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Abstract 

The main purpose of this article is to increase the efficiency of the least squares method in numerical solution of 
ill-posed functional and physical equations. Determining the least squares of a given function in an arbitrary set is 
often an ill-posed problem. In this article, by defining artificial constraint and using Lagrange multipliers method, 
the attempt is to turn ݊-dimensional least squares problems into ሺ݊ െ 1ሻ ones, in a way that the condition number 
of the corresponding system with ሺ݊ െ 1ሻ-dimensional problem will be low. At first, the new method is introduced 
for 2 and 3-term basis, then the presented method is generalized for ݊-term basis. Finally, the numerical solution 
of some ill-posed problems like Fredholm integral equations of the first kind and singularly perturbed linear 
Fredholm integral equations of the second kind are approximated by chain least squares method. Numerical 
comparisons indicate that the chain least squares method yields accurate and stable approximations in many cases. 
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1. Introduction 

The least squares method is used in numerical 
solution of many physical and engineering 
problems (Ching and Suh-Yuh, 2002; Alexander 
and George, 1990; Jinming, 2012; King and 
Krueger, 2003; Jagalur-Mohan et al., 2013; Laeli 
and Maalek, 2012; Aksan et al., 2006; Jannike and 
Hugo, 2012). If this method is applied in an 
orthogonal basis, the unknown coefficients will be 
easily computed. The main problem occurs when it 
is used in a non-orthogonal basis. In this case, 
determining unknown coefficients leads to solving 
an ill-posed linear system of equations with large 
condition number (Datta, 2010; Kincaid and Ward, 
2002). This kind of least squares problem occurs in 
numerical solution of ill-posed functional equations 
(Delves and Mohamed, 1985; Nashed, 1976). For 
instance, consider the solution of the following ill-
posed functional equation. 
 
ݔܣ ൌ :ܣ			,݂ ,ଶሾܽܮ ܾሿ ՜ ,ଶሾܽܮ ܾሿ,                           (1) 
 
where ܣ is a linear operator and ݂ is a known 
function. Let ሼሽୀ

ஶ  be a basis for ܮଶሾܽ, ܾሿ. Then 
we can approximate the unknown solution ݔ by 
 
ሻݐሺݔ ൌ ∑ ܽሺݐሻ


ୀ .                                           (2) 

 
By substituting (2) into (1), we find that  
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ܽݍሺݏሻ



ୀ

ൌ ݂ሺݏሻ  ܽ			,ሻݏሺݎ  ݏ  ܾ, 

 
where 
 

ሻݏሺݍ ൌ ሺܣሻሺݏሻ,			݅ ൌ 0,… , ݊, 
 
and ݎሺݏሻ is the residual function. In least squares 
method for determining the unknown coefficients 
ሼܽሽୀ

 , we should solve the minimization problem 
(Datta, 2010). 
 

݉݅݊
బ,…,

݁ሺܽ, … , ܽሻ, 
 
where 
 

݁ሺܽ, … , ܽሻ ൌ න ݏሻ݀ݏଶሺݎ




ൌ න ܽݍሺݏሻ െ ݂ሺݏሻ



ୀ

൩

ଶ

ݏ݀



 

 
In fact, the purpose is to find the least squares 

approximation of the function ݂ in the set ሼݍሽୀ
  

although this set is predetermined and is not an 
orthogonal set. In this article, the ill-conditioning of 
the least squares problem is postponed to achieve 
accurate approximations by presenting a chain rule 
based on the Lagrange multipliers method. We call 
this approach a chain least squares method. The 
outline of the remainder of the paper is as follows: 
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Firstly, the new method is introduced for 2 and 3-
term basis, then it is extended to the general case. 
Secondly, by presenting some numerical examples, 
the efficiency of both ordinary and chain least 
squares methods is compared. 

2. Chain least squares method 

2.1. Chain least squares with 2-term basis 

Let ݂ א ,ଶሾܽܮ ܾሿ and ሼܮሽୀଵ
ଶ  be a 2-term basis for a 

subspace of ܮଶሾܽ, ܾሿ. One can approximate ݂ሺݏሻ by 
 

ଶ݂ሺݏሻ ൌܽܮሺݏሻ
ଶ

ୀଵ

ݏ				, א ሾܽ, ܾሿ. 

 
In least squares method for determining the 

unknown coefficients ሼܽሽୀଵ
ଶ , we solve the 

minimization problem 
 
݉݅݊భ,మ ݁ሺܽଵ, ܽଶሻ,                                                (3) 
 
where 
 
݁ሺܽଵ, ܽଶሻ ൌ  ሾ∑ ܽܮሺݏሻ

ଶ
ୀଵ െ ݂ሺݏሻሿଶ݀ݏ


 .            (4) 

 
The ordinary approach for determining ሼܽሽୀଵ

ଶ , is 
to solve the normal equations (Datta, 2010). 
 
డ

డ
݁ሺܽଵ, ܽଶሻ ൌ 0,			݅ ൌ 1, 2.                                  (5) 

 
The system (5) may be ill-conditioned in the 

sense that the condition number of the coefficient 
matrix be large and the coefficients ሼܽሽୀଵ

ଶ  be 
determined with large errors. For reducing the ill-
conditioning of this problem, we proceed as 
follows. 
Let ܽ ൌ ሺܽଵ, ܽଶሻ் be solution of the system (5). 
Then there exists constant ݎ א Թ such that 
 

ܽଵ െ	ܽଶ ൌ  .ݎ
 

It is clear that this equation characterizes a 
straight line trajectory in Թଶ. We show this 
trajectory by ݃ i.e., 
 
݃ሺܽଵ, ܽଶሻ ൌ ܽଵ െ	ܽଶ െ ݎ ൌ 0.                             (6) 
 

It should be noted that the scalar ݎ is unknown at 
this time. We suppose that the solution of (5) is 
settled on the trajectory (6). By this assumption, the 
minimization problem (3) is equivalent to 
 

݉݅݊ ݁ሺܽଵ, ܽଶሻ									
.ݏ ݐ ݃ሺܽଵ, ܽଶሻ ൌ 0,

 

 
then by the Lagrange multipliers method (Ito and 
Kunisch, 2008), we setup the problem  
 

ቊ ߘ
ሬԦ݁ ൌ 					ሬԦ݃ߘߣ
݃ሺܽଵ, ܽଶሻ ൌ 0,

                                                     (7) 

 
for ߣ א Թ, where 
 

ሬԦ݁ߘ ൌ
߲݁
߲ܽଵ

ଓԦ
߲݁
߲ܽଶ

ଔԦ,			ߘሬԦ݃ ൌ
߲݃
߲ܽଵ

ଓԦ
߲݃
߲ܽଶ

ଔԦ. 

 
By using (4) and (6), we obtain 

 
ሬԦ݁ߘ ൌ ሺ2ܿଵଵܽଵ  2ܿଵଶܽଶ െ 2 ଵ݂ሻଓԦ

 ሺ2ܿଶଵܽଵ  2ܿଶଶܽଶ െ 2 ଶ݂ሻଔԦ, 
 
and 
 

ሬԦ݃ߘ ൌ ଓԦെ ଔԦ, 
 
where 
 

ܿ ൌ න ሻݏሺܮሻݏሺܮ



			,ݏ݀ ݂ ൌ න ݏሻ݀ݏሻ݂ሺݏሺܮ




,

݅, ݆ א ሼ1,2ሽ. 
 

Consequently, the system (7) is reduced to the 
system 
 

൝
2ܿଵଵܽଵ
2ܿଶଵܽଵ
						ܽଵ



െ

2ܿଵଶܽଶ
2ܿଶଶܽଶ
						ܽଶ

െ
െ
	

2 ଵ݂

2 ଶ݂
	

ൌ
ൌ
ൌ

ߣ	
െߣ
.ݎ

 

 
By summing the first two equations (to cancel ߣ), 

we obtain 
 

൜
݀ଵܽଵ
					ܽଵ


െ
݀ଶܽଶ
				ܽଶ

ൌ
ൌ
݄
 (8)                                                   ,ݎ

 
where 
 

	݄ ൌ ݂

ଶ

ୀଵ

,			 ݀ ൌ ܿ

ଶ

ୀଵ

,				݆ ൌ 1,2. 

 
We solve the system (8), instead of (5) for 

determining the unknown coefficients ሼܽሽୀଵ
ଶ . 

From (8) the coefficients ሼܽሽୀଵ
ଶ  are determined in 

terms of the unknown scalar ݎ as 
 
ܽ ൌ  (9)                                                                 ,ܴܦ
 
where 
 

ܽ ൌ ሺܽଵ, ܽଶሻ்,			ܴ ൌ ሺݎ, 1ሻ், 
 
and 
 

ܦ ൌ
1
ܰ
൬
݀ଶ ݄
െ݀ଵ ݄൰ ,			ܰ ൌ ݀ଵ  ݀ଶ. 

 
Let ܮሺݏሻ ൌ ሺܮଵሺݏሻ,  ሻሻ. Then (4) can beݏଶሺܮ

written as 
 

݁ሺܽଵ, ܽଶሻ ൌ න ሾܮሺݏሻܽ െ ݂ሺݏሻሿଶ݀ݏ



, 
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whence using (9), we obtain 
 

ሻݎሺܧ ൌ ݁ሺܽଵ, ܽଶሻ ൌ න ሾܮሺݏሻܴܦ െ ݂ሺݏሻሿଶ݀ݏ



. 

 
Since 
 

ܴܦሻݏሺܮ ൌ ݎଵܦሻݏሺܮ   ,ଶܦሻݏሺܮ
 
where 
 

ܦ ൌ  ,ܦ	݂	݊݉ݑ݈ܿ	݄ݐ’݅
 
we have 
 

ሻݎሺܧ ൌ න ሾܮሺݏሻܦଵݎ  ଶܦሻݏሺܮ െ ݂ሺݏሻሿଶ݀ݏ



. 

 
Let 
 

ሻݏሺ ൌ ݅			,ܦሻݏሺܮ ൌ 1,2, 
 
and 
 

݂̅ሺݏሻ ൌ ݂ሺݏሻ െ  .ሻݏଶሺ
 
Then 
 

ሻݎሺܧ ൌ න ݎሻݏଵሺൣ െ ݂̅ሺݏሻ൧
ଶ
ݏ݀




, 

 
consequently, the minimization problem (3) is 
equivalent to 
 

݉݅݊
אԹ

 .ሻݎሺܧ
 

For determining the scalar ݎ, we put 
 

ܧ݀
ݎ݀

ൌ ሻݎԢሺܧ ൌ 0, 
 
then we get 
 

ݎ ൌ
 ݏሻ݀ݏሻ݂̅ሺݏଵሺ



 ଵ
ଶሺݏሻ݀ݏ




. 

 
Now by (9), the unknown coefficients ሼܽሽୀଵ

ଶ  are 
determined. 

The following examples are given to show the 
efficiency of the modified method. Let ଶ݂ be the 
least squares approximation of ݂ א ,ሾܽܥ ܾሿ in the 
basis ሼܮሽୀଵ

ଶ . We also take 
 

݁ሺݏሻ ൌ | ଶ݂ሺݏሻ െ ݂ሺݏሻ|. 
 

In the least squares approximation of the 
following examples, the basis functions are ሼ1,  .ሽݏ
 
Example 1. ݂ሺݏሻ ൌ ݁௦,			ݏ א ሾ2, 2   .ሿߜ
 

Example 2. ݂ሺݏሻ ൌ ሻݏሺ݊݅ݏ ݏ			, א ሾ2, 2   .ሿߜ
 

In the following tables, ‖݁‖ஶ denote the infinity 
norm of error function i.e., 
 
‖݁‖ஶ ൌ |ሻݏሾ,ሿ|݁ሺא௦ݔܽ݉   ሻ|,      (10)ݏୀଵ,…,ெ.|݁ሺݔܽ݉
 
where ݏ א ሾܽ, ܾሿ are equidistant points. In 
numerical examples, we take ܯ ൌ 11. The 
numerical results show that the chain method 
operates better than the ordinary method in tiny 
domains (Tables 1 and 2). 
 
Table 1. Maximum absolute errors, ‖݁‖ஶ, for Example 1 
 

chain method ordinary method ߜ 
6.53 ൈ 10ିଷ6.53 ൈ 10ିଷ 10ିଵ

6.19 ൈ 10ିହ 6.19 ൈ 10ିହ 10ିଶ 
6.16 ൈ 10ି6.25 ൈ 10ି 10ିଷ

6.15 ൈ 10ିଽ6.34 ൈ 10ିଽ 10ିସ

6.15 ൈ 10ିଵଵ 3.56 ൈ 10ିଽ 10ିହ 
6.15 ൈ 10ିଵଷ 2.73 ൈ 10ି଼ 10ି 
6.21 ൈ 10ିଵହ 1.84 ൈ 10ି 10ି 
1.77 ൈ 10ିଵହ 2.44 ൈ 10ି଼ 10ି଼ 
8.88 ൈ 10ିଵ4.93 ൈ 10ି 10ିଽ

1.77 ൈ 10ିଵହ 2.92 ൈ 10ିହ 10ିଵ 
1.77 ൈ 10ିଵହ 4.25 ൈ 10ିଵଵ 10ିଵଵ 
1.77 ൈ 10ିଵହ 3.51 ൈ 10ିଷ 10ିଵଶ 
1.77 ൈ 10ିଵହ 1.81 ൈ 10ିଷ 10ିଵଷ 
8.88 ൈ 10ିଵ3.26 ൈ 10ିଵ 10ିଵସ 

 
Table 2. Maximum absolute errors, ‖݁‖ஶ, for Example 2 
 

Chain method Ordinary method ߜ 
7.43 ൈ 10ିସ 7.43 ൈ 10ିସ 10ିଵ 
7.56 ൈ 10ି7.56 ൈ 10ି 10ିଶ

7.57 ൈ 10ି଼7.80 ൈ 10ି଼ 10ିଷ

7.57 ൈ 10ିଵ7.69 ൈ 10ିଵ 10ିସ

7.57 ൈ 10ିଵଶ 8.91 ൈ 10ିଵ 10ିହ 
7.57 ൈ 10ିଵସ 1.31 ൈ 10ିଽ 10ି 
5.55 ൈ 10ିଵ1.04 ൈ 10ି଼ 10ି

3.33 ൈ 10ିଵ3.07 ൈ 10ିଽ 10ି଼

1.11 ൈ 10ିଵ5.78 ൈ 10ି 10ିଽ

1.11 ൈ 10ିଵ 2.15 ൈ 10ି 10ିଵ 
2.22 ൈ 10ିଵ3.40 ൈ 10ିଵଶ 10ିଵଵ 
3.33 ൈ 10ିଵ1.69 ൈ 10ିସ 10ିଵଶ

1.11 ൈ 10ିଵ4.45 ൈ 10ିଷ 10ିଵଷ

1.11 ൈ 10ିଵ 3.23 ൈ 10ିଶ 10ିଵସ 
 
Note: If well-behaved functions are approximated 
by least squares method in 2-term basis, the 
condition number of the normal equations will be 
small and the numerical solutions of this problem 
will be determined with high accuracy. In tiny 
domains, the condition number of these problems is 
large and the numerical solutions of the normal 
equations are determined with large errors. In this 
case, the efficiency of new method will appear. To 
show the efficiency of the new method in reducing 



 
 

IJST (2014) 38A2: 123-132                                                                                                                                                                              126 
 
the condition number of normal equations, the 
condition numbers of both systems ((5) and (8)) for 
Example 1 are presented in Table 3.  
 
Table 3. Condition numbers of Example 1 
 

chain method ordinary method ߜ 
2.21 ൈ 103.24 ൈ 10ସ10ିଵ 
2.21 ൈ 10ଵ 3.02 ൈ 10 10ିଶ 
2.22 ൈ 10ଶ3.00 ൈ 10଼10ିଷ 
2.22 ൈ 10ଷ3.00 ൈ 10ଵ10ିସ 
2.22 ൈ 10ସ 2.99 ൈ 10ଵଶ 10ିହ 
2.22 ൈ 10ହ 2.99 ൈ 10ଵସ 10ି 
2.22 ൈ 102.11 ൈ 10ଵ10ି 
2.22 ൈ 10 ∞ 10ି଼ 
2.22 ൈ 10଼1.35 ൈ 10ଵ10ିଽ 
2.22 ൈ 10ଽ2.16 ൈ 10ଵ10ିଵ 
2.22 ൈ 10ଵ1.73 ൈ 10ଵ10ିଵଵ 
2.22 ൈ 10ଵଵ ∞ 10ିଵଶ 
2.22 ൈ 10ଵଶ1.10 ൈ 10ଵ10ିଵଷ 
2.17 ൈ 10ଵଷ∞ 10ିଵସ 

2.2. Chain least squares with 3-term basis 

Let 
 

ଷ݂ሺݏሻ ൌܽܮሺݏሻ
ଷ

ୀଵ

ݏ				, א ሾܽ, ܾሿ, 

 
be the least squares approximation of ݂ א ,ଶሾܽܮ ܾሿ 
on the basis of ሼܮሽୀଵ

ଷ . For achieving the unknown 
coefficients ሼܽሽୀଵ

ଷ , the following minimization 
problem must be solved 
 
݉݅݊భ,మ,య ݁ሺܽଵ, ܽଶ, ܽଷሻ,                                     (11) 
 
where 
 
݁ሺܽଵ, ܽଶ, ܽଷሻ ൌ  ሾ∑ ܽܮሺݏሻ

ଷ
ୀଵ െ ݂ሺݏሻሿଶ݀ݏ


 .     (12) 

 
This minimization problem is equivalent to 

solving the following normal equations (Datta, 
2010). 
 
డ

డ
݁ሺܽଵ, ܽଶ, ܽଷሻ ൌ 0,			݅ ൌ 1, 2,3.                        (13) 

 
This problem may be ill-conditioned and the 

unknown coefficients ሼܽሽୀଵ
ଷ  are determined with 

large errors. For decreasing the ill-conditioning, we 
act as follows. 

Let ܽ ൌ ሺܽଵ, ܽଶ, ܽଷሻ் be the solution of the 
problem (13). Then there exist the real constants ݎଵ 
and ݎଶ		such that 
 

ܽଵ െ	ܽଶ ൌ ,ଵݎ
ܽଶ െ	ܽଷ ൌ .ଶݎ

 
 

It is clear that these equations characterize two 
planes in Թଷ. We show these trajectories as follows. 

 
ଵ݃ሺܽଵ, ܽଶ, ܽଷሻ ൌ ܽଵ െ ܽଶ െ ଵݎ ൌ 0,
݃ଶሺܽଵ, ܽଶ, ܽଷሻ ൌ ܽଶ െ ܽଷ െ ଶݎ ൌ 0,

                    (14) 

 
consequently, the minimization problem (11) can 
be written as 
 

݉݅݊ ݁ሺܽଵ, ܽଶ, ܽଷሻ									
.ݏ ݐ 	 ଵ݃ሺܽଵ, ܽଶ, ܽଷሻ ൌ 0,
	 ݃ଶሺܽଵ, ܽଶ, ܽଷሻ ൌ 0.

 

 
By the lagrange multipliers method (Ito and 

Kunisch, 2008), we setup the problem 
 

ቐ
ሬԦ݁ߘ ൌ ሬԦߘଵߣ ଵ݃  ሬԦ݃ଶߘଶߣ
	݃ଵሺܽଵ, ܽଶ, ܽଷሻ ൌ 0						
݃ଶሺܽଵ, ܽଶ, ܽଷሻ ൌ 0,				

                                      (15) 

 
for ߣଵ, ଶߣ א Թ. Since 
 

ሬԦ݁ߘ ൌ
߲݁
߲ܽଵ

ଓԦ
߲݁
߲ܽଶ

ଔԦ
߲݁
߲ܽଷ

ሬ݇Ԧ, 

 
using (12), we have 
 
ሬԦ݁ߘ ൌ ሺ2ܿଵଵܽଵ  2ܿଵଶܽଶ  2ܿଵଷܽଷ െ 2 ଵ݂ሻଓԦ	
	  ሺ2ܿଶଵܽଵ  2ܿଶଶܽଶ  2ܿଶଷܽଷ െ 2 ଶ݂ሻଔԦ	

	  ሺ2ܿଷଵܽଵ  2ܿଷଶܽଶ  2ܿଷଷܽଷ െ 2 ଷ݂ሻሬ݇Ԧ,

 

 
where 
 

ܿ ൌ න ሻݏሺܮሻݏሺܮ



,݅			,ݏ݀ ݆ א ሼ1,2,3ሽ, 

 
and 
 

݂ ൌ න ݏሻ݀ݏሻ݂ሺݏሺܮ



,			݅ א ሼ1,2,3ሽ. 

 
By (14) one gets 
 

ሬԦߘ ଵ݃ ൌ ଓԦെ ଔԦ,			ߘሬԦ݃ଶ ൌ ଔԦെ ሬ݇Ԧ, 
 
therefore, the system (15) is reduced to 
 

ە
ۖ
۔

ۖ
ۓ
2ܿଵଵܽଵ
2ܿଶଵܽଵ
2ܿଷଵܽଵ
ܽଵ
	




െ
	

2ܿଵଶܽଶ
2ܿଶଶܽଶ
2ܿଷଶܽଶ
							ܽଶ
							ܽଶ	




	
െ	

2ܿଵଷܽଷ
2ܿଶଷܽଷ
2ܿଷଷܽଷ

	
							ܽଷ

െ
െ
െ
	
	

2 ଵ݂

2 ଶ݂

2 ଷ݂
	
	

ൌ
ൌ
ൌ
ൌ
ൌ

ଵߣ
ଶߣ െ ଵߣ
െߣଶ
ଵݎ
.ଶݎ

 

 
By summing the first three equations, we get (to 

get rid of scalars ߣଵ and ߣଶ) 
 

൝
݀ଵܽଵ
ܽଵ
	


െ
	

݀ଶܽଶ
ܽଶ
ܽଶ


	
െ

݀ଷܽଷ
	
	ܽଷ

ൌ
ൌ
ൌ

݄
ଵݎ
,ଶݎ

                                      (16) 

 
where 
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݄ ൌ ݂

ଷ

ୀଵ

,			 ݀ ൌ ܿ

ଷ

ୀଵ

,			݆ א ሼ1,2,3ሽ. 

 
We solve the system (16) instead of (13) for 

determining the unknown coefficients ሼܽሽୀଵ
ଷ . 

From (16), the coefficients ሼܽሽୀଵ
ଷ  are determined 

in terms of the unknown scalars ݎଵ and ݎଶ	 as 
 
ܽ ൌ  (17)                                                               ,ܴܦ
 
where 
 

ܽ ൌ ሺܽଵ, ܽଶ, ܽଷሻ்,			ܴ ൌ ሺݎଵ, ,ଶݎ 1ሻ், 
 
and 
 

ܦ ൌ
1
ܰ
ቌ
݀ଵ  ݀ଶ ݀ଷ ݄
െ݀ଵ ݀ଷ ݄
െ݀ଵ െሺ݀ଵ  ݀ଶሻ ݄

ቍ ,			ܰ ൌ݀

ଷ

ୀଵ

. 

 
Let 
 

ሻݏሺܮ ൌ ሺܮଵሺݏሻ, ,ሻݏଶሺܮ  ,ሻሻݏଷሺܮ
 
then from (12) we have 
 

݁ሺܽଵ, ܽଶ, ܽଷሻ ൌ න ሾܮሺݏሻܽ െ ݂ሺݏሻሿଶ݀ݏ



, 

 
or equivalently (using (17)) 
 

,ଵݎሺܧ ଶሻݎ ൌ ݁ሺܽଵ, ܽଶ, ܽଷሻ

ൌ න ሾܮሺݏሻܴܦ െ ݂ሺݏሻሿଶ݀ݏ



. 

 
Since 
 

ܴܦሻݏሺܮ ൌ ଵݎଵܦሻݏሺܮ  ଶݎଶܦሻݏሺܮ   ,ଷܦሻݏሺܮ
 
where 
 

ܦ ൌ  ,ܦ	݂	݊݉ݑ݈ܿ	݄ݐ’݅
 
we have 
 

,ଵݎሺܧ ଶሻݎ ൌ න ሾܮሺݏሻܦଵݎଵ  ଶݎଶܦሻݏሺܮ  ଷܦሻݏሺܮ



െ ݂ሺݏሻሿଶ݀ݏ. 

 
Let 
 

ሻݏሺ ൌ ݅			,ܦሻݏሺܮ ൌ 1,2,3, 
 
and 
 

݂̅ሺݏሻ ൌ ݂ሺݏሻ െ  ,ሻݏଷሺ
 
then 
 

,ଵݎሺܧ ଶሻݎ ൌ න ሻݏଵሺଵݎൣ  ሻݏଶሺଶݎ െ ݂̅ሺݏሻሻ൧
ଶ
ݏ݀




, 

 

consequently, the minimization problem (11) is 
equivalent to 
 
݉݅݊భ,మ ,ଵݎሺܧ  ଶሻ.                                                (18)ݎ
 

For determining the unknown scalars ݎଵ and ݎଶ, 
we must solve the least squares problem (18). If this 
problem is ill-posed we solve it by the chain 
method. Otherwise, it is solved by the ordinary 
method. After determining the scalars ݎଵ and ݎଶ, the 
unknown coefficients ሼܽሽୀଵ

ଷ  will be obtained from 
(17). 

2.3. Chain least squares with ݊-term basis 

Let ݂ be the least squares approximation of 
݂ א ,ଶሾܽܮ ܾሿ on the basis ሼܮሽୀଵ

 , i.e., 
 

݂ሺݏሻ ൌܽܮሺݏሻ


ୀଵ

ݏ				, א ሾܽ, ܾሿ. 

 
To determine the unknown coefficients ሼܽሽୀଵ

  
we must solve the following minimization problem 
 
݉݅݊భ,…, ݁ሺܽଵ, … , ܽሻ,                                      (19) 
 
where 
 
݁ሺܽଵ,… , ܽሻ ൌ  ሾ∑ ܽܮሺݏሻ


ୀଵ െ ݂ሺݏሻሿଶ݀ݏ


 .     (20) 

 
This is equivalent to solving the following normal 
equations (Datta, 2010). 
 
డ

డ
݁ሺܽଵ, … , ܽሻ ൌ 0,			݅ ൌ 1,… , ݊.                     (21) 

 
This system is often an ill-conditioned problem to 

solve. For reducing the ill-conditioning, we act as 
follows. 

Let ܽ ൌ ሺܽଵ, … , ܽሻ் be the solution of the 
problem (21). Then there exist scalars ሼݎሽୀଵ

ିଵ 
belonging to Թ such that 
 

ܽ െ	ܽାଵ ൌ ݅			,ݎ ൌ 1,… , ݊ െ 1. 
 

In other words, the solution of the system (21) is 
the intersection of the following ݊ െ 1 surfaces: 
 

݃ሺܽଵ, … , ܽሻ ൌ 0,			݅ ൌ 1,… , ݊ െ 1, 
 
where 
 
݃ሺܽଵ, … , ܽሻ 
ൌ ܽ െ	ܽାଵ െ ,ݎ ݅ ൌ 1,… , ݊ െ 1,                      (22) 
 
therefore, the minimization problem (19) is 
equivalent to 
 
݉݅݊ ݁ሺܽଵ, … , ܽሻ																																								
.ݏ ݐ 	 ݃ሺܽଵ, … , ܽሻ ൌ 0,			݅ ൌ 1,… , ݊ െ 1.

      (23) 
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By the lagrange multipliers method (Ito and 
Kunisch, 2008), there exist scalars ሼߣሽୀଵ

ିଵ 
belonging to Թ such that the problem (23) is 
equivalent to 
 

ቊ ߘ
ሬԦ݁ ൌ ∑ ሬԦߘߣ ݃

ିଵ
ୀଵ ,																																

	݃ሺܽଵ,… , ܽሻ ൌ 0,			݅ ൌ 1,… , ݊ െ 1.
               (24) 

 
Since 
 

ሬԦ݁ߘ ൌ ൬
߲݁
߲ܽଵ

, … ,
߲݁
߲ܽ

൰, 

 
by (20) and (22) we have 
 

߲݁
߲ܽ

ൌ 2ܿ



ୀଵ

െ 2 ݂,			݅ ൌ 1,… , ݊, 

 
where 
 

ܿ ൌ න ሻݏሺܮሻݏሺܮ



,݅			,ݏ݀ ݆ א ሼ1,… , ݊ሽ, 

 

݂ ൌ න ݏሻ݀ݏሻ݂ሺݏሺܮ



,			݅ א ሼ1,… , ݊ሽ, 

 
and 
 
ሬԦߘ ݃ ൌ ሺ0,… ,0,1, െ1,0, … ,0ሻ,			݅ ൌ 1,… , ݊ െ 1, 

 
where 1 and െ1 are the ݅’th and ሺ݅  1ሻ’th 
components of ߘሬԦ ݃ respectively. Consequently, the 
system (24) is equivalent to 
 

ە
ۖۖ

۔

ۖۖ

ۓ
2ܿଵଵܽଵ
2ܿଶଵܽଵ

	
2ܿଵܽଵ
					ܽଵ
	
	



ڭ

െ
	
	

2ܿଵଶܽଶ
2ܿଶଶܽଶ

	
2ܿଶܽଶ
	ܽଶ
	
	

ڮ
ڮ
ڮ

ڮ
	
ڰ
	

2ܿଵܽ
2ܿଶܽ

	
2ܿܽ

	
	

							ܽିଵ

െ2 ଵ݂

െ2 ଶ݂
	

െ2 ݂
	
	

െܽ

ൌ
ൌ
	
ൌ
ൌ
	
ൌ

ଵߣ
ଶߣ െ ଵߣ

ڭ
െߣିଵ
ଵݎ
ڭ

.ିଵݎ

 

 
By summing the first ݊ equations, we have (for 

removing scalars ߣଵ,… ,  (ିଵߣ
 

൞

݀ଵܽଵ
					ܽଵ		
	
	


െ
	
	

݀ଶܽଶ
	ܽଶ
	

						ܽିଵ

ڮ
	
ڮ
െ

݀ܽ
	
	

	ܽ								

ൌ
ൌ
	
ൌ

݄
ଵݎ
	

ିଵݎ	

              (25) 

 
where 
 

݄ ൌ ݂



ୀଵ

,			 ݀ ൌ ܿ



ୀଵ

,			݆ א ሼ1, … , ݊ሽ. 

 
We solve the system (25) instead of (21) for 

determining the unknown coefficients ሼܽሽୀଵ
 . 

Because (25) is often more well conditioned than 
(21). From the system (25) the coefficients ሼܽሽୀଵ

  

are determined in terms of the unknown scalars 
ሼݎሽୀଵ

ିଵ as follows: 
 
ܽ ൌ  (26)                                                               ,ܴܦ
 
where 
 

ܽ ൌ ሺܽଵ,… , ܽሻ்,			ܴ ൌ ሺݎଵ, … , ,ିଵݎ 1ሻ், 
 
and 
 

ܦ ൌ
1
ܰ

ۉ

ۈ
ۇ

ܰ െ 					ଵݐ
െݐଵ
ڭ
െݐଵ
െݐଵ

ܰ െ 				ଶݐ
ܰ െ 				ଶݐ

ڭ
െݐଶ
െݐଶ

			ڮ
			ڮ
			ڮ
			ڮ
			ڮ

ܰ െ 					ିଵݐ
ܰ െ 					ିଵݐ

ڭ
ܰ െ 					ିଵݐ
െݐିଵ

݄
݄
ڭ
݄
ی݄

ۋ
ۊ
, 

 
where 
 

ܰ ൌ݀



ୀଵ

, 

 
ଵݐ ൌ ݀ଵ,			ݐ ൌ ିଵݐ  ݀,			݅ ൌ 1,… , ݊ െ 1. 

 
Let 
 

ሻݏሺܮ ൌ ሺܮଵሺݏሻ, … ,  ,ሻሻݏሺܮ
 
then from (20) we have 
 

݁ሺܽଵ, … , ܽሻ ൌ න ሾܮሺݏሻܽ െ ݂ሺݏሻሿଶ݀ݏ



, 

 
or equivalently (using (26)) 
 

,ଵݎሺܧ … , ିଵሻݎ ൌ ݁ሺܽଵ,… , ܽሻ

ൌ න ሾܮሺݏሻܴܦ െ ݂ሺݏሻሿଶ݀ݏ



, 

 
Since 
 

ܴܦሻݏሺܮ ൌ ଵݎଵܦሻݏሺܮ ڮ ିଵݎିଵܦሻݏሺܮ
  ,ܦሻݏሺܮ

 
where 
 

ܦ ൌ  ,ܦ	݂	݊݉ݑ݈ܿ	݄ݐ’݅
 
one can write 
 

,ଵݎሺܧ … , ିଵሻݎ ൌ න ሾܮሺݏሻܦଵݎଵ ڮ



 ିଵݎିଵܦሻݏሺܮ  ܦሻݏሺܮ

െ ݂ሺݏሻሿଶ݀ݏ. 
 
Let 
 

ሻݏሺ ൌ ݅			,ܦሻݏሺܮ ൌ 1,… , ݊, 
 
and 
 

݂̅ሺݏሻ ൌ ݂ሺݏሻ െ  ,ሻݏሺ
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then 
 

,ଵݎሺܧ … , ିଵሻݎ ൌ න ሻݏଵሺଵݎൣ  ڮ ሻݏିଵሺିଵݎ




െ ݂̅ሺݏሻሻ൧
ଶ
 ,ݏ݀

 
and so the minimization problem (19) is equivalent 
to 
 
݉݅݊భ,…,షభ ,ଵݎሺܧ … ,  ିଵሻ.                                 (27)ݎ
 

For determining the unknown scalars ሼݎሽୀଵ
ିଵ, we 

must solve the ሺ݊ െ 1ሻ-term least squares problem 
(27). If it’s normal equations are well-conditioned, 
it is solved by ordinary least squares method, 
otherwise, it is reduced to an ሺ݊ െ 2ሻ-term least 
squares problem. This trend is continued so that we 
reach a well-conditioned problem. We define this 
approach as chain least squares method. In all the 
presented numerical examples we have continued 
the chain method up to the final stage in order to 
get the maximum accuracy without doing any 
comparison. 

The following numerical results show that, the 
chain method often operates better than the 
ordinary method. In the least squares approximation 
of the following examples, we take ሼ1, ,ݏ … ,  ሽ asݏ
basis functions. The maximum of absolute errors is 
computed as (10). 
 

Example 3. ݂ሺݏሻ ൌ ݏܿ ቀ
ଵ

ସ
ቁݏ ݏ			, א ቂ0,

గ

ଶ
ቃ. 

 

Example 4. ݂ሺݏሻ ൌ ݈݊ሺݏሻ ݏ			, א ቂ1,
ଷ

ଶ
ቃ. 

 
Example 5. ݂ሺݏሻ ൌ ሻݏሺ݄݊݅ݏ ݏ			, א ሾ0,1ሿ. 
 

The maximum absolute errors of Examples 3, 4 
and 5 by the both methods are reported in Tables 4, 
5 and 6 respectively. 
 

Table 4. Maximum absolute errors, ‖݁‖ஶ, for Example 3 
 

 Ordinary method Chain method 
1 1.26 ൈ 10ିଶ 1.26 ൈ 10ିଶ 
2 1.12 ൈ 10ିସ 1.12 ൈ 10ିସ

3 1.39 ൈ 10ିହ 1.39 ൈ 10ିହ 
4 6.55 ൈ 10ି଼ 6.55 ൈ 10ି଼

5 5.41 ൈ 10ିଽ 5.41 ൈ 10ିଽ

6 1.79 ൈ 10ିଵଵ 1.72 ൈ 10ିଵଵ 
7 3.30 ൈ 10ିଵଶ 1.07 ൈ 10ିଵଶ

8 1.95 ൈ 10ିଵଵ 2.99 ൈ 10ିଵହ 
9 2.25 ൈ 10ିଵ 4.44 ൈ 10ିଵ 

 
 
 
 
 
 

Table 5. Maximum absolute errors, ‖݁‖ஶ, for Example 4 
 

 Ordinary method Chain method 
1 1.47 ൈ 10ିଶ 1.47 ൈ 10ିଶ

2 1.20 ൈ 10ିଷ 1.20 ൈ 10ିଷ

3 1.04 ൈ 10ିସ 1.04 ൈ 10ିସ 
4 9.37 ൈ 10ି 9.37 ൈ 10ି

5 8.62 ൈ 10ି 8.62 ൈ 10ି

6 7.79 ൈ 10ି଼ 8.05 ൈ 10ି଼

7 1.37 ൈ 10ି 7.59 ൈ 10ିଽ 
8 1.42 ൈ 10ି 7.23 ൈ 10ିଵ

9 1.00 ൈ 10ି 7.53 ൈ 10ିଵଵ 
 

Table 6. Maximum absolute errors, ‖݁‖ஶ, for Example 5 
 

 Ordinary method Chain method 
1 5.40 ൈ 10ିଶ 5.40 ൈ 10ିଶ

2 9.88 ൈ 10ିଷ 9.88 ൈ 10ିଷ

3 3.52 ൈ 10ିସ 3.52 ൈ 10ିସ

4 3.85 ൈ 10ିହ 3.85 ൈ 10ିହ 
5 3.85 ൈ 10ିହ 3.85 ൈ 10ିହ 
6 6.67 ൈ 10ି଼ 6.67 ൈ 10ି଼ 
7 1.07 ൈ 10ିଽ 1.07 ൈ 10ିଽ

8 7.02 ൈ 10ିଵଵ 6.51 ൈ 10ିଵଵ 
9 4.06 ൈ 10ିଵଵ 4.44 ൈ 10ିଵଷ

3. Numerical solution of some functional 
equations 

In this section, we consider some examples of the 
ill-posed functional equations of the form (1) in 
order to compare the accuracy of both methods. 
Also we take ሼܮሽୀଵ

 ൌ ሼݐିଵሽୀଵ
 . 

 
Case 1. 
 

ሺݔܣሻሺݏሻ ൌ න ݇ሺݏ, ݏ			,ݐሻ݀ݐሺݔሻݐ א ሾܽ, ܾሿ.



 

 
In this case, we deal with Fredholm integral 

equations of the first kind (Bitsadze, 1995; Delves 
and Mohamed, 1985). Many engineering problems 
cane be modeled by this kinds of equations. For 
example, one and two-dimensional scattering from 
conducting bodies can be modeled by them 
(Balanis, 1989). In most numerical approaches for 
solving these equations, the attempt is to get 
accurate approximations by reducing their ill-
conditioning (Babolian and Delves, 1979; Babolian 
et al., 2007; Groetsch, 1984; Maleknejad et al., 
2006). 
 
Case 2. 
 

ሺݔܣሻሺݏሻ ൌ ሻݏሺݔߝ െ න ݇ሺݏ, ݐሻ݀ݐሺݔሻݐ



ݏ			, א ሾܽ, ܾሿ. 

 
In this case, we face the singularly perturbed 

linear Fredholm integral equations of the second 
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kind (Smith, 1985; Sweilam et al., 2009). These ill-
posed equations ሺࣟ ՜ 0ሻ arise in various fields of 
science and engineering (Sweilam et al., 2009). 
 
Note: For computing the related integrals, we use a 
Gaussian quadrature rule of order 10 with 32 
significant digits. 
The numerical examples are as follows: 
 
Example 6. 
 

න ݁௦௧ݔሺݐሻ݀ݐ
ଵ


ൌ
݁௦ାଵ െ 1
ݏ  1

ݏ			, א ሾ0,1ሿ. 

 
Example 7. 
 

න ሻݐݏሺ݊݅ݏ ݐሻ݀ݐሺݔ
ଶ



ൌ 2
ሺ4ݏ  1ሻ ݊݅ݏ ቀ2ݏ െ

ଵ

ଶ
ቁ െ ሺ4ݏ െ 1ሻ݊݅ݏ	ሺ2ݏ 

ଵ

ଶ
ሻ

ଶݏ16 െ 1
,

ݏ א ሾ0,2ሿ. 
 
Example 8. 
 

න ݁௧௦ሺ௦ሻݔሺݐሻ݀ݐ
ଷ


ൌ
ሺ3 ሻݏሺ݊݅ݏ െ 1ሻ݁ଷ௦ሺ௦ሻ  1

ሻݏଶሺ݊݅ݏ
,

ݏ א ሾ0,3ሿ. 
 

The exact solutions are ݁௧, ݊݅ݏ	ሺ
ଵ

ସ
 ݐ ሻ andݐ

respectively. The maximum absolute errors of these 
examples using both methods are reported in Tables 
7, 8 and 9. 
 
Example 9. 
 

ሻݏሺݔߝ െ න ݏሺ݄ݏܿ  ሻݐ ݐሻ݀ݐሺݔ
ଵ

ିଵ
ൌ െ݄ܿݏሺݏሻ ,

ݏ א ሾെ1,1ሿ, 
 
which has the exact solution 
 

ሻݐሺݔ ൌ
ሻݐሺ	݄ݏ2ܿ

2  ሺ2ሻ݄݊݅ݏ െ ߝ2
. 

 
We solve this perturbed problem for the values of 

ߝ ൌ 10ିଷ, 10ିସ and 10ିହ. The errors of dynamical 
systems method (DSM), proposed in (Sweilam et 
al., 2009), are about 2.9 ൈ 10ିଷ for these values of 
 while the error of our presented method is ,ߝ
5.6 ൈ 10ିଵ for ݊ ൌ 9 (Tables 10, 11 and 12). 
 

 
 
 
 
 
 
 
 

Table 7. Maximum absolute errors, ‖݁‖ஶ, for Examples 6 
 

 Ordinary method Chain method 
1 9.16 ൈ 10ିଵ 9.16 ൈ 10ିଵ 
2 1.42 ൈ 10ିଵ 1.42 ൈ 10ିଵ

3 1.46 ൈ 10ିଶ 1.46 ൈ 10ିଶ 
4 1.05 ൈ 10ିଷ 1.05 ൈ 10ିଷ 
5 1.23 ൈ 10ିଶ 5.94 ൈ 10ିହ

6 3.77 ൈ 10ିଵ 2.71 ൈ 10ି 
7 7.53 ൈ 10ିଶ 2.52 ൈ 10ି

 
Table 8. Maximum absolute errors, ‖݁‖ஶ, for Examples 7 

 
 Ordinary method Chain method 
1 2.76 ൈ 10ିଵ 2.76 ൈ 10ିଵ 
2 8.14 ൈ 10ିଷ 8.14 ൈ 10ିଷ

3 2.83 ൈ 10ିଷ 2.83 ൈ 10ିଷ 
4 4.07 ൈ 10ିହ 4.07 ൈ 10ିହ

5 4.73 ൈ 10ିସ 6.77 ൈ 10ି 
6 1.45 ൈ 10ିଶ 6.45 ൈ 10ି଼ 
7 2.61 ൈ 10ିଷ 1.83 ൈ 10ି଼

 
Table 9. Maximum absolute errors, ‖݁‖ஶ, for Example 8 

 
 Ordinary method Chain method 
1 2.08 ൈ 10ି 2.08 ൈ 10ି 
2 1.12 ൈ 10ିଵଷ 1.12 ൈ 10ିଵ

3 1.39 ൈ 10ିଵଵ 1.39 ൈ 10ିଵଷ 
4 6.55 ൈ 10ି 6.55 ൈ 10ିଵଶ

5 5.41 ൈ 10ିସ 5.41 ൈ 10ିଵ 
6 1.79 ൈ 10ିଷ 1.72 ൈ 10ିଽ 
7 3.30 ൈ 10ିଶ 1.07 ൈ 10ି଼

 
Table 10. Maximum absolute errors, ‖݁‖ஶ,  

for Example 9 with ߝ ൌ 10ିଷ 
 

 Ordinary method Chain method 
1 1.23 ൈ 10ିଵ 1.23 ൈ 10ିଵ 
2 1.23 ൈ 10ିଵ 1.23 ൈ 10ିଵ 
3 3.57 ൈ 10ିଷ 3.57 ൈ 10ିଷ

4 3.57 ൈ 10ିଷ 3.57 ൈ 10ିଷ 
5 3.55 ൈ 10ିହ 3.55 ൈ 10ିହ

6 3.55 ൈ 10ିହ 3.55 ൈ 10ିହ 
7 1.81 ൈ 10ି 1.80 ൈ 10ି

8 1.83 ൈ 10ି 1.80 ൈ 10ି 
9 6.03 ൈ 10ି଼ 5.57 ൈ 10ିଵ 
10 6.92 ൈ 10ି଼ 5.57 ൈ 10ିଵ

 
Table 11. Maximum absolute errors, ‖݁‖ஶ,  

for Example 9 with ߝ ൌ 10ିସ 
 

 Ordinary method Chain method 
1 1.23 ൈ 10ିଵ 1.23 ൈ 10ିଵ

2 1.23 ൈ 10ିଵ 1.23 ൈ 10ିଵ 
3 3.57 ൈ 10ିଷ 3.57 ൈ 10ିଷ 
4 3.57 ൈ 10ିଷ 3.57 ൈ 10ିଷ

5 3.55 ൈ 10ିହ 3.55 ൈ 10ିହ 
6 3.55 ൈ 10ିହ 3.55 ൈ 10ିହ

7 2.24 ൈ 10ି 1.80 ൈ 10ି 
8 2.68 ൈ 10ି 1.80 ൈ 10ି

9 9.53 ൈ 10ି 5.60 ൈ 10ିଵ 
10 1.20 ൈ 10ିହ 5.60 ൈ 10ିଵ 
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Table 12. Maximum absolute errors, ‖݁‖ஶ,  
for Example 9 with ߝ ൌ 10ିହ 

 
 Ordinary method Chain method 
1 1.23 ൈ 10ିଵ 1.23 ൈ 10ିଵ

2 1.23 ൈ 10ିଵ 1.23 ൈ 10ିଵ

3 3.56 ൈ 10ିଷ 3.57 ൈ 10ିଷ

4 3.56 ൈ 10ିଷ 3.57 ൈ 10ିଷ

5 2.49 ൈ 10ିହ 3.55 ൈ 10ିହ

6 3.86 ൈ 10ିହ 3.55 ൈ 10ିହ

7 3.09 ൈ 10ିସ 1.80 ൈ 10ି

8 3.54 ൈ 10ିସ 1.80 ൈ 10ି

9 2.09 ൈ 10ିଷ 5.65 ൈ 10ିଵ

10 2.11 ൈ 10ିଷ 5.49 ൈ 10ିଵ
 

At the end of this section, by making random noise 
data on the right hand side of the examples 3.1 and 3.3 
and solving these equations by the chain least squares 
method, the stability of new method is investigated. 
Numerical results are shown in the Tables 13 and 14. 
It should be mentioned that, for perturbations of order 
ߦ ൌ 10ି in data of a problem, the maximum 
accuracy of the approximate solutions will be of order 
ߦ ൌ 10ି (for a positive integer ݉). 
 
Table 13. Maximum absolute errors, ‖݁‖ஶ, of Example 6 

for random noise data by new method 
 

ࣈ ൌ ି ࣈ ൌ ି ࣈ ൌ ିૠ

1 9.16 ൈ 10ିଵ 9.16 ൈ 10ିଵ

2 1.41 ൈ 10ିଵ 1.42 ൈ 10ିଵ

3 2.28 ൈ 10ିଶ 1.54 ൈ 10ିଶ

4 1.39 ൈ 10ିଶ 1.25 ൈ 10ିଷ

5 2.38 ൈ 10ିଶ 2.43 ൈ 10ିଷ

6 3.44 ൈ 10ିଶ 3.44 ൈ 10ିଷ

7 4.72 ൈ 10ିଶ 4.72 ൈ 10ିଷ

ࣈ ൌ ି 
9.16 ൈ 10ିଵ 

ࣈ ൌ ି 
9.16 ൈ 10ିଵ 

ࣈ ൌ ିૠ 
9.16 ൈ 10ିଵ

1.42 ൈ 10ିଵ 1.42 ൈ 10ିଵ 1.42 ൈ 10ିଵ

1.47 ൈ 10ିଶ 1.46 ൈ 10ିଶ 1.46 ൈ 10ିଶ

9.72 ൈ 10ିସ 1.04 ൈ 10ିଷ 1.05 ൈ 10ିଷ

2.96 ൈ 10ିସ 8.31 ൈ 10ିହ 6.17 ൈ 10ିହ

3.42 ൈ 10ିସ 3.17 ൈ 10ିହ 2.77 ൈ 10ି

4.71 ൈ 10ିସ 4.71 ൈ 10ିହ 7.95 ൈ 10ି
 
Table 14. Maximum absolute errors, ‖݁‖ஶ, of Example 8 

for random noise data by new method 
 

ࣈ  ൌ ି ࣈ ൌ ି 
1 2.08 ൈ 10ି 2.08 ൈ 10ି

2 7.74 ൈ 10ିସ 7.74 ൈ 10ିହ

3 2.18 ൈ 10ିଷ 2.18 ൈ 10ିସ

4 4.27 ൈ 10ିଷ 4.27 ൈ 10ିସ

5 7.05 ൈ 10ିଷ 7.05 ൈ 10ିସ

6 1.04 ൈ 10ିଶ 1.04 ൈ 10ିଷ

7 1.44 ൈ 10ିଶ 1.44 ൈ 10ିଷ

ࣈ ൌ ି ࣈ ൌ ି ࣈ ൌ ିૠ 
2.08 ൈ 10ି 2.08 ൈ 10ି 2.08 ൈ 10ି

7.74 ൈ 10ି 7.74 ൈ 10ି 7.74 ൈ 10ି଼

2.18 ൈ 10ିହ 2.18 ൈ 10ି 2.18 ൈ 10ି 
4.27 ൈ 10ିହ 4.27 ൈ 10ି 4.27 ൈ 10ି

7.05 ൈ 10ିହ 7.05 ൈ 10ି 7.05 ൈ 10ି 
1.04 ൈ 10ିସ 1.04 ൈ 10ିହ 1.04 ൈ 10ି 
1.44 ൈ 10ିସ 1.44 ൈ 10ିହ 1.40 ൈ 10ି

4. Conclusion 

The numerical results show that the chain least 
squares method is often more accurate and stable 
than the ordinary least squares approach. Reduction 
of the -term least squares problem in the ሺ െ ሻ-
term problem is a new approach that can be the 
topic of new researches. It should be mentioned that 
the defined surfaces (22) have a main role in 
increasing the efficiency of least squares 
approximations. For decreasing the ill-conditioning 
of the least squares problem better than the 
presented method, finding other trajectories is 
suggested as an open problem. 
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