours of stress function in plastic 
torsion of bars [20-22]. A geometric-based 
numerical method has been presented for the case 
in which the perimeter curve is level [23]; but in 
many cases, the boundary curve is not level and 
therefore, these solution procedures do not apply. 
An example is the geometry of the rigid wedge 
formed beneath an inclinedly loaded area [24].  

It is, therefore, the aim of this paper to find the 
solution surface of eikonal equation when the 
boundary is a general three-dimensional space 

curve. This is done by resorting to the 
characteristics of this nonlinear PDE. The proposed 
method is based on the geometric properties of the 
integral surface, which is ruled. The method is 
especially suitable for cases in which the 
knowledge of the surface area of the integral 
surface and its underneath volume are of particular 
interest. 

2. Statement of the problem 

Our main purpose in this paper is to develop a 
methodology for constructing the integral surface of 
the nonlinear partial differential equation cu  , 

over a general space curve. If u is a function of two 
independent variables x and y, the gradient of u is 
shown by the vector ),( yx uuu  . The Euclidean 

norm of u  would then be 

cuuuuu yx  22 . Therefore, in a 

more clear mathematical form, we seek the solution 
of the nonlinear partial differential equation: 

 

2 2 2
x yu u c 

                                                  (1) 
 
subject to the condition: 
 

),( yxfu   on  ,                                                (2) 

 
where c is a constant, f in known function and  is a 
three dimensional space curve bounding the integral 
surface. 

As mentioned before, this differential equation is 
the stationary form of Hamilton-Jacobi equations 
usually referred to as “eikonal” equation. Previous 
works on the subject have all been limited to the 
cases in which the boundary curve is level 
(contour). It has been for this reason that 
approaches like the level set method and fast 
marching method have come to the scene for 
solution of the problem. These methods are based 
on wave propagation approach to the problem, 
which treats the boundary level curve as the initial 
or boundary value of the problem. In contrast to 
these methods, our interest here is to find the 
solution surface for the case in which the boundary 
curve is not necessarily level. We do consider 
Dirichlet type boundary condition, but over an 
unlevel general space curve. 

3. Solution by generalized method of 
characteristics 

As for the other PDEs which have characteristics, 
the generalized method of characteristics can be 
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applied for solution of such a problem. The 
information at the boundary perimeter curve  
provides the data for Cauchy problem. If the partial 
differential equation is expressed in its implicit 
form as 0),,( ii puxF , the Charpit-Lagrange 

equations for characteristics in its generalized form 
can be written as: 
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In our case, Eq. 1 can be written as: 
 

0),,( 222  cqppuxF ii                             (4) 
 
where xup  and yuq  , and we have 0

ixF , 

0uF ; and pFp 2  and qFq 2 . With more 

simplification, Eq. (3) takes the form: 
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where t is the running variable along the 
characteristic curve. 
The first of these equations gives the direction of 
characteristics as: 
 

p

q

dx

dy
 .                                                               (6) 

 
The last two equations indicate p and q are 

constant along the characteristics, so that it is 
enough to define them at the initial strip. 
Furthermore; this indicates the characteristics are 
straight lines so that the characteristic strips are also 
straight. With this information, Cauchy problem is 
solved by integration of qdypdxdu  , which is 

obtained from the first two equations of (5). The 
gradient vector that is normal to the solution surface 
is (p, q,-1). The first two components give the same 
direction in x-y plane as that of characteristics given 
by Eq. 6. This is the direction of steepest ascent i.e., 
the direction along which the grade is maximum on 
the surface. Therefore, for eikonal equation, the 
direction of gradient and characteristics in x-y-plane 
coincide. The straight characteristic lines in x-y 
plane may cross each other as they move away 
from the initial boundary curve. This has been 
considered as a major concern of this method and 
has caused an approach to methods that describe the 
solution surface by its level curves. It is correct that 
the level curves (contours) do not cross each other; 
but they cross the boundary curve if it is not a level 
one, which is our case. It is especially in this case 

that the front propagation approaches like LSM and 
FMM are not applicable. Crossing of characteristics 
can be natural to an integral surface and therefore 
should be treated logically rather than being 
avoided. In the next section we propose a geometric 
approach for obtaining the solution surface that 
removes this difficulty. Furthermore, sometimes we 
are interested in knowing the area of the solution 
surface and the volume underneath; and these 
quantities are not readily determined when the 
solution surface is defined by a series of its 
contours, whereas this is vice versa when the 
solution surface is defined as the assembly of its 
characteristics, as we shall see. 

4. Geometric characteristics of the integral 
surface 

Let us assume the problem has been solved and a 
typical solution surface has been constructed over 
the given space curve Γ. It is obvious that a solution 
surface can be defined by a series of its level sets 
(contour curves) as shown in Fig. 1. In fact, for 
some cases of partial differential equations, 
drawing the level sets of the integral function is 
considered as a graphical method of solution. 
Graphical construction of the flow net in potential 
problems for which the boundary of the problem is 
either a level contour or of Neumann type, may be 
mentioned as an example of this approach [20]. But 
this is difficult in our case in which the boundary 
curve is not level because the contours will cross 
the boundary curve. Instead, here, we try to 
construct the integral surface by resorting to its 
characteristics.  

As mentioned, characteristics for eikonal equation 
in this case are straight lines and their directions 
coincide with that of the gradient. If t is the running 
variable along this direction, the slope of the 
solution surface which is nothing but the directional 
derivative of u along t can be written as: 
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This can be considered as the scalar product of 

),( yx uu  which is also shown by ),( qp  and a unit 

vector 







dt

dy

dt

dx
,  that can also be shown as 

)sin,(cos  , where  is the angle between x and t 

directions. But this should be maximum because the 
direction of gradient is the direction of maximum 
ascent. For this, we should have the unit vector 
along the direction of gradient, i.e.: 
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Therefore, we get: 
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This, together with the original equation 

222 cqp  , reduces to the simple form: 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The solution surface over 3D-boundary space curve 
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                                                                (10) 

 
which indicates the solution surface of eikonal 
equation in which c is a constant is a surface whose 
maximum slope with the horizontal x-y plane at any 
point is constant and equal to c. If the slope angle is 
, we have: 
 

ctan                                                              (11) 
 

The integral surface in this case is therefore a 
developable ruled one made of the assembly of its 
straight characteristic lines, all making the same 
slope angle  with horizon. Such a surface is 
obtained by movement of this characteristic line in 
a way that it always lies on the boundary curve on 
one side. 

5. Geometric cone-slot method for construction 
of the integral surface 

For the purpose of constructing this surface, we 

consider a right circular cone with the base angle . 
If we bring the cone into contact with the boundary 
space curve at a point; the generator of the cone 
drawn from that point would be a characteristic line 
of the solution surface. As such cone moves while 
having contact with the boundary curve, the 
required surface is traced by the generator of the 
cone. If the boundary curve is a loop, the surface 
develops a ridge. This is where the characteristic 
lines coming from two points N1 and N2 of the 
boundary curve cross, indicating discontinuity in ux 
and uy. In order to get the complete solution surface 
and its ridge, we let the cone in contact with the 
boundary curve at N1 slide along its generator and 
penetrate further into the slot made by the boundary 
curve to the extent that it contacts the other side at 
N2 (see Fig. 2a). It is obvious that the generators 
SN1 and SN2 are two conjugate characteristics of 
the solution surface, and S is a point of its ridge 
(Fig. 2b). All we have to do in order to complete 
the solution surface and its ridge is to move the 
cone inside the slot made by the boundary curve in 
such a way that it is always in contact with this 

Contour curves 
(Level sets) 

x



y 

z The solution surface, 
 z=u (x,y) 

General space curve  

Characteristic 



 
 
 
119                               IJST (2012) A2: 115-124 

curve in at least two points (Fig. 2c). Figure 3 
shows the side and top views of some stages of 
movement of such a cone inside the slot of a typical 
closed skew space curve and development of the 
solution surface. 
 

 
 

Fig. 2. Geometric properties of the solution surface 
 

 
 

Fig. 3. Development of the solution surface by the 
“Cone-Slot Method” 

6. Mathematical basis of the cone-slot method 

In this way, the solution surface is obtained as an 
integral of its characteristics by the so called “cone-
slot method”. This physical interpretation of the 
construction of the solution surface that was based 
on its geometric properties can also be stated 
mathematically. It is possible to find p and q at any 
point of the boundary curve and, because in this 
case the characteristic curves of the solution surface 
are straight lines (generator of the cone), 
determination of p and q at the boundary curve 
would be enough for defining them, since these 
quantities do not change along the characteristics. 
The perimeter curve  in its general space form can 
be expressed by: 
 

),,(),,(),,( zyxn

dz

zyxm

dy

zyxl

dx
                        (12) 

 

where l, m, and n are direction parameters of a line 
segment along the perimeter curve at the point 
(x,y,z). Therefore, the vector (l, m, n) represents a 
tangent vector to the perimeter space curve , 
which itself is part of the solution surface. The 
denominators of the first three terms in Charpit-
Lagrange equations indicate the vector along the 
characteristics of the solution surface can be 
expressed by (p, q, c2). The gradient vector (p, q, -
1) is normal to the solution surface. It then must be 
parallel to (l, m, n)×(p, q,c2). This requirement 
yields to two simultaneous equations in two 
unknowns p and q as the following: 
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Solving for q in terms of l, m, n and c yields: 
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Which, when found, can be put in the first equation 
to give p as:  
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1
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These equations give the direction of 

characteristics for any point on the perimeter space 
curve. It has to be mentioned that only one of the 
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roots of Eq. 14 applies in a practical problem. 
In general, characteristic lines drawn from two 

different points of the boundary curve are skew 
with respect to each other (see Fig. 4). In order to 
construct the solution surface we need to have a 
means of finding the conjugate point N2 on the 
branch 2 of the boundary curve, for an assumed N1 
on the branch 1, so that the characteristic lines 
drawn from these two points cross each other. Once 
proper conjugate points N2s are found for some 
assumed N1s, the solution surface can be developed 
over the boundary curve. The conjugate of an 
assumed point N1, i.e., N2, is found when the 
distance between straight characteristic lines drawn 
from these two points is zero. The distance H1H2, 

between two skew characteristic lines can be found 

if the scalar triple product of 21NN  and the vectors 

along the characteristics are divided by the norm of 
the cross product of vectors along the 
characteristics. If q and p are evaluated from Eqs. 
14 and 15 for points N1 and N2, the vectors along 
the characteristics coming from these two points 
would be (p1, q1, c2) and (p2, q2, c2) respectively. 
We can write: 
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Fig. 4. Characteristic lines drawn from two points of the boundary space curve 
 

 
For characteristics to cross, it is sufficient to have 

the numerator of the right hand side of Eq. 16 equal 
to zero. A zero value for the scalar triple product of 

21NN  and vectors along the characteristics indicate 

they lie in a common plane. Therefore, in order to 
locate the correct position for N2, we can define the 
numerator as function F as: 
 

),,(),,( 2
22

2
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and study when it becomes zero. Being equal to the 
volume of the parallel pipe formed on vectors 

21NN , (p1, q1, c2) and (p2, q2, c2); this function 

approaches zero and changes in sign as the trial N2 
approaches the correct position and passes by it.   

7. Algorithm for numerical solution 

In order to find the solution surface of the NPDE 
for the Cauchy problem defined on the three-
dimensional space curve , we first consider a 

number of N1 points on . For each of them we try 
to locate its correct conjugate N2. For this we try a 
trial point for N2 and evaluate the function F from 
Eq. 17. If this trial point is the correct N2 i.e., the 
conjugate of the assumed N1, the value of F would 
be zero. The value of F would be either negative or 
positive when the trial N2 is not the correct one. As 
we move our trial point toward the correct location 
along , the absolute value of F decreases. The 
value of F approaches zero and changes its sign and 
increases in absolute value as the trial N2 passes the 
correct location. We then dictate the trial point to 
move back and proceed in the same way until we 
get a value of F that is less than an acceptable error. 
In this way an answer is found for the triple (N1, S, 
N2). We repeat the same procedure for the next N1 
and get another triple. Proceeding in the same way 
will result in the solution surface, which can be 
constructed by connecting N1 to S, and S to N2 for 
each of the (N1, S, N2)-triples found. A simple 
computer code has been written for this purpose. 
The flowchart of the program has been shown in 
Fig. 5. 
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Fig. 5. Flow chart of the algorithm for finding the solution surface 
 

8. Examples 

The described geometric “cone-slot method” is 
practically applicable and does not need 
verification. Nevertheless, we have provided two 
examples here to show the functionality of the 
suggested algorithm.  

Example 1. 

For this example we have assumed: 

3330tantan  c . The 3D space curve 

assumed is a closed skew one, described by the 
following parametric equations: 
 

Define the perimeter curve  , and the value of 
c, i.e., the slope of the solution surface 

  

Consider a number of N1 points on the perimeter curve and start with the first 

Evaluate the values of q1 and p1 for this N1 point 
from Eqs. 14 and 15. 

Calculate F from Eq. 17. 

Start 

Try a trial N2 as the conjugate of this N1 

Is the absolute value of F 
less than the acceptable error? 

No

Yes
Record this trial N2 as the correct conjugate of N1. 

Is this the last N1? 
No 

Yes

Start the next 
N1 point 

Connect N2 to S and S to N1 for all triples 
found and develop the surface. 

End 

Find q2 and p2 for this trial N2 from Eqs. 14 and 15. 

Choose a better 
position for N2 
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30coscos)cos23( ttx   

 

30cossin)cos23( tty                                    (18) 

 
30sin)cos23(7 tz    

Fig. 6 shows this space curve. The numerical 
solution surface obtained based on the suggested 
algorithm is shown in Fig. 7. This Figure indicates 
that the obtained integral surface is part of a cone, 
i.e., the characteristics drawn from different points 
of the curve all cross each other at a common point 
which is nothing but the vertex of the cone. This is 
not surprising because we have intentionally chosen 
the space curve on a cone of equation: 
 

30cot)7( 2222 zyx                                    (19) 

 
in order to see whether we get such a result or not. 
In this example, for any point N1 taken on the 
curve, all other points of the curve are the answer as 
N2 because characteristics drawn from them all 
cross the one drawn from N1. Figure 8 shows the 
values of F calculated when different points of the 
curve are taken as N2. As shown, the maximum 
absolute value of F calculated is less than 10-12, 
which is acceptable. This indicates high accuracy of 
the suggested procedure. 
 

 
 

Fig. 6. Space curve for Example 1 
 

 
 

Fig. 7. The integral surface for Example 1 

  
Fig. 8. The value of F for different locations of N2  in Example 1 

Example 2. 

The value of the constant c in Eq. 1 for this 
example has been taken equal to 0.8391. This is 
equivalent to =40o. The curve, bounding the 
solution surface in this case is a circle of unit radius 
and we want to get the surface for cases in which 
the plane of circle makes different angles with the 
horizontal x-y plane. Obviously when the plane of 
circle is horizontal, the answer is the surface of a 
right circular cone of base angle 40o. The computer 
code gives the same answer (see Fig. 9a). The 
surface in this case has a tip which is the vertex of 
the cone. As the plane of the circle is inclined, a 
ridge is developed from the vertex of the cone. 
Figures 9-b, c, and d show the solution surface 
when the plane of circle is inclined at 15, 20 and 25 
degrees with respect to the horizon. As shown, the 
ridge extends more to the sides and approaches the 
top side of the circle as the grade of the plane of 
circle is increased. When the slope angle i becomes 
equal to , the surface would be the same as the 
circle itself. One of the advantages of the described 
method is the ease of calculation of the area of the 
solution surface and the volume underneath, 
numerically. These quantities are important and 
have applications in many problems. The surface 
area is the area swept by the generator of the cone 
in contact with the boundary curve. The volume 
underneath is developed by the movement of the 
triangular area between this generator and axis of 
the cone that lies above the base circle. Both 
surface area and volume quantities are calculated 
numerically on the basis of the theorems of Pappus 
and Guldinus. When the slope of the plane of circle 
is zero, the area of the surface and the underneath 
volume would be the surface area of the cone and 
its volume that are: 
 

101.4
40coscos
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and: 
 

8787.040tan
3

tan
3

1
.2   rrV            (21) 

 

 
 

Fig. 9. The integral surfaces for Example 2 
 

When the inclination of the plane of the circle i is 
the same as , i.e., 40o, the area of the surface 
should be equal to the area of the circle and the 
volume should become zero. The values of the 
surface area and volume have been numerically 
calculated for different inclination angles. These 
quantities have been plotted vs. the inclination 
angle in Fig. 10. As shown, starting from that of a 
cone, the area of the surface approaches that of a 
circle as the slope angle is increased. The volume 
underneath approaches zero from that of a cone.  
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Fig. 10. The area of the surface and the volume 
underneath for Example 2 
 

Obviously the solution surface would be 
determined more precisely as the number of 
divisions and points considered on the boundary 
curve is increased. The surface area and volume 
underneath would then be determined more 
precisely. The convergence in the numerical 
solution and answer of the problem with the 
increase in number of divisions on boundary curve 
has been investigated for the case of i=25o. Fig. 11 
shows variation of the surface area and volume with 

the number of divisions considered on . The 
Figure indicates relatively rapid convergence in the 
solution so that not much improvement is obtained 
when the number of divisions considered exceeds 
30. 
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Fig. 11. Convergence of solution in Example 2 

9. Conclusion 

In this paper, the solution surface of the NPDE 
cu  , under Dirichlet boundary conditions over 

a 3D space curve as a Cauchy problem was 
investigated. The geometric properties indicated 
that the solution surface is a developable ruled 
surface that can be constructed by moving a cone of 

base angle c1tan  inside the slot formed by the 
space curve. The algorithm suggested on the basis 
of this cone-slot method is functional. It obtains the 
solution surface as the integral of its characteristics 
and does not require any mesh for calculations. It 
was concluded that the method works well, 
especially where the boundary curve is not level, 
and where the interest is on knowing the area of the 
solution surface and the volume underneath.  
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