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Abstract

In this paper, we introduce the notion of multiplier in BL-algebra and study relationships between multipliers and
some special mappings, likeness closure operators, homomorphisms and (©, V)-derivations in BL-algebras. We
introduce the concept of idempotent multipliers in BL-algebra and weak congruence and obtain an interconnection
between idempotent multipliers and weak congruences. Also, we introduce the special multiplier ay, and study
some properties. Finally, we show that if A is a boolean algebra, then the set of all multipliers of A is a BL-algebra

under some conditions.
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1. Introduction

BL-algebras were invented by (H’ajek, 1998) in
order to prove the completeness theorem of “Basic
Logic” (BL, for short) arising from the continuous
triangular norms, familiar in the fuzzy logic
framework. The language of propositional H’ajek
basic logic contains the binary connectives (®and
=and the constant 0.

Axioms of BL are:

AD(p = ) = (W =>w) = (9 =>w),

(A2)(pOY) = o,

(43)(pOV) = (VO9),

(4D (pO(p = v) = (V= W = ¢),

(A5a)(p = (b = w)) = ((9OP) = w)),

(A5D) ((pOY) = w) = (Y = (Y = w)),

(46)((p = §) = w) = (b = ¢) = w) = w),
(A7)0 = w.

The main example of a BL-algebra is the interval
[0,1] endowed with the structure induced by a
continuous t-norm. MV-algebras, Godel algebras
and product algebras are the most known classes of
BL-algebras.

The concept of multiplier for distributive lattices
was defined by (Cornish, 1974).Multipliers are used
in order to give a non standard construction of the
maximal lattice of quotients for a distributive
lattice, (Schmid, 1980). A partial multiplier in a
commutative semigroup (4,-) has been introduced
as a function f from a nonempty subset Dfof A
intoA such that

fx)-y=x-f(y)forallx,y € Dy, (Larsen, 1971).
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In this paper, we introduce the concept of
multiplier for a BL-algebra and study some
properties. Then we study the relationships between
multipliers and some special mappings, likeness
closure operators, homomorphisms and (O, V)-
derivations in BL-algebras. Next we study the
relationships between cardinal of a BL-algebra and
number of multipliers in BL-algebras. Effect of a
multiplier on some special filter, likeness Boolean
filter, prime filter, ... in BL-algebras is also studied.
We introduce the concept of idempotent multipliers
in BL-algebra and weak congruence and obtain an
interconnection between idempotent multipliers and
weak congruences. The special multiplier «, and
some properties are studied. Finally, we show that
if A be a boolean algebra, then M (A) will be a BL-
algebra under the conditions.

2. Preliminaries

In this section, we present some definitions and
results about BL-algebra and MV-algebra and
closure operator.

Definition 2.1. (H’ajek, 1998). A BL-algebra is an
algebra(4,AV, ®, = ,0,1)of type (2,2,2,2,0,0) such
that:

(BL1) (4,v,A,0,1) is a bounded lattice,

(BL2) (A,®,1) is an abelian monoid,

BL3)x @z < yifandonlyifz<x -y,

(BL4) xO(x = y)=xAy,

BL) (x=>y)V(y—-x) =1,

forall x,y,z € A.
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A BL-algebra is called an MV-algebra if x™ = x,
for all x € A, where x* = x - 0.

Theorem 2.2. (H’ajek, 1998). In any BL-algebra
(A,AV,0,—,0,1) the following properties are valid:
(H)x <yifandonlyifx -y =1,

2)1->x=x,

B)xny<x,

@x-> -2 =y (x> 2),

G x=>yAEx-=>2)=x—>A2),

O x=>2)A(y—>2)=(xVy) =z
(NEx-=>2)v(y—=2)=xAy) >z

(®) x A (Vier ¥i) =Vier (x Ayp),

(9) if A is BL-chain, then we have: x V (Ajg; y;) =
Aier (x V yy).

Definition 2.3. (H’ajek, 1998). Let A be a BL-
algebra. A nonempty subset F of A is called a filter
of A if F satisfies the following conditions:
(Fl)ifxe Fandx <y, y€ A, theny €F,

(F2) x©y € F for every x,y € F, that is, F is a
subsemigroup of A.

Denote by F(A) the set of all filters of a BL-
algebra A. Clearly, {1} and A are respectively, the
smallest and the largest elements of F(A).
Moreover, the following result gives an
equivalentversion of the concept of filters.

Theorem 2.4. (H’ajek, 1998). Let A be a BL-
algebra. Then a nonempty subset F of A is a filter
of A if and only if it satisfies the following
conditions:
(F3)1€F,
(F4)x,x >y € Fimplyy € F.

If F is satisfied in F3, F4, then F is called a
deductive system or Ds for short.

The MV-center of A, denoted by MV(A) is
defined as

MV(A)={x € A: x™ = x}.

Hence, a BL-algebraAd is an MV-algebra iff
A= MV(A).

In the rest of this paper by B(A) we denote the
Boolean algebra of all complemented elements in
L(A) (hence B(A) = B(L(A))).

Remark 2.5. (H’ajek, 1998). If x € Aand e € B,
thene Ox =eAx, x > e = (xOe*)" =x"Ve.

Definition 2.6. (Burris, 1981). If we are given a set
A, a mapping f:Su(4) - Su(A) is called a
closure operator if for all X,Y € A4, it satisfies the
following conditions:

() X S f(X),

(c2)if X € Y, then f(X) € f(V),

(€3) f2(X) = f(X).

Definition 2.7. (Torkzadeh, 2012). Let A be a BL-
algebra and d: A — A be a function. We call d a
(®,Vv)-derivation on A, if d satisfies the following
condition:

dx©y) =([dx) Oy)V (x©d(y)),
for all x,y € A.

3. Multipliers in BL-algebras

In this paper, we denote BL-algebra (4,A,V, ®,—,0,1)
with A.

Definition 3.1. f: A — A is called a multipliers in
A, if

fx=>y)=x-f®)

forallx,y € A.
We denote the set of all multiplier in A with
M(A).

Example 3.2. (a) f(x) =1, g(x)=xare
multipliers in any BL-algebra.
(b) a,(x) =p—x is multiplier in every BL-
algebra. a,, is called the simple multiplier.
(c) Let I =[0;1] be the unit interval. We define
©, = on [0; 1] as follows:
x@y=xAy, x->y=1 if x <y, otherwise
X->y=y.

Then (I,AV,®,—,0,1) is a BL-algebra. Now, we
define f:1 — I as follows:

x «if x< 0.5
xX) = 3.1
f& {1 df x > 0.5 G-

then f is a multiplier.

(d) Suppose 0<a<b<1l and let A=
{0,a,b,1}. For all x,y € A, we define, ® and — as
follows:

® 0 a b 1
0O 0 0 0 O
a 0 0 a a
b 0 a b b
1 0 a b 1
- 0 a b 1
0O 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

then (4,V,A,®, = ,0,1) is a BL-algebra. Define a
self map f as follows f(0) =0, f(a) = a,f(b) =
f(1) =1, then f is a multiplier.
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Proposition 3.3. If A has n elements, then it has at
least n multipliers.

Proof: Since for every p € 4, a;, is a multiplier, so
A has at least n multipliers.

Theorem 3.4. If f is a multiplier in A4, then
HfH=1

(i) x < f(x), forall x € 4,

(ii) if f;, f, are two multipliers in 4, then f; o f, is
a multiplier in A.

Proof: (i) For all x € A we have 0 > x =1, so

];(1) =f(0>x)=0-f(x)=1. Thus f(1) =

(i) Let x<y. So x >y =1, thus 1= f(1) =
fx=>y)=x-f).
So x < f(y), ie. if x <y, then x < f(y). Now
since x < x, so x < f(x).
(i (fy o )(x = ¥) = filfa(x = ¥))

= filx = £,(1)

=x- ()

=x = (fie )0

Proposition 3.5. (M(A),,I) is a monoid, where [
is an identity function.
Let f be a self map on Aand x,y € A. We define

xuy=(->x)-x
Fr={x€A:f(x)},
Fi={xeA: f(x)=1}%

Example 3.6. In Example 3.2(d), consider Fy =
{0,a,1}. We have a € F; but b & F;.Then in
general Fy is not a filter of A.

Theorem 3.7. Let f be a multiplier in Aand x € Fy.
Then forally € A,x Uy € Fy.

Proof:
fxuy)=f((y->x)—x)
=W -x)- f(x)
=(y—>x)—>x
=xUy,
sox Uy €Ff

Theorem 3.8. Let f be a multiplier in A.

(i) If F be a filter of A, then f(Ff) is a filter of A,
(1) f (Fy) is the trivial filter of 4,

(i) if f is a homomorphism of A, then Fj is a filter
of A,

(iv) if x € D(A), (D(A) is all dense elements of A),
then f(x) € D(4).

Proof: (iv) Let x € D(A). Then x* = 0. Since
x < f(x), then f(x)>0<x—->0=x"= 0, so

(f(x))* = 0, thus £ (x) € D(A).

Example 3.9. Let A={0,a,b,cd, 1}, with
0<a<b<l 0<c<d<1, but ac and
respectively b, d are incomparable. For all x,y € A,
we define ® and — as follows:

® 0 a b ¢ d 1
0O 0 0 0 0 0 O
a 0 0 a 0 0 a
b 0 a b 0 a b
c 0 0 0 ¢c ¢ ¢
d 0 0 a ¢ ¢ d
1 0 a b ¢ d 1
— 0 a b ¢ d 1
o 1 1 1 1 1 1
a d 1 1 d 1 1
b ¢ d 1 ¢ d 1
c bbb 1 11
d a b b d 1 1
1 0 a b ¢ d 1

Then (4,V,A,®, = ,0,1) is a non-linearly ordered
BL-algebra. We define f: A — A as follows:

¢, ifx=0,c
f(x) =4d, if x=a,d (3.2)
1, if x=b,1

Then f is a multiplier in A. All nilpotent elements
of A, are Nil(A) = {0,a}.

We have 0 € Nil(A), but f(0) = ¢ & Nil(4). So
if x is a nilpotent element of A and f is amultiplier,
then f(x) is not necessarily nilpotent element of A.

Example 3.10. Let A=1{0,a,b,cd,e,f, g, 1},
with 0<a<b<e<l 0<c<f<g<l,
a<d<g, c<d<ebut {ac} {bd} {df}
{b,f}, {e, g} are incomparable. For all x,y € A, we
define © and — as follows:

© 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 0 a 0 0 a 0 0 a
B 0 a b 0 a b 0 a b
c 0 0 0 0 0 0 c c c
d 0 o0 a 0 0 a c c d
e 0 a b 0 a b c d e
f 0 o0 0 ¢ c c f f f
g 0 o0 a ¢ c d f f g
1 0 a b c d e f g 1
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then(4,V,A,®, —»,0,1) is a non-linearly ordered
BL-algebra. We define f: A — A as

follows:
c, ifx=0
( d, ifx=a
e, ifx=Db
fx) = 4](’ ifx = c f (3.3)
g, ifx=dg
1, ifx=e¢1

Then f is a multiplier in A. All of idempotent and
Boolean elements of A, are respectively, Idem(A) =
{0,b,f,1}, Bool(A) ={0,b,f,1}. We have b€
Idem(A), but f(b) =e & Idem(4). So if x is an
idempotent element of A and f is a multiplier, then
f(x) is not necessarily an idempotent element of A.

Also we have b € Bool(A), but f(b)=e ¢
B(A). So if x is a Boolean element of 4 and f is a
multiplier, then f(x) is not necessarily Boolean
element of A.

Example 3.11. (a) In Example 3.10, F =
{c,d,e, f,g,1} is prime filter, but f(F) = {f, g, 1}
isnot, because 1 =aVc € f(F),buta,c & f(F).
(b) In Example 3.10, F ={d,e, g,1} is Boolean
filter, but f(F) = {g, 1} is not.

(c) In Example 3.10, F = {b, e, 1} is maximal filter,
but f(F) = {g, 1} is not maximal filter.

Theorem 3.12. Let f be a multiplier in A. Then:
() forallx,y €A, f(x) >y <x- f(y),

(i) (fF()" < f(x7),

(i) f(x = y) = f(x) = fF(¥).

Proof: (i) We have
(f(x) = y)Ox < (x > y)Ox =xAy <y < f(y),
S0

F) »»)Ox < f(y),

thus f(x) =y < x = f().

(i) We have (f(x))*=f(x) >0 and f(x*) =
f(x - 0)=x-f(0), so by (i) we get, f(x) -
0<x-f(0) =f(x"),s0(f(x))" < f(x7).

(i) f(x = y) =x = f(¥) = f(x) = fF).

If f(x)=1 and y# 1, then f(x) >y <x -
f (). So equality in part (i) in the above theorem is
not always valid.

In general every multiplier in BL-algebra is not
homomorphism and conversely.

Example 3.13. (a) In Example 3.2(b), f is a
multiplier but is not homomorphism.
(b) Let X be a nonempty set and P(X) a family of
all subset of X. For each 4, B € P(X),
we define the operations ® and — by
A—-B=A“UB,A®B = ANB.
Then (P(X),S,U,N, ®, -, 0, A) is a BL-algebra.
Now, let X = {x;,x,,x3} and Y = {y,, y,} be two
sets. Define f: P(X) — P(Y ) as follows:

f@®=0  fX) =X,
fe) =01} D) = {3}
f({xs}) =0,

fx,x}) =Y, f{xn,x3)) =}

f({x2, %3} = {y2}.
Then f is BL-homomorphism, but is not
multiplier.
By the following example, we show that every
multiplier is not isotone.

Example 3.14. Let A be the BL-algebra in Example
3.2(d) and

a, ifx=0
f(x)=4b, ifx=D (3.4
1, ifx=a1l

Then f is multiplier, but is not isotone.

Theorem 3.15. If f: A - A is an isotone multiplier
and ff(x) < f(x) forall x € A, then f is a closure
operator on A.

Proof: 1) Since f is multiplier, then x < f(x),

2) since f is isotone, if x < y, then f(x) < f(y),

3) by(l),f(x) < f(f(x)), also by hypothesis
f2(x) < f(x), 50 f2(x) = f(x).

Example 3.16. «, is multiplier and isotone but
azz, = a,. So @, is not a closure operator.

Theorem 3.17. If f: A —> A is a closure operator
and homomorphism, then f is a multiplier.

Proof:

f=>y)=fx)~>f®)
sx=>f)

x=>fO)sflx->fO)
=f®) -2
=f®->1
=fx -
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Example 3.18. Let [ = [0; 1] be the unit interval.
Define ®,— on [0; 1] as follows:

xOQy=xAy, x>y=1if x <y, otherwise x >y =
y.
Then (I,V,A,®, > ,0,1) is a BL-algebra. Now
define f: 1 — I as follows:

a, ifx=0
f(x)=4b, ifx=Db (3.5)
1, ifx=a1

We can see that f is a closure operator and f is
not homomorphism, so f is not a multiplier.

Lemma 3.19. Let f:4A > A be a multiplier and
(®,v)-derivation in A. If x € Aand x? = x, then

f(x)=x.

Proof: Since f is multiplier, then x < f(x). On the
other hand,

f(x) = f(xOx) = (f ()O)V(xOf (x))
=f(x)Ox < x,

so f(x) < x, thus f(x) = x.

Theorem 3.20. Let f: A > A be a multiplier and
(®,v)-derivation on G-algebra A. Thenf is
identity.

Theorem 3.21. A multiplier f: A = A is an identity
map if it satisfies x = f(y) = f(x) = y, for all
x,y € A.

Proof: Let x,y €A be such that x - f(y) =
f(x) = y. Now
fO=fA-x)=1->f)=fD->x=1
- X =x.
Therefore f is identity.

In general, every multiplier in BL-algebra need
not be identity. However, in the following, we
derive a set of conditions which are all together
equivalent to that f being an identity multiplier.

Theorem 3.22. A multiplier f is an identity map if
and only if the following conditions are satisfied for
ally e A:

() () = f (),

@) flx=y)=fx) = fO),

(i) f2(0) >y = f(0) = fFO).

Proof: The conditions for necessary are trivial. For
sufficiency, assume the conditions (i), (ii) and (iii).
Then for any x,y € A, we can obtain
f@-y=f20)->y=fx)->f0) =[x
- Y).
Also by the definition of multiplier, we have
f(x—y) =x- f(y). Hence

fx—=y)=x- f(y) = f(x) = y. Therefore by
the previous theorem, f is identity multiplier in A.

Theorem 3.23. If multiplier f is a monomorphism
and closure operator, then f is identity map.

Proof: We prove that x — f(y) = f(x) = y.
fl = fON=x-f*0)
=x = f)
=f(x-y)
=f® -1
=f2() = f)
=f(f(x) = .
So x - f(y)=f(x) »>y. Therefore f is an
identity map.
Let A; and A, be two BL-algebras. Then
Ay X A, is also a BL-algebra with respect to the
point-wise operations given by

(a,b)O(c,d) = (a Oc, b ®A),
(a,b) > (c,d)=(a—cb
- d).

Theorem 3.24. Let A; and A, be two BL-algebras.
Define a map f:A; X A, » Ay X A, by f(x,y) =
(x,1) for all (x,y)€A; X A,. Then f is a
multiplier in A; X A, with respect to point-wise
operations.

Proof: Let (a,b), (c,d) € A; X A,. Then we get
f(a,b) = (¢, d)) =f(a—c,b—d)

=(a-c1)

=(a »cb-1)

=(a,b) = (¢, 1)

= (a,b) = f(c,d).
Therefore f is multiplier in the direct product
AL X A,.

Theorem 3.25. If BL-algebra A # {0}, then there is
no nilpotent multiplier in A.

Proof: For every multiplier f, we have

fx) = f"1(x) =...= f(x) = x, forall x € A.
Now if there is a natural number n such that f™ =
0,s0 f*(x) =0, for all x € A. Thus x = 0, for all
x € A, which is a contradiction. Then there is no
nilpotent multiplier in A.

Definition 3.26. A multiplier f in A is called
idempotent, if f2(x) = f(x), for all x € A.

Example 3.27. (a) Let A be a BL-algebra in
Example 3.2(d) and

a, ifx=0

f) = {1, ifx=ab,1 (3.6)
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Then f is a multiplier but is not idempotent.
Because f2(0) # f(0).
(b) In Example 3.2(c), f is idempotent multiplier.
If f is an idempotent multiplier, then it can be
easily observed that f (x) € Fg, forall x € A.

Theorem 3.28. Let f and g be two idempotent
multipliers in A such that fOg = gOf. Then the
following conditions are equivalent:

0O f=g.

(i) f (4) = g(A),

(iii) Fr(A) = F;(A4).

Proof: (1) = (2): It is obvious.

(2) =(3): Assume that f(A) =g(A4). Let x €
F¢(A). Then we get x = f(x) € f(A) = g(4).
Hence x = g(y), for somey € A. Now g(x) =
9(@) =g*() =g(y) =x. Thus x € Fy(A4).
Therefore Fr(A) € F,(A). Similarly, we can obtain
F,(A) < F¢(A). Therefore Fr(A) = F,(A).

(3) = (1): Assume that Fr(A) = F;(A). Letx € A.
Since f(x) € Ff(4) = F;(A), we can obtain g(f (x)) =
f(x). Also we have g(x) € Ff(A) = F;(4). Hence we
get f(g(x)) = g(x). Thus we have

f) =g @) =g °Hx) = °9)x)
= flg(x) = g(0).

Therefore f and g are equal in the sense of
mappings.

Definition 3.29. An equivalence relation 8 on 4 is
called a weak congruence, if (x,y) € 6 implies that
(a—>x,a—-y) €0l foranya € A.

Clearly every congruence on A is a weak
congruence on A. In the following, we have an
example of a weak congruence in terms of
multipliers.

Theorem 3.30. Let f be a multiplier in A. Define a
binary relation 6, on A as follows:

(x,y) € 8¢ if and only if f(x) = f(y) for all
x,y €A.

Then 8¢ is a weak congruence on A.

Proof: Clearly 0 is an equivalence relation on the
BL-algebra A. Let (x,y) € ;. Then we get
f(x) = g(x). Now, for any a € A, we have

flamx)=a-f(x)=a-fy)=fa-y).
Hence (a = x,a — y) € 6. Therefore 6f is a weak
congruence on A.

Example 3.31. Let A be a BL-algebra and f be a
multiplier in Example 3.2(d). We have6; =
{(0,0), (a,a), (b, b), (1,1), (b, 1), (1, b)}. Then 6 is
weak congruence and is not congruence.

Because 0y is not a congruence relation, then the
quotient cannot form a BL-algebra.

Theorem 3.32. Let f be an idempotent multiplier
in A. Then we have the following:

(1) f(x) = x, forall x € f(4),

(ii) if(x, ¥) € Or and x,y € f(A), thenx = y.

Proof: (i) Let x € f(A). Then x = f(a) for some
a € A. Now

x=f(a)=f*(a) = f(f(@) = f(x).

(i) Let (x,y) € 8¢ and x,y € f(A). Then by (i),
x=fx)=f=y.

4. Simple Multipliers

Theorem 4.1. (i) The simple multiplier @; is an
identity function on 4,

(i) if p < q, then a; < ay,

(iii) if p # q, then a5 # ap,

(iv) ap(x U p) =1, forallp € A.

Proof: (i) Forall x € A, we have ¢;(x) =1 > x =
X.
(i1) Let p < q. So for all x € A, we have ¢ » x <
p— x, thus ag(x) <a,(x), for all xE€A,
therefore a; < a,,.
(iii) Let ay = ap. So a,(x) = a4(x), for all x € A.
Thusp —» x = q — x, for all x € A. Now, if x: = p,
then p > p=q—-p,soq—>p=1, hence q < p.
Ifx:=gq,thenp > q=q — q,sop = q =1, thus
p <q. We get p =q, which is a contradiction.
Therefore if p # q, then ay # ay,.
(iv) For all p € A, we have
a,(x U p) = ap((p > x) > %)
=p—=>((P—-x) —x)
=@p-0)->@-x=1
PutS = {a,:p € A}, now we define:
(ap A ag)(x) = ap(x) Aag(x),
(ap Vag)(x) = a,(x) Vag(x),
(@pO ag)(x) = ap(x) © ag(x),

(ap - aq)(x) = ap(x) - aq(x).

Lemma 4.2. Let a, and a4 € S.
(Da,ANag €S,
(i) if p,q € B(A), then a, V a4 € S.

Proof: (i)

(ap Aag)(x) = ap(x) Aag(x)
=(@->x)A(@~x)
=(@ve-x
= Apvg) (%),

sincepV q € A, qpvq) € S, therefore a, Aag €.
(i)
(ap Vag)(x) = a,(x) Vag(x)
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=@->x)V(q—-x)

=(@'Vx)V(qg V)

=@ Vvq)vx

=(@AqQVx

=(Ag) - x

= Apag) (%)
since pAq € A, then apag) €S, therefore a, vV
ag €S.

Lemma 4.3. Let A be a Boolean algebra and
a,, ag € S. Then:

(i) @, Oaq € S,

(i)ay = a4 €S.

Proof: (i)

(apeaq)(x) = ap(x) ®aq (x)
=(@—-x)0(q~x)
=(@-0A(@g~x)
=@V —>x
= a(pvq)(x);

since p V q € A, pyq) € S, therefore a, O, € S.
(i)
(ap - aq)(x) = ap(x) - aq(x)
(r—>x)->(@->x)
"V x)=>(q"V x)
=@ 2 V)A(x—> q V)
=(mVqg V)A(X"Vg V)
=(P"Aq@Vvx
=@ Aq) —x
= A ag) (X)),
sincep* Aq € A, Qprnq) € S, therefore @, - a, €
S.

Theorem 4.4. S is bounded A-semi lattice with top
element ay and bottom element a; .

Proposition 4.5. If A is a BL-chain, then S* =
{a,: p € B(A)} is a distributive bounded lattice.

Proof: a,, a; € S*. By Theorem 2.2(8), we have:

X A (Vier ¥i) =Vier (x Ayy).
Also, by Theorem 2.2(9), if A is BL-chain, then we
have: x V (Aje; ¥i) = Nier (X V¥).

Theorem 4.6. If A is a G-algebra, then:
@ ap(x = y) = a,(x) = ap(y),
(i) ap(x Oy) = ap(x) © ap(Y)'
(iii) ap (xAy) = a, X)) A ap ).

Proof:

Dapx->y)=p->(x-y)
=@POx)->y
=(@Ax) -y

=@PO@-x) -y
=(P->x)->@~-y)

= ap(x) - ap(y)-

(i1)
apxOY)=p->x0Yy)
=p->(xAYy)
=@->)A@P-Yy)
=@->00(@~-y)
=ap (x) O ap ).
(iii)

ay (xAy)=ap (xOy)
=apy x)© ap )
=ay, () A ap ).

Theorem 4.7. For all p € B(4), we have the
following:

(1) ap(x AYy) = ap(x) A ap(Y)»

(i) ap(x Vy) = ap(x) V ap(y),

(i) ap (x = y) = ap(x) = ap(¥),
(iV)ay(x O y) = a,(x) © ap ().

Proof:
()
ap(xAy)=p->(xAy)
=@->x)A({P-y)
=a, () A ap(y).
(i)
ap(xVy)=p->(xVy)
=p"vV(&xVy)
=@ Vvp)VvEVvy)
=@V V(@ Vy)
=@->x)V{-y)
= ap(x) \Y; ap(y).
(iii)
apx->y)=p->x-y)
=@p-x)->0@~-Y)
= a,(x) = ap(y).
(iv)
ap(x@y)=p—-> (x0Oy)
=@ ->x)0@ >y
= ap(x) O] ap(y)-

Theorem 4.8. For all p € B(A), we have the
following:

() ap Va, = ay,

(iaphap = ay.

Proof:
)

(apVapy)x)=@->x)V(p —x)
=(@Ap)-x
=0-x = ayx).

(i)

(apANapy)(x) =@ ->x)A(p" = x)
=(@Vvp)-x
=1-x=0a;(x).
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Proposition 4.9. S* is complement lattice.

Proof: For every a, € S*, a,+ is complemented
from .

5. Multipliers in MV-center of BL-algebras

In this section we restrict multiplier fto MV (A).

Theorem 5.1. Let f be a multiplier in MV (4).
Then:

Ofx®@y) =x®f)

(i) if x < y, then f(x) < f(y),

(i) f(x @ y) 2 xO f(¥),

for all x,y € MV (A).

Proof: (i) fx @ y) =f(x" = y) =x" > f(y) =
x®f).

(i) If x,y € MV(A)and x <y, then there exists
ze€MV(A)suchthatz @ x=y,s0 f(¥y) = f(z @D
x) =z @ f(x), thus f(x) < f(¥).

(i) We have x @ y < z if and only if y < x — z,
so by (i), fM<sf(x—-2z)=x- f(2), so
f) < x> f(2), thus xOf (¥) < f(2). Now, put
z=x0y,s0xOf(y) < f(x O ).

Proposition 5.2. Let f be a multiplier in MV(A). If
x € Fpandx <y, theny € F;.

Proof: Since 1 € A and f(1) =1, so 1 € F;, then
F, #@. Let x €F;. So f(x) =1. Since x <y so
fx) = f(y), thus f(y) =1,theny € F;.

Theorem 5.3. Let f be a multiplier in MV (A) and
f be a homomorphism of A. Then:

(1) F; is a filter of MV (A),

(i) Fr N MV (A) is a filter of MV (A).

Proof: (i)

M f(1)=1,s01€F,

(2) by previous theorem, if x < y and x € F;, then
yEF,

(3) let x,yeF,. So f(x)=f()=1, thus
fxOY=fx)Of(y)=101=1, therefore
x@®y € F,. Thus Fj is a filter of MV (A).

(i) (1) f(1) =1,s01 € F,n MV(A),

(2) let x € FFNMV(A) and x <y. Then there
exists z € MV (A) such that z @ x =y, so f(y) =
fCOX)=z@f(x) =z@x =y, then f(y) =
Y, therefore y € Fr N MV (A),

(3) let x,y€F,nMV(A). Then f(x@y)=
fOf () = xOy, thus xOy € Frn MV (A).

Theorem 5.4. If f: A = A is a multiplier in MV (4),
then f is a closure operator on MV (A) if
f(f(x)) < f(x),forall x € MV (A).

Remark: In BL-algebra, we have
xVy=((x=>y)=>yAY~—x)—x),
and in MV-algebra, we have
xVy=((x=>y)=>y)=(y~-x)-x).

Theorem 5.5. Let f be a multiplier in MV (4). For
all x,y € MV (A) such that x € F¢, thenx V y € Ff.

Proof:
fxvy)=f((y—x)—x)
= -x)-fx)
=(-x)-x
=xV y;
soxXVyE€F.

Lemma 5.6. Let f be a multiplier in A. If x,y €
B(A), then:

@O fxvy) =xVfi),

(i) fxAy) 2 x A f(Y).

Proof: (i) In B(A), wehavex @ y = x V y, so
favy)=fx@y) =x®f) =xV ).
(i) In B(A), we have xOQy =x Ay, so f(x Ay) =

f(xOy) 2 xOf(y) = x A f(y).
If A is a BL-algebra and f;, f, are two multipliers
in A, we define:
(i AN f)x) = () A (%),
(v L)) = i)V f2(x),
(i = 2)x) = fi(x) = f(x),
(10 f2)(x) = () O f(x).

Theorem 5.7. If f;, f, € M(A), then:
M) fi A f, € M(A),
(i) fi = f € M(A).

Proof: (i)
ir R)x-»y)=fix =2 Y)A x> y)
=@ ->fLODA - 200)
=x=> (1A L)
=x-=(fiA L))
(i1)

(i = L -=y)=(hEx-=y) = (HLlx = y)
== f0) > &= £0))
=x-> (L)~ £07))
=x- (i~ f2)O).

Theorem 5.8. If A is a MV-algebra and for all
x€A xOx=x and fi, f, € M(A), then f; ®
fo € M(B(4)).

Theorem 5.9. If A is a G-algebra and f;, f, €
M(A), then f,© f, € M(A).

Proof:
(L0 L)x = y) = (filx = ¥)) O(f2(x = ¥))
== 1O = £,(0)
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=@x=>A0DA K~ £00))
=x=> (A 0)
=x = (10 )W)

Theorem 5.10. Let fi, f, € M(B(A)). Then
[Ofo fi= fo AV far i NS € M(B(4)).

Theorem 5.11. Let A be a BL-algebra. Then M (4)
is a meet lattice with top element f(x) = 1.

Theorem 5.12. If A is a Boolean algebra and M (4)
has a bottom element, then M (A) is a BL-algebra.

Proof: We prove the adjointness property:

let fOg<h We have for all x€A4,
(fO g < h(x), so f(x)O g(x) < h(x), then
f(x) <g(x)—> h(x) for all x €A, therefore
f < g — h. The converse is similarly.

6. Conclusion and future research

BL-algebras are the algebraic structures for H’ajek
basic logic (BL, for short), arising from the
continuous triangular norms (t-norm), familiar in
the frameworks of fuzzy set theory. The concept of
multiplier for a commutative semigroup,
Implicative algebra, distributive lattice and BE-
algebra are introduced.

In this paper, we introduced the concept of the
multiplier in BL-algebra, MV-center of BL-algebra
and studied some properties. Then we studied
relationships between multipliers and some special
mappings, likeness closure operators,
homomorphisms and ©@-derivations in BL-algebras.
One of the interesting results is ”If A be a Boolean
algebra and M (A) has a bottom element, then M (A)
is a BL-algebra.”

Some important issues for future work include:

6] Developing the properties of the
multiplier in BL-algebra,

(i1) finding useful results on other
algebraic structures,

(1i1) constructing the related logical

properties of such structures.
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