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Abstract 

Superconducting materials are capable of trapping extremely high magnetic fields. This property and Meissner 
effect of superconductors causes a levitation force between bulk superconductors and a permanent magnet (PM). 
This levitation force has possible industrial applications such as Permanent Magnet Guideways (PMG). Because 
of the high price of permanent magnets, the optimization of PMG design is necessary and beneficial. A heuristic 
optimization method has been proposed for the optimum arrangement and dimensions of permanent magnets in 
different structures of PMGs, which guarantee the satisfactory levitation performance. Therefore, finite element 
simulation, based on the estimation of penetration depth and self-inductance of the superconductor disk, has been 
utilized. The variation of the PMG features, such as its dimensions and cost versus the system parameters, such as 
the levitation height and the superconductor disk characteristics have been presented as the optimization results. 
Based on the optimization process outputs, PMG prototypes have been fabricated and tested successfully. 
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1. Introduction 

The purpose of the magnetic levitation is 
suspension with no mechanical supports. Using 
only ferromagnetic or paramagnetic materials it is 
impossible to provide a stable levitation against the 
gravity. Therefore, the possibility to achieve 
passive stable levitation between superconductors 
and permanent magnets can have many potentially 
applications (Brandt, 1988; Weinberger et al., 1991; 
Matsunaga et al., 2002; Minami et al., 1995; 
Kovalev et al., 2002; Oka et al., 2000; Yoo et al., 
1998; Wang et al., 1999; Moon, 1994; Hull, 2000; 
Brandt, 1989; Ma et al., 2003). The high 
temperature superconductors (HTS) levitation has 
been widely used in the fields of the bearing 
(Nagaya et al., 2001; Oswald et al., 2002), energy 
storage (Deng, 2008) and the magnetic levitation 
transportation systems (Wang et al., 2002; Schultz 
et al., 2005; Wang et al., 2009; Zhang et al., 1998), 
and are particularly fit for the missile or launcher 
systems (Stumberger et al., 2004; Yang et al., 2006; 
Putman et al., 2005). The levitation and guidance is 
a result of the interaction between the permanent 
magnet guideway (PMG) and the onboard 
superconductor disk (SD), so PMG plays a key role 
in HTS Maglev systems and optimizing PMG is a 
direct and effective approach to improve the levitation 
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performance of the vehicle. For any levitating 
system, and in particular the Maglev systems 
consisting of bulk superconductors and permanent-
magnet guideways, the key aspect for a correct 
operation is the levitation force, which determines 
levitation height of the superconductor and is 
dependent on the parameters of both 
superconductor bulk and permanent-magnet 
guideway. The most important parameters of 
superconducting bulk are the dimensions, critical 
current density, cooling process of superconductor 
(Ren et al., 2003; Yang et al., 2007; Ma et al., 2008; 
Del-Valle et al., 2007; Kuehn et al., 2007; Cha et 
al., 1991; Wang et al., 2007; Del-Valle et al., 2008) 
and on the other hand, the number, size, lateral 
separation and magnetic parameters of the magnets 
are the most significant parameters of the 
permanent-magnet guideway (Del-Valle et al., 
2007; Zheng et al., 2006; Cha et al., 1991; Wang et 
al., 2007; Andrade et al., 2003; Del-Valle et al., 
2007). So far, much attention has been paid to the 
modeling of the levitated superconductor, which is 
advancing from 2D to 3D models (Rubinacci et al., 
2004; Grilli et al., 2005). Numerical analysis on the 
influence of the applied field on the levitation and 
guidance force, and the guidance performance 
dependence on size parameters of superconductor 
and guideway (Song et al., 2007), are under 
extensive investigation. However, there is not a 
complete theoretical study that analyzes how the 
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Table 1. The optimization result for the PMG dimensions in structure I, rd is varied, Jc=10×106 A/m2, h0=10 mm, hd=2 mm 
 

rd (mm) 4 6 8 10 12 14 16 18 
w (mm) 27.8 35.0 46.8 62.5 81.0 106.6 126.5 148.0 
l (mm) 20.2 25.5 29.3 34.1 39.0 44.2 49.0 53.1 
h (mm) 3.8 4.6 5.3 6.2 7.2 8.0 8.7 9.3 
d (mm) 4.2 4.7 5.3 5.9 6.4 7.0 7.5 8.1 
magnets volume per 
PMG length (mm3/m) 

87455 135944 210046 330345 500987 736207 954460 1194229 

PMG width (mm) 27.8 35.0 46.8 62.5 81.0 106.6 126.5 148.0 
 

Table 2. The optimization result for the PMG dimensions in structure I, Jc is varied, rd=8 mm, h0=10 mm, hd=2 mm 
 
Jc×106 (A/m2) 10 25 40 55 70 85 100 115 
w (mm) 46.8 45.0 43.2 41.0 37.9 34.2 32.0 30.1 
l (mm) 29.3 26.4 25.0 22.4 21.8 20.1 18.7 18.3 
h (mm) 5.3 5.4 4.6 4.3 4.1 3.5 3.4 3.3 
d (mm) 5.3 5.1 4.8 4.7 4.5 4.3 4.1 3.6 
magnets volume per 
PMG length (mm3/m) 

210046 203657 166711 145723 128802 98607 89237 83000 

PMG width (mm) 46.8 45.0 43.2 41.0 37.9 34.2 32.0 30.1 
 

Table 3. The optimization result for the PMG dimensions in structure I, h0 is varied, rd=8 mm, Jc=10×106 A/m2, hd=2 mm 
 

h0 (mm) 4 6 8 10 12 14 16 18 20 
w (mm) 39.2 42.5 45.6 46.8 55.0 61.5 70.0 76.3 92.1 
l (mm) 26.2 27.2 28.0 29.3 30.1 31.9 34.6 39.4 44.7 
h (mm) 4.3 4.5 5.1 5.3 5.9 6.4 6.9 7.5 8.3 
d (mm) 4.4 4.7 5.0 5.3 5.6 6.2 6.5 6.9 7.4 
magnets volume per 
PMG length (mm3/m) 

144324 163072 197324 210046 273599 329549 406613 486970 655854 

PMG width (mm) 39.2 42.5 45.6 46.8 55.0 61.5 70.0 76.3 92.1 
 

Table 4. The optimization result for the PMG dimensions in structure I, hd is varied, rd=8 mm, Jc=10×106 A/m2, h0=10 mm 
 

hd (mm) 1 2 3 4 5 6 7 8 9 
w (mm) 44.5 46.8 52.1 54.6 58.4 62.9 68.7 75.2 80.6 
l (mm) 26.8 29.3 32.1 35.2 39.9 42.2 47.1 50.4 54.6 
h (mm) 4.2 5.3 6.5 7.9 9.3 10.5 11.9 14.2 15.5 
d (mm) 4.9 5.3 5.5 5.8 6.0 6.3 6.7 7.0 7.3 
magnets volume per 
PMG length (mm3/m) 

158010 210046 289114 370322 472124 574660 715719 937615 1101968 

PMG width (mm) 44.5 46.8 52.1 54.6 58.4 62.9 68.7 75.2 80.6 
 
Table 5. The optimization result for the PMG dimensions in structure II, rd is varied, Jc=10×106 A/m2, h0=10 mm, hd=2 mm 

 
rd (mm) 4 6 8 10 12 14 16 18 
ws (mm) 6.0 7.1 9.3 12.1 15.6 19.4 22.2 24 
wc (mm) 8.1 8.8 11.8 16.3 20.2 27 31.2 36 
ls (mm) 14.9 16.0 19.3 22.6 26.3 31.6 35.3 38.4 
lc (mm) 16.0 20.1 24.3 28.9 33.7 38.3 42.6 47.8 
hs (mm) 2.5 3 3.6 4.5 5 5.8 6.6 7.2 
hc (mm) 3.0 3.5 4.2 4.9 5.5 6.4 7.4 8.4 
do (mm) 2.2 5.4 6.1 7.0 7.5 7.6 8.1 10.3 
di (mm) 2.2 2.8 3.4 3.9 4.5 5.1 5.3 5.7 
dm (mm) 10.5 8.2 10.1 11.8 14.1 15.8 18.4 19.5 
magnets volume per 
PMG length (mm3/m) 

48877 60780 98291 161128 235643 350242 464972 569318 

PMG width (mm) 24.5 28.6 37.2 48.3 60.4 76.0 86.2 95.5 
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Table 6. The optimization result for the PMG dimensions in structure II, Jc is varied, rd=8 mm, h0=10 mm, hd=2 mm 
 
Jc×106 (A/m2) 10 25 40 55 70 85 100 115 
ws (mm) 9.3 9.1 8.8 8.5 8.1 7.5 6.8 6 
wc (mm) 11.8 11.5 11.0 10.4 9.8 9.0 8 7.1 
ls (mm) 19.3 18.6 17.8 16.8 15.8 14.6 13.5 12.2 
lc (mm) 24.3 22.0 20.2 18.6 16.9 15.6 14.1 13.5 
hs (mm) 3.6 3.3 2.8 2.3 1.8 1.7 1.5 1.3 
hc (mm) 4.2 3.5 2.9 2.3 1.7 1.8 1.9 1.7 
do (mm) 6.1 4.2 4.0 4.1 3.6 3.3 3.0 2.9 
di (mm) 3.4 3.5 3.2 3.0 2.9 2.7 2.5 2.4 
dm (mm) 10.1 10.3 9.4 8.6 8.0 7.5 6.9 6.5 
magnets volume per 
PMG length (mm3/m) 

98291 87833 69798 52718 38263 34916 29679 23397 

PMG width (mm) 37.2 36.7 35.0 33.4 31.8 29.4 26.6 23.9 
 

Table 7. The optimization result for the PMG dimensions in structure II, h0 is varied, rd=8 mm, Jc=10×106 A/m2, hd= 2 mm 
 
h0 (mm) 4 6 8 10 12 14 16 18 20 
ws (mm) 8.4 8.7 8.9 9.3 9.8 10.5 11.5 13.0 14.8 
wc (mm) 10.5 10.8 11.3 11.8 12.5 13.4 14.7 16.7 19.4 
ls (mm) 18.3 18.5 18.8 19.3 20.4 21.7 23.3 25.9 29.5 
lc (mm) 21.7 22.3 23.2 24.3 25.8 27.7 30.1 32.9 36.3 
hs (mm) 3.1 3.2 3.4 3.6 3.8 4.1 4.5 4.9 5.4 
hc (mm) 3.0 3.3 3.8 4.2 4.7 5.1 5.7 6.2 6.9 
do (mm) 3.5 4.0 5 6.1 5.7 6 7.4 7.1 6.8 
di (mm) 2.7 2.9 3.1 3.4 3.7 3.9 4.2 4.6 4.8 
dm (mm) 8.7 9.2 9.5 10.1 10.3 10.8 12.2 13.6 15.2 
magnets volume per 
PMG length (mm3/m) 

75073 81107 89664 98291 116287 135790 160703 203215 263758 

PMG width (mm) 32.7 34.0 35.3 37.2 39.5 41.8 48.1 51.9 59.4 
 
Table 8. The optimization result for the PMG dimensions in structure II, hd is varied, rd=8 mm, Jc=10×106 A/m2, h0=10 mm 

 
hd (mm) 1 2 3 4 5 6 7 8 9 
ws (mm) 8.7 9.3 9.9 10.4 11.1 11.9 12.9 14.1 15.2 
wc (mm) 11.2 11.8 12.2 12.7 13.2 13.9 14.9 16.0 17.3 
ls (mm) 18.1 19.3 20.0 21.1 22.3 23.5 24.8 26.2 27.5 
lc (mm) 23.0 24.3 25.3 25.5 26.7 27.9 29.5 30.3 31.1 
hs (mm) 2.5 3.6 4.5 5.7 6.7 7.6 8.9 10.5 12.4 
hc (mm) 2.9 4.2 5.3 6.5 7.8 9.0 10.6 12.3 13.8 
do (mm) 5 6.1 5.5 4.6 4.9 5.1 5.3 5.6 5.8 
di (mm) 3.7 3.4 3.2 3.1 2.8 2.6 2.5 2.3 2.1 
dm (mm) 9.7 10.1 10.5 11.3 12.0 12.3 13.1 13.5 14.6 
magnets volume per 
PMG length (mm3/m) 

66424 98291 134035 179245 223011 270664 343980 431475 534270 

PMG width (mm) 36 37.2 38.4 39.7 41.0 42.9 45.7 48.8 51.9 
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Table 9. The optimization result for the PMG dimensions in structure III, rd is varied, Jc=10×106 A/m2, h0=10 mm, hd=2 mm 
 

rd (mm) 4 6 8 10 12 14 16 18 
ws (mm) 6.1 8.4 10.6 13.3 17.1 21.1 24.2 26.4 
wc (mm)  5.1 5.2 7.6 9.8 12.0 16.1 21.0 21.5 
ls (mm) 14.2 14.8 21.4 24.0 28.8 35.0 45.3 48.7 
lc (mm) 19.0 20.0 23.8 26.0 34.1 40.8 52.1 54.8 
hs (mm) 2.8 3.4 4.0 5.2 5.6 6.5 7.1 8.0 
hc (mm) 3.8 4.3 5.2 6.0 6.7 7.8 9.1 10.3 
do (mm) 5.0 5.2 4.5 4.9 5.5 6.3 7 6.3 
di (mm) 1.4 2.3 1.7 3.9 3.2 6 3.4 9.9 
dm (mm) 7.5 8.5 11.2 13.4 14.9 14.8 17.8 21.8 
dc (mm) 1.5 2.9 4.1 5.2 6.4 7.7 9.1 10.4 
magnets volume per 
PMG length (mm3/m) 

63620 86990 142699 220668 320674 480576 678385 815306 

PMG width (mm) 26.7 34.7 43.9 59.2 71.0 94.1 106.3 126.0 
 

Table 10. The optimization result for the PMG dimensions in structure III Jc is varied, rd=8 mm, h0=10 mm, hd=2 mm 
 

Jc×106 (A/m2) 10 25 40 55 70 85 100 115 
ws (mm) 10.6 10.3 9.5 9.2 8.1 7.5 6.8 7.6 
wc (mm) 7.6 7.3 7.3 6.7 6.5 6.0 5.8 3.8 
ls (mm) 21.4 20.7 19.4 18.5 17.0 15.8 15.2 14.0 
lc (mm) 23.8 22.0 20.2 19.6 17.5 16.5 16.0 15.2 
hs (mm) 4.0 3.9 3.9 3.6 2.8 3.0 2.7 2.5 
hc (mm) 5.2 4.5 4.1 3.8 3.5 3.6 3.1 3.3 
do (mm) 4.5 4.2 4.1 3.7 3.4 3.0 3.2 3.1 
di (mm) 1.7 1.5 1.4 1.5 1.2 1.1 1.1 1.0 
dm (mm) 11.2 11.0 10.5 9.6 9.2 8.7 8.3 8.0 
dc (mm) 4.1 3.8 3.5 3.6 3.3 3.0 2.7 2.5 
magnets volume per 
PMG length (mm3/m) 

142699 124835 112626 100158 76833 75734 61603 53404 

PMG width (mm) 43.9 41.9 39.9 38.4 34.8 32.1 30.0 27.3 
 
Table 11. The optimization result for the PMG dimensions in structure III h0 is varied, rd=8 mm, Jc=10×106 A/m2, hd= 2 mm 
 
h0 (mm) 4 6 8 10 12 14 16 18 20 
ws (mm) 9.2 9.7 10.0 10.6 11.4 12.5 13.7 14.9 16.0 
wc (mm) 6.7 7.5 7.9 7.6 8.8 9.1 10.2 12.8 13.6 
ls (mm) 17.6 18.4 19.5 21.4 22.4 23.8 25.6 28.5 32.8 
lc (mm) 20.1 21.0 22.5 23.8 25.2 27.9 31.5 34.9 38.3 
hs (mm) 3.6 3.8 3.6 4.0 4.5 5.1 5.5 6.2 7.1 
hc (mm) 4.0 4.3 4.8 5.2 5.7 6.5 7.0 7.6 8.0 
do (mm) 3.6 4.0 4.2 4.5 4.7 5.1 5.9 6.5 5.7 
di (mm) 1.2 1.4 1.6 1.7 1.9 2.0 2.4 2.8 2.5 
dm (mm) 9.5 10.2 10.8 11.2 11.5 11.8 12.8 14.3 16.4 
dc (mm) 2.8 3.6 3.3 4.1 3.9 4.2 4.4 4.8 5.1 
magnets volume per 
PMG length 
(mm3/m) 

105811 121022 131241 142699 178092 219208 265270 344451 410031 

PMG width (mm) 37.0 40.8 42.3 43.9 44.2 51.4 56.9 65.8 68.1 
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superconductor disk. This may be due to the 
magnetic field dip at the middle of the PMG. This 
magnetic flux density dip creates a trap for the 
superconductor disk and causes the superconductor 
disk not to slide aside. The structure I shows the 
weakest stability behavior of the disk and the 
superconductor disk simply slides outside the 
guideway at higher speeds. 

7. Summary and conclusion 

In this paper, a process is proposed to yield the 
optimum design of the permanent magnet 
guideways for different levitation heights and the 
superconductor disk characteristics and dimensions. 
The influence of varying these parameters on the 
PMG design and characteristics has also been 
presented. The levitation force between HTS and 
PM is analyzed by using axisymmetric 3D FEM. 
These results may provide basic analysis for the 
optimized HTS-PMG levitation systems. prototype 
guideways have also been fabricated and tested 
successfully. PMG structures other than those 
studied in this paper are possible and may be 
considered, especially from the viewpoint of 
superconductor disk stability on the permanent 
magnet guideway. 
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