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Abstract

Let S be amonoid and X a class of S-acts which is closed under coproducts. The object of this article is to find
conditions under which al S-acts have X-precovering. We have shown that the existence of torsion-free
precovering implies the existence of torsion-free covering. Thiswork is an attempt to further facilitate the study of

the conjecture that al S-acts have flat cover.
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1. Introduction

Throughout this note, unless otherwise stated, Sis a
monoid. A right S-act Ag is a non-empty set on
which § acts unitarily on the right, that is, thereisa
function,

AXS - A,

(a,s) - as,

for each s€S and a € A, with the following
properties:

(i) (at)s = a(ts),foralt,s € Sand a € 4;

(ii) alg = a,fordl a € A.

The notion of a left S-act is defined dually. To
simplify, by an S-act we mean a right S-act. Also,
we shall write al maps on the left and hence gf
means that / followed by g. The reader isreferred to
(Clifford and Preston, 1961) and (Kilp et al. 2000)
for basic definitions and results related to act and
semigroup theory.

Let S be a monoid and X be a class of S-acts that
is closed under coproducts. An S-act B € X is
caled an X-precover for an S-act A4 if there is a
homomorphism f:B — A such that for any
B' € X and any homomorphism f": B’ — A there
exists a homomorphism g: B — B with f' = fg,
that is, the following diagram of right S-
homomorphisms is commutative,

B

g -~ ,
|
A/
f

B— A
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In addition, in the above diagram, B is called an

X-cover of A if g is an isomorphism for any
endomorphism g: B — B withf = fg.
We say that 4 has atorsion free (resp. flat, strongly
flat, torsion free injective) cover if X is the class of
torsion free (resp. flat, strongly flat, torsion free
injective) acts.

It is easily seen that all X-covers of an S-act are
isomorphic, so they are unique up to isomorphisms.
Another definition for covering is used in the
literature. An S-act B € X is called an X-cover of 4
if there exists an epimorphism f: B — A such that
flc is not an epimorphism for every proper subact
C of B. For projective covering these two
definitions are the same as it is shown in
(Mahmoudi and Renshaw, 2008). But for strongly
flat covering we do not know whether they
coincide. There has been some progress but this is
gtill an open question (see (Ershad and Khosravi,
2011)).

A great dea of work has been done on the
module version of covering. As a pioneering work,
Bass (1960) used the later definition of covering
and showed that projective covers exist for all
modules over aring R if and only if R is a perfect
ring. Also, in (Bican et al. 2001), the authors,
proved the conjecture of Enochs in module theory,
that al unitary modules over aring with a unit have
a flat cover (in the first sense). This work is an
attempt to further facilitate the study of this
conjecture in act theory.

The definition of cover used in amost al other
works in act theory is the same as in (Bass, 1960)
(see for example, (Khosravi et a. 2010) and
(Mahmoudi and Renshaw, 2008)). In this article we
use the first definition (the Enochs's sense) to study
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the existence problem of X-cover, especially when
X isthe class of torsion free or flat acts.

After some preliminaries and definitions on acts
and monoids, in Section 2, we will find conditions
(on S) under which all acts have torsion free cover.
Also, we have shown that if S contains a zero, al S-
acts have X-precover provided that all injective S-
acts have X-precover.

Let S be a semigroup and 7" be a submonoid of S.
The right semigroup of fractions of S relative to T,
when it exists, is denoted by ST~!, and is the
quotient S X T/~, where ~ is the equivalence
relation defined by (s, t)~(s', t") if and only if there
exist u€eS and ve T, such that su=s'v and
tu=t'v. When T is the set of al cancellable
elements of S, then ST~ is called the right quotient
semigroup. Indeed, if the equivalence class
determined by (s, t) is denoted by s/t, then STt is
a semigroup under the operation (s/t)(s'/t") =
su/t'v, where tu=s'v for ueS and ve T.
Moreover, a semigroup Q containing S is a right
quotient semigroup of S if every cancellable
element of S has a two sided inverse in Q, and
every element of O is of the form st™* for some
s, t € S, wheretiscancellable.

A semigroup S is said to have right Ore condition
(or common right multiple property, CRM for
short) if for every s,t € S with ¢ cancellable, there
exists',t' € S wheret' is cancellable and st’ = ts'.
It is easy to see that a monoid S has aright quotient
semigroup if S has Ore condition. In fact, if S has
Ore condition and T is the set of all cancellable
elements of S, then it suffices to check whether
ST~ is asemigroup. It is a routine matter to verify
that the stated relation ~ is an equivalence relation.
Since S has Ore condition, for each s',t € S with t
cancellable, there exist u, v € S with v cancellable
such that, s'v = tu. So for each s/t,s’/t' € ST,
the operation (s/t)(s'/t) =su/t'v is well-
defined. Thus ST™1 is the right quotient semigroup
of S.

As in (Feller and Gantos, 1969), an S-act 4 is
called torsion free if as=bs with a, bEA and s€S are
cancellable, implying a=b. This definition is
dlightly different to the one used in (Kilp et al.
2000) which considers the right cancellable element
s€S instead of cancelable. Also the relation ,
defined by a T b, for each a,b € A, if and only if
as = bs, for some cancellable element s€S, is
called the torsion relation on 4. Clearly an S-act 4
is torsion free if and only if T = A,. Moreover, we
have the following two lemmas that are used
frequently in this paper:

Lemma 1.1. ((Feller and Gantos, 1969), Theorem
6.7) Let S be a semigroup with a zero and a
cancellable element. Then S satisfies CRM if and

only if for every S-act 4, the torsion relation T isa
congruence.

Lemma 1.2. ((Feller and Gantos, 1969), Theorem
6.8) Let S be a semigroup which has a right
quotient semigroup. Then for an S-act 4, A/ 7 is
torsion free, where 7 is the torsion relation.

2. The Existence of Torsion Free Covering of
Acts

In (Enochs, 1981), it is shown that in the category
of modules over aring, flat covers exist whenever
flat precovers exist. Since the proof is categorical,
by a similar proof we may have the same result for
the category Act-S, that is, for every semigroup S
and every S-act, 4, if 4 has a flat (resp. strongly
flat) precover then it has a flat (resp. strongly flat)
cover. But in general the existence of precover does
not imply the existence of cover. For example,
clearly every S-act has a projective precover, but
every S-act has a projective cover only if S is a
perfect semigroup (see (Isbel, 1981)). In the first
part of this section we will show that the existence
of torsion free precovers implies the existence of
torsion free covers. Then we will find conditions on
amonoid S by which every S-act has a torsion free
precover.

The module version of the following proposition
has appeared in (Xu, 1981).

Proposition 2.1. For any torsion free precovering
for an S-act B there exists atorsion free precovering
f+A — B such that for no nontrivial congruence
p € ker(f), A/p istorsion free.

Proof: Let f:A"— B be a torsion free
precovering and X be the set of all congruences o
on A’ contained in ker(f") with 4’/ torsion free.
By Zorn's Lemma, there is a maximal element
p EX. Put A=A4'/p, and consider f: A — B asthe
induced map. Note that sincep < ker(f"), f is
well-defined. Then one can easily see that f is a
torsion free precovering with the needed property,
since /' isatorsion free precovering and p € X isthe
maximal element.

Remark 2.2. Note that the above proposition is also
true for strongly flat (flat) precovers instead of
torsion free precovers.
The following theorem shows the torsion free
covers exist for acts over monoids which have
torsion free precovers.

Theorem 23. The torsion free precovering
f:A— B in the Proposition 2.1 is a torsion free
covering of B. Conversely, if f: A — B isatorsion
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free cover, then it satisfies the condition in
Proposition 2.1.

Proof: It suffices to show that the endomorphism
g: A — A with f=fg is an isomorphism. First note
that since A4 is torsion free, A/ker(g) is torsion
free. Also f=fg implies ker(g) € ker(f). So by
Proposition 2.1, ker(g) =4,, that is, g is a
monomorphism.

Now we show that g isonto. Let X © A be a set
with a larger cardinadity and consider X =
{(4;,g9:) | i € I}, to be the set of al proper subsets
of X with the same property as A. Define the
relation < on X by (4;9;) < (4;,9;) iff A; S 4;
and gj|,, = g;- Note that the union(U 4;, U g;), of
any chainin X is also a torsion free precover and if
p is a non-identity congruence on U A; such that
p € ker(Ug;), then UA; /p is not torsion free,
since each (4;/p;) is not torsion free, where
pi =p N(A; xA) #4,,. Thus £ has a maximal
element, (C,h). Since k is a torsion free precover,
there exists g’: € — A with fg' = h, which is a
monomorphism by the same proof as for g. We
have the following commutative diagram,

We will show that gg' is an isomorphism, which
implies g is onto. Clearly gg' is a monomorphism.
If gg' is not onto, then put D = A\ gg'(C),
A'=CUD and k: A" — A, with k=gg' on C
and the identity map on D. Then k is a bijection
map and gives A’ the same S-act structure as A.
Now consider (4', fk). Then it is easy to see that
(A, fk) is a torsion free precover of B, and
(C,h) < (A4, fk). Moreover, for each congruence
p < ker(fk)onA’,

k(p) = {(k(x), k()| (x,¥) € p}

is a congruence on A contained in ker(f), and if
A’/ p istorsion free then A/k(p) is torsion free. So
k(p) is trivial, which implies p =A,. Thus
(A, fk) € X, which contradicts the maximality of
(C,h). SoD = @, thatis, gg' isonto.

Conversely, suppose that f: A — B is a torsion
free cover of B and p < ker(f), is a nontrivid
congruence such that A/p istorsion free. Since f is
a torsion free precover, there exists a
homomorphism g:A/p — A, with fg=f,

where f": A/p — B, defined by f'(ap) = f(a).
So f' isatorsion free precover for B. Now consider
the following commutative diagram of S-
homomorphisms,

1%

where 7 is the canonical projection. Since f is a
torsion free cover, gm is an isomorphism, that is,
isamonomorphism. Sop = ker m = A,.

Theorem 2.4. An S-act B has atorsion free cover if
and only if there is a torsion free precovering
f:A— B of B, such that ker(f) contains a
maximal congruence w, such that A/w is torsion
free.

Proof: First suppose that f: A — B is a torsion
free cover of B. Then by Theorem 2.3, ker(f)
contains no nontrivial congruence p < ker(f),
with A/p torsion free. SO w =4, is a maxima
congruencein ker(f) such that A/w istorsion free.
Conversely, suppose that f: A — B is a torsion
free precovering of B, and ker(f) contains a
maximal congruence w, such that, A/w is torsion
free. Thus there exists a homomorphism g: A/w —
A, with fg = f', where f: A/w — B, defined by
f'(aw) = f(a). Then f' is a torsion free precover
of B. So by Theorem 2.3, f' is atorsion free cover
of B, by maximality of w.

In the following, we will find conditions on S on
which every S-act has atorsion free precover.

Lemma 2.5. Let X be a class of S-acts which is
closed under subacts. If A€ Xand f:A — Bisan
X-precover and C is a proper subact of B, then
g: f~Y(C) — C is an X-precover for C. In
particular, the result is true if X is the class of
torsion free S-acts.

Proof: First notethat f~1(C) € X, by assumption.
For each homomorphism h: D — C, with D € X,
there exists a homomorphism h: D — A, such that
h = fh, since f is an X-precover. Now clearly
h(D) € f~1(C). So h may be considered from D
into f~1(C). Thus h = gh, that is, g is an X-
precover.

The proof of the second part is clear, since any
subact of any torsion free right act istorsion free.
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Lemma 2.6. Let S be a semigroup with a right
quotient semigroup and B be an injective S-act.
Then f:A — B is atorsion free precover if and
only if for each homomorphism f: A" — B with
A' torsion free and injective, there exists g: A" —
Asuchthat f' = fg.

Proof: The necessity part is clear.
Sufficiency. Let C be a torsion free right act and
h:C — B be a homomorphism. First note that
E(C), the injective envelope of C, is torsion-free.
To prove this we show that E(C) is isomorphic to
E(C)/t, where t is the torsion congruence on
E(C). Consider the natural epimorphism
m:E(C) — E(C)/t. Since C is torsion free, the
restriction 7| is monomorphism. Now since C is
essential in E(C), m must be a monomorphism.
Since B is injective, there exists h: E(C) —
B such that h|. = h. By assumption there exists a
homomorphism g: E(C) — Asuch that h = fg.
So we have,
h =hlc = fglc = f(gi),
where i is the inclusion map from C into E(C).
Thus f isaprecover.

Remark 2.7. The condition in the previous lemma
is aso sufficient for f: A — B to be an strongly
flat (a flat) precover. This condition is aso
necessary if the injective envelope of any strongly
flat (resp. flat) S-act is strongly flat (resp. flat).

Corollary 2.8. Let S be a semigroup with a right
quotient semigroup and B be an injective S-act.
Then f: A — B is a torsion free precover (cover)
of B if itisatorsion free injective precover (cover).

Asin (Kilp et a. 2000), by Acts-S we mean the
category of right acts containing the unique one
element act, 6, over a semigroup S with a zero.
Also Act-S is the category of right S-acts
containing @s. Note that the pullbacks exist in these
categories. So we have the following theorem and
corollary in Acte-S and Act-S.

Theorem 2.9. Let X be aclass of actsin Actg-S or
Act-Swhich is closed under subacts. Then every S-
act has an X-precover if and only if every injective
S-act has an X-precover.

Proof: The necessity part is clear.

Let B be an S-act and i:B — E(B), be the
inclusion. By assumption E(B) has an X-precover,
say, g: C — E(B).Put

A={(b,c) € BxC|g(c)=h}.

Then (4, (p1, p2)) isthe pullback of (i, g), where
p; are the restrictions of the canonical projections.
We claim that p;: A — B is an X-precover for B.
First note that p,: A — C, is a monomorphism, for

if p,(b,c) =p,(b',c"), then ¢ = ¢" which implies
b =b', by definition of A. Thus 4 is isomorphic
with a subact of C. So A € X, by assumption.
Moreover, if A'e X and p:A"— B is a
homomorphism, then there exists a homomorphism
h: A" — C, such that gh = ip’. Now there exists a
homomorphism p: A" — A such that, p,p’' =p'.
Indeed p' is defined by p'(a’) = (p'(a"), "), where
h(a") =

Corollary 2.10. Let S be a semigroup with a zero.
Then every S-act has a torsion free precover if and
only if every injective S-act has a torsion free
precover.

Note that if S is a group, then every S-act 4 is
torsion free. If A = U;c; 4; is adecomposition of 4
into indecomposable subacts, A;, then each 4;is
cyclic as an indecomposable act over a group.

Proposition 2.11. Let S be a semigroup with a zero
and a right quotient semigroup Q. If Q is a group,
then every right S-act B has atorsion free precover.

Proof: Since B € E(B), by Lemma 2.5, it suffices
to find a torsion free precover for injective acts.
Moreover, by Lemma 2.6, it suffices to find a
torsion freeright act 4 and f: A — B such that for
each homomorphism f": A" — B with A’ torsion
free and injective, there exists g: A" — A such that
f'=fg.

First note that the class of F of cyclic torsion free
right S-acts forms a set. Suppose that 7' is the set of
all homomorphisms from S-actsin F into B and put
A = U;F;, where F;'s are the domains of the
homomorphisms in 7. Define f:A— B by
f(a;) =ta;, foreacht € T. It is easy to see that
every torsion free injective S-act A’ is a unitary Q-
act (Lemma 7.4 of (Feller and Gantos, 1969)).
Since Q isagroup, A" = Ur,cr F;' for some cyclic
torsion free Q-acts, F;', which are aso cyclic
torsion free S-acts. Then any homomorphism
fiA"=UrpcrF;' — B, is defined by f'(a’) =
Uierre t'(a"), for each a’ € A'. Hence there exists
g: A" — Asuchthat f' = fg.

One can easily see that by using Remark 2.7, the
above proposition is also true for strongly flat (resp.
flat) precover whenever any inverse image of any
strongly flat (resp. aflat) act is strongly flat (resp.
flat).

Corollary 2.12. Let S be amonoid with a zero and
aright quotient semigroup Q. If Q is a group, then
every right S-acts has atorsion free cover.

In the proof of Lemma 2.6, it is shown that for a
semigroup S with a right quotient semigroup, the
injective envelope of a torsion free S-act is torsion
free. In the following theorem, we will show that in
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this case, torsion free cover of an injective S-act is
injective.

Theorem 2.13. If S is a semigroup with a right
quotient semigroup, then every torsion free cover of
every injective right S-act (if exists) isinjective.

Proof: Let B be an injective S-act and f:4A — B
be a torsion free cover of B. Since B is injective,
there exists g: E(A) — B such that gi = f, where
i:A— E(A) isthe inclusion map. We shall show
that E(A) isalso atorsion free cover of B and hence
it is isomorphic to 4, that is, 4 is injective. It is
easily seen that g:E(A) — B is a torsion free
precovering. Now let p < kerg be a right
congruence such that E(A)/p is torsion free. By
Theorem 2.3, it is enough to prove that p istrivia.

Put f' = m|,, where m: E(A) — E(A)/p is the
canonical projection with ker 1 = p. So,

ker f'={(a,a’) € Ax A|f'(a) = f'(a')}
={(a,a") € AX A| (a,a’) € p S ker g}
S {(aa) e AxA|g(a) = g(a)}
={(a,a) € AxA|g(i(a)) = g(i(a"))}
={(a,a) € AxA|f(a) =f(a)}
C kerf.

Now A/ker f' is torsion free as it is isomorphic
to a subact of E(A)/p. Since f is a torsion free
covering, by Theorem 23, kerf'=A, as a
subcongruence of ker f. Therefore, f' = 7|, is a
monomorphism. So = must be a monomorphism,
that IS, p= kerm = AE(A)'

The converse of the above theorem is true for
weakly injective torsion free precovers by the
following proposition.

Proposition 2.14. If an S-act B has a weskly
injective torsion free precover 4, then B is weakly
injective.

Proof: Suppose f:A— B is a torsion free
precover. Let I be aright ided of Sand g:1 — B
be a homomorphism. It suffices to find a
homomorphism g: S — B suchthat g|; = g.

Clearly I is torsion free. So there exists f': I —
A such that ff' = g. On the other hand since 4 is
weakly injective, there exists f:S — A with
f'li=f""Nowputg = ff".
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