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Abstract

The main purpose of this article is to increase the efficiency of the least squares method in numerical solution of
ill-posed functional and physical eguations. Determining the least squares of a given function in an arbitrary set is
often an ill-posed problem. In this article, by defining artificial constraint and using Lagrange multipliers method,
the attempt is to turn n-dimensional least squares problemsinto (n — 1) ones, in away that the condition number
of the corresponding system with (n — 1)-dimensional problem will be low. At first, the new method is introduced
for 2 and 3-term basis, then the presented method is generalized for n-term basis. Finaly, the numerical solution
of some ill-posed problems like Fredholm integral equations of the first kind and singularly perturbed linear
Fredholm integral equations of the second kind are approximated by chain least squares method. Numerical
comparisons indicate that the chain least squares method yields accurate and stable approximations in many cases.
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1. Introduction

The least squares method is used in numerical
solution of many physica and engineering
problems (Ching and Suh-Yuh, 2002; Alexander
and George, 1990; Jinming, 2012; King and
Krueger, 2003; Jagalur-Mohan et al., 2013; Ladli
and Maalek, 2012; Aksan et a., 2006; Jannike and
Hugo, 2012). If this method is applied in an
orthogona basis, the unknown coefficients will be
easily computed. The main problem occurs when it
is used in a non-orthogonal basis. In this case,
determining unknown coefficients leads to solving
an ill-posed linear system of equations with large
condition number (Datta, 2010; Kincaid and Ward,
2002). This kind of least squares problem occurs in
numerical solution of ill-posed functional equations
(Delves and Mohamed, 1985; Nashed, 1976). For
instance, consider the solution of the following ill-
posed functional equation.

Ax = f, A:L*[a,b] - L*[a,b], D

where A is a linear operator and f is a known
function. Let {p;}72, be a basis for L?[a, b]. Then
we can approximate the unknown solution x by

xn(6) = Xizo aipi (1) 2
By substituting (2) into (1), we find that
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n

Y @) = f©) +n(s), ass<h,

i=0

where

q:(s) = (Ap)(s), i=0,..,n,

and 7, (s) is the residual function. In least squares
method for determining the unknown coefficients
{a;}7=,, we should solve the minimization problem
(Datta, 2010).

min e(ay, ..., ay),
ag,...an

where

b
e(ag, ..., a,) =f r2(s)ds

n “ 2
-| b[Zaiqxs)—f(s)l ds
a Li=o

In fact, the purpose is to find the least squares
approximation of the function f in the set {q;}i-,
although this set is predetermined and is not an
orthogonal set. In this article, the ill-conditioning of
the least squares problem is postponed to achieve
accurate approximations by presenting a chain rule
based on the Lagrange multipliers method. We call
this approach a chain least squares method. The
outline of the remainder of the paper isasfollows:
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Firstly, the new method is introduced for 2 and 3-
term basis, then it is extended to the genera case.
Secondly, by presenting some numerical examples,
the efficiency of both ordinary and chain least
sguares methods is compared.

2. Chain least squares method

2.1. Chain least squares with 2-term basis

Let f € L%[a, b] and {L;}%, be a 2-term basis for a
subspace of L?[a, b]. One can approximate f (s) by

2

£9) = ) aili(s), s€la,bl

=1

In least sguares method for determining the
unknown coefficients {a;}2,, we solve the
minimization problem

minal,az e(alt az): (3)

where

eay, ap) = [L (% aiLi(s) — f(s)]2ds. (4)

The ordinary approach for determining {a;}%,, is
to solve the normal equations (Datta, 2010).

a )
a—aie(al,az) =0 i=1,2. (5)

The system (5) may be ill-conditioned in the
sense that the condition number of the coefficient
matrix be large and the coefficients {a;}%, be
determined with large errors. For reducing the ill-
conditioning of this problem, we proceed as
follows.

Let a = (a;,a,)" be solution of the system (5).
Then there exists constant » € R such that

al—a2=1".

It is clear that this equation characterizes a
straight line trajectory in R?. We show this
trajectory by g i.e,

g(a,a) =a; — a; —r=0. (6)

It should be noted that the scalar r is unknown at
this time. We suppose that the solution of (5) is
settled on the trgjectory (6). By this assumption, the
minimization problem (3) is equivalent to

min e(ay,a,)
s.t g(al, az) = 0:

then by the Lagrange multipliers method (Ito and
Kunisch, 2008), we setup the problem

{ Ve = )ﬁg 7)

g9(as,a;) =0,

for 1 € R, where
S de , Ode |, - dg , dg
Ve=—-—1+-—] Vg=-2T4—7.
e 1+ a]' g 6a11+6a2

By using (4) and (6), we obtain

ﬁe = (2C11a1 + 2C12a2 - Zfl)?
+ (2c21a1 + 2¢52a, — 213)],

and

4

<u
Q
Il

~
|
=

where

b b
oy = [uL© s fi= [ Lo,
’ ez

Consequently, the system (7) is reduced to the
system

2C21a1+2C22a2_2f2=—A

[2C11a1—|—2C12a2_2f1= A
a, — a, =T

By summing the first two equations (to cancel 1),
we obtain

{dla1 +d,a,=h
a,— a,=r,

(8)

where

2

2
h=Zfl-, dj=2cij, =12
i=1

i=1

We solve the system (8), instead of (5) for
determining the unknown coefficients {a;}2;.
From (8) the coefficients {a;}?, are determined in
terms of the unknown scalar r as

a = DR, 9)
where
a=(a;,a)", R=(,1)T,

and

1/d, h
D_ﬁ(—dl h), N—d1+d2.

Let L(s) = (L;(s),L,(s)). Then (4) can be
written as

b
e(ay,az) = f [L(s)a — F(s)]*ds,
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whence using (9), we obtain

b
Hﬂ=dm&ﬁ=fﬂ@wR—ﬂﬂﬁw

Since
L(s)DR = L(s)Dr + L(s)D?,
where
D! = i’th column of D,
we have

b
E(r) = f [L(s)Dr + L(s)D? — f(s)]?ds.

a

Let
pi(s) = L(s)D}, i=1.2,
and
F(s) = £(s) — p2(s).
Then

b ~ 92
)= | [pi(r—F(s)| ds,
E(r) j[() Fe)d

consequently, the minimization problem (3) is
equivalent to

min E(r).

For determining the scalar r, we put
dE ,
E =F (T') = 0,

then we get

B AOVOLT
[} p3(s)ds

Now by (9), the unknown coefficients {a;}?_, are
determined.

The following examples are given to show the
efficiency of the modified method. Let f, be the
least squares approximation of f € Cla,b] in the
basis {L;}2_;. We also take

e(s) = f2(s) = f(9)l.

In the least squares approximation of the
following examples, the basis functions are {1, s}.

Examplel. f(s) = e%, s€[2,2+ 6]

Example 2. f(s) = sin(s), s €[2,2 + &].

In the following tables, ||e||, denote the infinity

norm of error functioni.e,,

where s; € [a, b]

domains (Tables 1 and 2).

Table 1. Maximum absolute errors, ||e|| .., for Example 1

are equidistant points.
numerical examples, we take M =11.
numerical results show that the chain method
operates better than the ordinary method in tiny

) ordinary method chain method
10701 6.53 x 1073 6.53 x 1073
10702 6.19 x 107 6.19 x 1079
10703 6.25 x 10797 6.16 x 10797
1074 6.34 x 107%° 6.15 x 1079
10705 3.56 x 107%° 6.15 x 10711
10796 2.73 x 10708 6.15x 10713
10797 1.84 x 10797 6.21 x 1071°
10708 2.44 x 10708 1.77 x 10715
10799 493 x 107% 8.88 x 10716
10710 2.92 x 1079 1.77 x 10715
10711 425x 10711 1.77 x 10715
10712 3.51x 10703 1.77 x 10715
10713 1.81 x 10793 1.77 x 10715
10714 3.26 x 107 8.88 x 10716

Table 2. Maximum absolute errors, ||e|| .., for Example 2

) Ordinary method Chain method
10701 7.43 x 1074 7.43 x 10704
10792 7.56 x 107°¢ 7.56 x 10706
10793 7.80 x 10798 7.57 x 1078
10704 7.69 x 10710 7.57 x 10710
10795 8.91x 10710 7.57 x 10712
10706 1.31 x 107%° 7.57 x 10714
10797 1.04 x 10798 5.55 x 10716
10708 3.07 x 107% 3.33x 10716
10799 5.78 x 107%7 1.11x 10716
10710 2.15x 1079 1.11x 10716
10711 3.40 x 10712 2.22 x 10716
10712 1.69 x 10704 3.33 x 10716
10713 4.45x 10793 1.11 x 10716
10~ 3.23 X 10792 1.11 x 10716

(10)

The

Note: If well-behaved functions are approximated
by least squares method in 2-term basis, the
condition number of the normal equations will be
small and the numerical solutions of this problem
will be determined with high accuracy. In tiny
domains, the condition number of these problemsis
large and the numerical solutions of the normal
equations are determined with large errors. In this
case, the efficiency of new method will appear. To
show the efficiency of the new method in reducing
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the condition number of normal equations, the
condition numbers of both systems ((5) and (8)) for g1(ay,az,a3) =a; —a; —1, =0, (14)

Example 1 are presented in Table 3.

Table 3. Condition numbers of Example 1

) ordinary method chain method
1070t 3.24 x 10%4 2.21 x 109
10792 3.02 x 109 2.21 x 10°!
10703 3.00 x 108 2.22 x 10°2
10704 3.00 x 1010 2.22 x 10%3
10795 2.99 x 1012 2.22 x 10%*
1079 2.99 x 104 2.22 x 109
10797 2.11 x 1016 2.22 x 10°¢
10798 e 2.22 x 107
10799 1.35 x 106 2.22 x 10%8
10710 2.16 x 10 2.22 x 1090
10~ 1.73 x 106 2.22 x 1010
10712 e 2.22 x 1011
10713 1.10 x 106 2.22 x 1012
10”14 00 2.17 x 1013

2.2. Chain least squares with 3-termbasis
Let

3

f3(s) = Zail'i(s): s € [a,b],

i=1

be the least squares approximation of f € L?[a, b]
on the basis of {L;}3_,. For achieving the unknown
coefficients {a;}?_,, the following minimization
problem must be solved

minal,az,a3 e(alﬂ az, a3)' (11)

where

e(ay, az, a3) = [P[3, a;Li(s) — f()]Pds.  (12)

This minimization problem is equivalent to
solving the following norma equations (Datta,
2010).

2 e(a;,a,,a5) =0, i=1,23. (13)

This problem may be ill-conditioned and the
unknown coefficients {a;};_, are determined with
large errors. For decreasing the ill-conditioning, we
act asfollows.

Let a = (ay,a,a3)T be the solution of the
problem (13). Then there exist the real constants r;
and r, such that

ap— a; =,
az - a3 =T2.

It is clear that these equations characterize two
planesin R3. We show these trajectories as follows.

g2(ay,a3,a3) =a, —az —r, =0,

consequently, the minimization problem (11) can
be written as
min  e(ay, az, as)
s.t gi1(ay,az,a3) =0,
92(ay,az,a3) = 0.
By the lagrange multipliers method (Ito and
Kunisch, 2008), we setup the problem
ﬁe = /11‘7‘91 + /lzﬁgz
g1(ag,az,a3) =0 (15)

g2(ay,az,a3) =0,

for A;,4, € R. Since

using (12), we have

—

Ve = (2C11a1 + 2C12a2 + 2C13a3 - 2f1)?
+ (202101 + 20320, + 20303 — 2f3)]
+ (2C31a1 + 2C32a2 + 2C33a3 - 2f3)ﬁ,
where

~.

b
C'!':j Li(s)Li(s)ds, i,j € {1,2,3},
a

and

b
fi =f Li(s)f(s)ds, i€{1,2,3}.
a
By (14) one gets
Vgi=i—J, Vg, =J—k,
therefore, the system (15) is reduced to

2¢11a,+2C1205 + 2¢13a3=2f;= A4
205104+2C5205 + 2¢53a3—2f,=A, — A4
2¢c31a,120320; + 2033037 2£,= —4,
a, — a = n
a, — as = 1.

By summing the first three equations, we get (to
get rid of scalars A, and 4,)

d1a1+d2a2+d3a3= h
a; — az =n (16)
a; — az =Ty,

where
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3

3
h= Zﬁ-, d; = Zcij, je1,.23).
i=1

i=1

We solve the system (16) instead of (13) for
determining the unknown coefficients {a;};;.
From (16), the coefficients {a;}}_, are determined
in terms of the unknown scalarsr, and r, as

a = DR, (17
where

a= (a11a2ia3)T! R= (TlﬂrZ: 1)T:

and
1 d, +d, ds h 3
p=-| - d, h ,N=Zdi.
_dl _(d1 + dz) h i=1
Let

L(s) = (L1(5), L2(s), L3(s)),

then from (12) we have

b
e(ay, a3, az) = j [L(s)a — f(s)]2ds,

or equivalently (using (17))

E(ry, rz)b= e(ay, a, as)

=J- [L(s)DR — f(s)]%ds.
a
Since
L(s)DR = L(s)D'ry + L(s)D?*r, + L(s)D53,

where

D! = i'th column of D,

we have

b
E(r,m) = f [L(s)D'ry + L(s)D?r, + L(s)D?

- f(s))%ds.
Let
pi(s) = L(s)D%, i=1,23,
and
f(s) = f(s) = p3(s),
then

b
E(rry) = f [ripa(s) + 12p2(s) — F(s))]ds,

consequently, the minimization problem (11) is
equivalent to

min,. ,, E(ry,12). (18)

For determining the unknown scalars r; and r;,
we must solve the least squares problem (18). If this
problem is ill-posed we solve it by the chain
method. Otherwise, it is solved by the ordinary
method. After determining the scalarsr; and r,, the
unknown coefficients {a;}3_, will be obtained from

(17).

2.3. Chain least squareswith n-termbasis
Let f,, be the least squares approximation of
f € L*[a,b] onthebasis{L;}",,i.e,

n

fu(8) = ) aili(s), s € la,bl

=1

To determine the unknown coefficients {a;}}-,
we must solve the following minimization problem

ming, o e(ay, ..., a), (19)

where

e(ay, ., ay) = [} X%, a;Li(s) — f(s))%ds.  (20)

This is eguivalent to solving the following normal
equations (Datta, 2010).

a )
a—aie(al, w,y) =0, i=1,..,n (21

This system is often an ill-conditioned problem to
solve. For reducing the ill-conditioning, we act as
follows.

Let a=(ay..,a,)" be the solution of the
problem (21). Then there exist scalars {r;}*}
belonging to R such that

a— a1 =1, i=1,..,n—1

In other words, the solution of the system (21) is
the intersection of the following n — 1 surfaces:

gi(as,..,a,) =0, i=1,..,.n—1,

where
gi(ali "'lan)
=a;— a4 —1i=1,...,n—1, (22

therefore, the minimization problem (19) is
equivalent to

min  e(ay, .., a,)

s.t  gi(ay,..,a,) =0, i=1,..,n—1. (23)
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By the lagrange multipliers method (Ito and
Kunisch, 2008), there exist scaars {4}
belonging to R such that the problem (23) is
equivalent to

Ve = Z?z_ll AV g, . (24)
gi(as,..,a,) =0, i=1,..,n—1.

Since
e = (66 de )
€= da,’ "' da,/)
by (20) and (22) we have
n
de ]
a—ai=2' Cij_zfit l=1,...,7’l,
j=1
where

b
Cij=f Li(s)Li(s)ds, i,j €{1,..,n},
a

b
fi =f Li(s)f(s)ds, i €{1,..,n},
and

Vg; = (0,..,0,1,-10,..,0), i=1,..,n—1,

where 1 and —1 are the i'th and (i + 1)'th
components of |7gl- respectively. Consequently, the
system (24) is equivalent to

2cp1a1+2¢ a5+ -+ 20100, —2f1= A4
205101 F2¢55a,+ ++ + 20000y —2f5=2, — A4

2001a1F 2000y 7+ + 20nnn =2/, =~

a1 - az - 1‘1
An-1—0p = Tp-1.

By summing the first n equations, we have (for
removing scalars Ay, ..., 4,,_1)

dlal + d2a2 + -4 dnan = h
a; — a, =n (25)
An-1 — 0n =Th-1
where
n n
h:Zfi' djzzcij, jef{l,..,nk
i=1 i=1

We solve the system (25) instead of (21) for
determining the unknown coefficients {a;}i-;.
Because (25) is often more well conditioned than
(21). From the system (25) the coefficients {a;}1-,

are determined in terms of the unknown scaars
{r 3! asfollows:

a = DR, (26)
where

a=(ag,..,a,)T, R=(ry ., 1y, DT,

and
N_tl N_tz b N_tn—l h
1 _tl N - tz °ee N_tn—l h
D=— : : : L,
N =t —t; =+ N—tyq h
—t1 —t; v —th1 h
where
n
N = Zdi,
i=1

tl = dl’ tl = ti—l +dl' i= 1,...,Tl— 1.
Let
L(s) = (L1(S), -, Ln(s)),
then from (20) we have
b

(@, wnran) = [ [L()a= f)Pds,

or equivalently (using (26))
E(ry, ...,rn_bl) =e(ay, .., a,)
- f [L(s)DR — f(s)]ds,

Since

L(s)DR = L(s)D*ry + -+ L(s)D" 1r,_,

+ L(s)D™,

where
D! = i'th column of D,
one can write
b
E(ry,..,Ty_y) = J. [L(s)D'ry + -

+ L(s)D"r,_, + L(s)D"

— f(s)]?ds.
Let

pi(s) =L(s)D}, i=1,..,n,

and

f(s) = £(s) = pa(s),
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then

b
By eortn) = [ [0+ b 9)
— )]s,

and so the minimization problem (19) is equivalent
to

minrl,...,rn_l E(rlx R Tn—l)- (27)

For determining the unknown scalars {r;}1=!, we
must solve the (n — 1)-term least squares problem
(27). If it's normal equations are well-conditioned,
it is solved by ordinary least squares method,
otherwise, it is reduced to an (n — 2)-term least
squares problem. This trend is continued so that we
reach a well-conditioned problem. We define this
approach as chain least squares method. In all the
presented numerical examples we have continued
the chain method up to the final stage in order to
get the maximum accuracy without doing any
comparison.

The following numerical results show that, the
chain method often operates better than the
ordinary method. In the least squares approximation
of the following examples, we take {1, s, ...,s™} as
basis functions. The maximum of absolute errorsis
computed as (10).

Example 3. f(s) = cos( s), s E [0,%].

1
4
Example4. f(s) = In(s), s € [13]
Example5. f(s) = sinh(s), s € [0,1].
The maximum absolute errors of Examples 3, 4

and 5 by the both methods are reported in Tables 4,
5 and 6 respectively.

Table 4. Maximum absolute errors, ||e]|., for Example 3

Table 5. Maximum absolute errors, ||e]| .., for Example 4

n Ordinary method Chain method
1 1.47 x 10792 1.47 x 10792
2 1.20 x 10793 1.20 x 10793
3 1.04 x 10794 1.04 x 10794
4 9.37 x 10706 9.37 x 1070
5 8.62 x 10797 8.62 x 10797
6 7.79 x 10798 8.05 x 10708
7 1.37 x 10797 7.59 x 107°°
8 1.42 x 10797 7.23 x 10710
9 1.00 x 10797 7.53 x 10711

Table 6. Maximum absolute errors, ||e||, for Example 5

n Ordinary method Chain method
1 5.40 x 10792 5.40 x 10792
2 9.88 x 1073 9.88 x 10703
3 3.52 x 10704 3.52 x 10794
4 3.85x107% 3.85x 1079
5 3.85 x 10705 3.85 x 1079
6 6.67 x 10708 6.67 X 10798
7 1.07 x 10799 1.07 x 10799
8 7.02 x 10711 6.51 x 10711
9 4.06 x 1011 4.44 x 10713

n Ordinary method Chain method
1 1.26 x 10792 1.26 x 10792
2 1.12 x 10794 1.12 x 10794
3 1.39 x 1079 1.39 x 1079
4 6.55 x 10708 6.55 x 10708
5 5.41 x 10799 5.41 x 1079
6 1.79 x 10711 1.72 x 10711
7 3.30 x 10712 1.07 x 10712
8 1.95 x 10711 2.99 x 10715
9 2.25 X 10719 4.44 x 10716

3. Numerical solution of some functional
equations

In this section, we consider some examples of the
ill-posed functional equations of the form (1) in
order to compare the accuracy of both methods.
Alsowetake {L;}, = {t:711,.

Casel.

b
(Ax)(s) =j k(s,t)x(t)dt, s € [a,b].
a

In this case, we deal with Fredholm integral
equations of the first kind (Bitsadze, 1995; Delves
and Mohamed, 1985). Many engineering problems
cane be modeled by this kinds of equations. For
example, one and two-dimensional scattering from
conducting bodies can be modeled by them
(Balanis, 1989). In most numerical approaches for
solving these equations, the attempt is to get
accurate approximations by reducing their ill-
conditioning (Babolian and Delves, 1979; Babolian
et a., 2007; Groetsch, 1984; Malekngad et d.,
2006).

Case 2.

b
(Ax)(s) = ex(s) —j k(s,t)x(t)dt, s € [a,b].

a

In this case, we face the singularly perturbed
linear Fredholm integral equations of the second
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kind (Smith, 1985; Sweilam et a., 2009). Theseill-
posed equations (€ — 0) arise in various fields of
science and engineering (Sweilam et al., 2009).

Note: For computing the related integrals, we use a
Gaussian quadrature rule of order 10 with 32
significant digits.

The numerical examples are as follows:

Example 6.
1 es+1 _
sty(t)dt = ———, s € [0,1].
fo etx(t) ——— s€lo1]
Example 7.
2
j sin(st) x(t)dt
0
(4s + 1) sin (Zs - %) — (4s — D)sin(2s + %)
7 16s2 —1 )
s € [0,2].
Example 8.
j3et5in(s)x(t)dt _ (3 Sin(s) — 12)e3Sln(s) + 1,
0 sin2(s)

s €10,3].

The exact solutions are e, sin(%t) and t

respectively. The maximum absolute errors of these
examples using both methods are reported in Tables
7,8and9.

Example9.
1
ex(s) — f cosh(s + t) x(t)dt = — cosh(s),
-1
s €e[-1,1],

which has the exact solution

2cosh(t)
2 + sinh(2) — 2¢’

x(t) =

We solve this perturbed problem for the values of
£=1073,10"* and 1075. The errors of dynamical
systems method (DSM), proposed in (Sweilam et
al., 2009), are about 2.9 x 10~3 for these values of
e, while the error of our presented method is
5.6 X 1071° for n = 9 (Tables 10, 11 and 12).

Table 7. Maximum absolute errors, ||e|| ., for Examples 6

n Ordinary method Chain method
1 9.16 x 1071 9.16 x 107%1
2 1.42 x 1079 142 x 1079
3 1.46 x 10792 1.46 x 10792
4 1.05 x 1079 1.05 x 1079
5 1.23 x 10792 5.94 x 107%
6 3.77 x 107°1 2.71 x 1079
7 7.53 x 1072 2.52 x 1079

Table 8. Maximum absolute errors, ||e||, for Examples 7

n Ordinary method Chain method
1 2.76 x 1071 2.76 x 107%1
2 8.14 x 1079 8.14 x 10793
3 2.83 x 10793 2.83 x107%
4 4.07 x 107% 4.07 x 10795
5 4,73 x 10794 6.77 X 10796
6 1.45 x 10792 6.45 x 1078
7 2.61x107% 1.83 X 10798

Table 9. Maximum absolute errors, ||e|| ., for Example 8

n Ordinary method Chain method
1 2.08 x 10700 2.08 x 1070
2 1.12 x 10713 1.12 x 1071
3 1.39 x 10711 1.39 x 10713
4 6.55 x 10797 6.55 x 10712
5 5.41 x 107% 5.41x 10710
6 1.79 x 1073 1.72 x 1079
7 3.30 x 10792 1.07 x 10798

Table 10. Maximum absolute errors, |||,

for Example 9 with e = 1073

n Ordinary method Chain method
1 1.23 x 107% 1.23 x 1079
2 1.23 x 1079 1.23 x 107
3 3.57 x 10793 3.57 x 1079
4 3.57 x 10793 3.57 x 1079
5 3.55 x 107% 3.55 x 1079
6 3.55 x 107% 3.55 x 107%
7 1.81 x 10797 1.80 x 10797
8 1.83 x 1077 1.80 x 1077
9 6.03 x 10708 5.57 x 10710
10 6.92 x 10798 5.57 x 1071

Table 11. Maximum absolute errors, |||,

for Example 9 with e = 107

n Ordinary method Chain method
1 1.23x107% 1.23 x 107
2 1.23 x107% 1.23 x107%
3 3.57 X 1079 3.57 x 10793
4 3.57 x 1079 3.57 x 1079
5 3.55 x 107% 3.55 x 107%
6 3.55 x 107% 3.55 x 107%
7 2.24 x 1070¢ 1.80 x 10797
8 2.68 x 10706 1.80 x 10797
9 9.53 x 10706 5.60 x 10710
10 1.20 x 107% 5.60 X 10710
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Table 12. Maximum absolute errors, ||e|| .
for Example 9 withe = 107>

n Ordinary method Chain method
1 1.23 x 10701 1.23 x 10791
2 1.23 x 10701 1.23 x 10701
3 3.56 x 10793 3.57 x 1073
4 3.56 x 107%3 3.57 x 10793
5 2.49 x 10705 3.55 x 10705
6 3.86 x 10705 3.55 x 10795
7 3.09 x 107%¢ 1.80 x 10797
8 3.54 x 107%¢ 1.80 x 1077
9 2.09 x 10703 5.65 x 10710
10 211 x 10793 5.49 x 10710

At the end of this section, by making random noise
data on the right hand side of the examples 3.1 and 3.3
and solving these equations by the chain least squares
method, the stability of new method is investigated.
Numerical results are shown in the Tables 13 and 14.
It should be mentioned that, for perturbations of order
&=10"™ in data of a problem, the maximum
accuracy of the approximate solutions will be of order
& =107™ (for apositive integer m).

Table 13. Maximum absolute errors, ||e|| ., of Example 6
for random noise data by new method

§=10"° £=10"6 §=10""
1 9.16 x 10701 9.16 x 1071
2 1.41 x 10791 1.42 x 10701
3 2.28 x 10702 1.54 x 10792
4 1.39 x 10792 1.25 x 10793
5 2.38 x 10792 2.43 x 10793
6 3.44 x 10792 3.44 x 1073
7 4,72 x 10792 4.72 x 10703
&§=10-5 £=10"° &£=10""
9.16 x 10701 9.16 x 10701 9.16 x 1071
1.42 x 10791 1.42 x 10791 1.42 x 10701
1.47 x 10792 1.46 x 10792 1.46 x 10792
9.72 x 10794 1.04 x 10793 1.05 x 10793
2.96 x 107%* 8.31 x 10705 6.17 x 10795
3.42 x 1074 3.17 x 10705 2.77 x 10706
471 x 10704 471 x 10795 7.95 x 10706

Table 14. Maximum absolute errors, ||e|| ., of Example 8
for random noise data by new method

n §=1073 E=10"*
1 2.08 x 10790 2.08 x 10790
2 7.74 x 10704 7.74 x 10705
3 2.18 x 10793 2.18 x 10704
4 427 x 10793 427 x 10794
5 7.05 x 10793 7.05 x 10794
6 1.04 x 10792 1.04 x 1073
7 1.44 x 1072 1.44 x 1073
§=1075 §=10"° &=107"7
2.08 x 10790 2.08 x 10790 2.08 x 10790
7.74 x 10706 7.74 x 10797 7.74 x 10708
2.18 x 10795 2.18 x 1079 2.18 x 10797
427 x107% 427 x 1079 427 x 10797
7.05 x 10795 7.05 x 10706 7.05 x 1077
1.04 x 107%4 1.04 x 10795 1.04 x 107°¢
1.44 x 107% 1.44 x 10705 1.40 x 10796

4, Conclusion

The numerical results show that the chain least
squares method is often more accurate and stable
than the ordinary least squares approach. Reduction
of the n-term least squares problem in the (n — 1)-
term problem is a new approach that can be the
topic of new researches. It should be mentioned that
the defined surfaces (22) have a main role in
increasing the efficiency of least squares
approximations. For decreasing the ill-conditioning
of the least squares problem better than the
presented method, finding other trgectories is
suggested as an open problem.
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