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Abstract– Information about the temperature of drilling hole during the drilling process is 
important in work-piece quality and tools life aspects. In this study temperature of the drilling hole 
is determined using Artificial Neural Networks according to certain points’ temperature of the 
work piece and two parameters, drill diameter and ambient temperature. To achieve this aim, two-
dimensional model of work piece is provided; then by Computational Heat Transfer simulations 
based on Finite Volume Method, temperature in different nodes of the work piece is specified. 
Obtained results are used for training and testing the neural network. Temperature of specified 
points, drill diameter and ambient temperature are selected as inputs of the network and 
temperature of drilling hole is considered as an output data. Also, for comparison, temperature is 
obtained experimentally. Comparison between numerical results and experimental data shows that 
neural network can be used more efficiently to determine temperature of hole in a drilling process.         
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1. INTRODUCTION 
 

Drilling is a complex machining process used in almost 50 percent of industrial machining processes [1]. 
The temperature of the drilling hole has a great influence on the tool lifetime and the surface quality. 
Therefore, determination of drilling temperature section is important. To achieve this aim a new approach 
such as Artificial Neural Networks (ANN) can be an alternative to reduce cost of studies and 
computational time. ANN and other soft computing methods have been used by various researchers in the 
field of engineering systems [2-4] and simulation of experimental processes [5, 6]. Also, various 
numerical, analytical and experimental methods are used to estimate the temperature of drilling hole [7-
13].  The purpose of this study is to understand whether an ANN approach is an appropriate method for 
determination of temperature of the hole or not. Some works are available in this field [14-16], but 
simulation and prediction of temperature with ANN is a novel study.  
 
a) Problem definition and computational procedure 

 
Work-piece and the related grid arrangement for CHT solution are shown in Fig. 1. For simulation, 

two-dimensional with quasi steady-state conditions with constant thermo-physical properties are assumed. 
The temperatures of the hole and ambient are varied from 313 K to 423 K and 24°C to 28°C respectively. 
Simulations are provided with a 10×10 cm2 quadrangular model and 4mm to 10 mm in diameter drill bit. 
For numerical model, a convergence criterion is taken as 10-6. Steel is used as a work-piece material. 
Some structured grid dimensions are tested to obtain optimum grid dimension. After several tests, it was 
decided that 2304 grid points are sufficiently fine to ensure a grid independent solution. Temperature of 
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four desired points, as shown in Fig. 2, are measured by using four channels thermometer with 
thermocouples type K. Points  1,2,3 and 4 have 1,2, √5, and √8  cm distance from hole axis respectively. 
Therefore, according to Richardson extrapolation method [17] temperature of the hole is determined. 

 

 
 

Fig. 1. Physical geometry and grid distribution 
 

Fig. 2. Thermometer and work piece 
 

2. ARTIFICIAL NEURAL NETWORKS AND ITS ARCHITECTURE 
 
ANNs are composed of simple elements which operate in parallel. These elements are inspired by 
biological nervous systems (Fig. 3). We can train a network to perform a particular function by adjusting 
the values of the weights between elements according to the suitable learning rule. In this work a Multi-
Layer Perceptron network is used and it is found that the back-propagation algorithm with modified 
Levenberg-Marquardt learning rule is the best choice because of its accuracy and speed. Input vector 
consists of six elements: temperatures of four nodes, drill bit diameter and ambient temperature. Target 
vector consists of one element: temperature of the drilling hole. Input-target pairs are applied to the 
network, and weights are adjusted to minimize the error between the network output and the target.  
Figure 4 and Table 1 show the network architecture and its parameter respectively. 
 

 

Fig. 3. An artificial neuron Fig. 4. Three-layer feed-forward neural network 
 

Table 1. ANN architecture and training parameters 
 

Architecture parameters 

The number of neurons  in each layer: Layer 1: 20, Layer 2: 20 and output Layer: 1 
Transfer functions   Layer 1 and 2: logistic sigmoid, Layer 3: pure linear 

Training parameters 

Learning parameter  µ                         0.001 Mean squared error goal    10-12 
Increasing  factor of µ                              10 Decreasing factor  of µ     0.1 

 
a) Levenberg-marquardt algorithm 

 
The LM algorithm [18] is a technique that locates the minimum of a multivariate function. The 

performance function of the LM algorithm is defined as [19]: 
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where w consists of all weights of the network, dkp and okp are the desired and actual value of the kth output 
and the pth pattern respectively, P is the number of patterns, and K is the number of the network outputs. 
Weights are calculated using the following equation: 

   iiii wFIHww  


1
1                                                      (2) 

Where I is identity matrix, µ is a learning parameter and H is Hessian matrix. For µ = 0 and very large µ it 
becomes the Gauss-Newton and steepest-descent method respectively. Update rule is used as follows. If 
the error goes down we decrease µ to reduce the influence of gradient descent and if the error goes up, we 
follow the gradient more and so µ is increased by the same factor. 
 

3. RESULTS 
 
ANN is used to predict new results from the generated data for various drill bit diameters. Results are 
compared with CHT solutions. Data of d = 6, 7, and 10 mm are used as training data and temperature 
values are used as target. Some results of training procedure are illustrated in Figs. 5 and 6. Comparison 
between experimental data, ANN and CHT are presented in Table 2. These results show that ANN and 
CHT differences are negligible. The new results are used as testing data for ANN. In testing procedure 
very good agreement is observed between results of ANN and CHT. Also, values of weights/biases of the 
trained network are presented in Tables 3. It is shown that ANN method is capable of accurately 
determining temperature from the generated data. For closeness, R-square and Sum-Square Error are used 
to evaluate fitting of network as follows: 
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where ΩEXP, ΩANN, and Ωm,EXP are the value obtained from the  experiment, ANN, and mean value of 
experimental data respectively. Table 4 shows the R2 and the SSE for testing cases. These tables show 
excellent correspondence between ANN and CHT.  
 

Table 2. Comparison between numerical and experimental results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temperature (K) 

diameter (mm)  Ambient n1 n2 n3 n4       Hole(EXP)   Hole (ANN) 
 10  299  343.3 326.8 323.6 320.1 369.09  358.224 

 7  299  330.3 318.8 315.8 313 355.73  348.1771 

 6  299  328.4 317.6 315.2 312 353.09  347.6267 

 5  299  329.3 318.5 316 313 350.1  348.1998 

 4  299  328.3 314.1 312.1 310.4 341.55  347.8265 

diameter (mm) Ambient n1 n2 n3 n4 Hole (CHT) Hole (ANN) 

 6 297  308.24 303.57 303.11 301.55  317 316.9746 
 6 299  322.64 312.84 311.86 308.57  341 341.0004 

 6 301  316.75 310.21 309.56 307.36  329 329.0139 
 7 297  312.32 306.06 305.20 303.40  323 322.9820 

 7 299  317.86 310.16 309.09 306.88  331 330.9900 
 7 301  332.85 319.85 318.05 314.31  355 355.0096 
 10 297  332.88 317.84 316.17 311.46  349 349.0002 

 10 299  341.79 323.85 321.86 316.24  361 361.0022 

 10 301  346.55 327.46 325.34 319.36  367 366.9974 
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Table 3. Values of weights of each layer 
 

Input Layer Weights Matrix, size: 20×6 

‐2.984 ‐1.453 2.839 0.177 0.395 0.741

0.122 2.238 0.476 2.624 ‐1.435 ‐2.673

‐1.855 ‐0.558 ‐2.305 2.284 2.083 1.667

‐3.248 1.405 ‐1.959 0.534 ‐2.515 ‐0.568

2.174 ‐0.295 ‐0.477 2.674 1.286 ‐2.755

‐1.191 1.416 1.480 2.239 0.558 ‐0.449

‐1.088 0.824 1.564 2.928 1.288 ‐2.062

1.630 ‐1.252 0.647 ‐2.702 2.129 ‐1.151

‐1.431 ‐1.209 ‐0.623 2.031 2.993 ‐1.634

1.425 2.313 0.632 0.897 2.227 ‐2.816

‐0.803 1.589 ‐3.026 2.519 0.194 ‐1.509

1.463 ‐0.207 ‐3.270 0.908 2.835 ‐0.818

0.816 1.082 ‐3.801 0.079 0.520 2.093

‐0.755 ‐1.026 0.785 2.594 ‐3.420 ‐0.372

‐2.143 1.351 ‐0.150 ‐1.105 ‐1.976 1.114

‐1.386 2.411 ‐2.174 0.145 2.872 1.559

‐0.124 ‐2.455 ‐0.396 3.378 ‐0.218 ‐0.357

‐1.594 2.057 ‐2.421 0.744 2.691 0.536

‐0.999 2.207 ‐2.352 1.722 ‐1.396 0.190

1.646 0.683 2.575 1.403 0.801 ‐2.802  

2nd Layer Weights Matrix, size: 20×20 

‐0.16 ‐2.32 1.90 ‐0.65 ‐2.21 ‐2.35 0.15 ‐1.80 ‐0.81 1.56 ‐0.30 ‐1.76 ‐1.55 ‐0.80 1.31 1.32 ‐1.55 ‐0.77 ‐0.67 ‐1.26

1.55 1.69 ‐0.31 ‐1.81 ‐1.39 ‐2.26 ‐0.63 1.56 ‐0.99 ‐1.47 ‐0.39 ‐1.15 ‐0.73 ‐0.01 1.29 ‐1.88 ‐1.77 2.31 ‐1.73 ‐0.84

1.27 2.23 ‐0.60 ‐0.09 ‐2.34 0.97 ‐2.75 ‐2.09 ‐2.45 0.35 0.62 ‐1.64 ‐0.60 ‐0.17 ‐2.04 0.52 1.03 ‐1.17 1.17 ‐1.95

‐1.67 2.22 ‐2.12 ‐0.74 ‐0.27 1.67 1.15 ‐1.53 1.42 1.87 ‐2.07 ‐0.67 ‐1.85 ‐0.13 0.92 ‐0.96 0.79 0.60 ‐1.77 1.53

‐1.58 2.10 ‐2.04 ‐2.13 ‐2.34 0.83 ‐0.14 1.34 ‐1.94 0.12 ‐1.78 ‐1.78 0.63 ‐1.10 ‐0.37 0.37 1.10 0.92 ‐2.37 2.29

0.56 1.72 1.14 ‐1.56 2.43 ‐2.36 0.64 ‐1.05 ‐0.61 1.30 1.74 ‐1.68 ‐0.56 0.38 ‐1.59 ‐0.66 0.90 ‐0.74 1.33 ‐2.78

0.22 0.08 ‐1.39 2.21 ‐1.81 2.35 1.67 0.25 ‐0.36 1.55 1.13 ‐1.93 2.22 0.95 ‐2.24 ‐0.46 ‐0.49 ‐2.09 ‐0.79 0.42

‐0.66 ‐1.59 1.72 0.91 ‐2.07 ‐0.86 ‐1.97 1.03 ‐1.37 ‐0.53 ‐1.59 1.54 ‐0.62 ‐0.38 1.81 ‐1.31 ‐0.71 ‐2.29 1.01 ‐2.18

‐2.16 ‐0.63 ‐2.49 ‐0.33 ‐1.24 ‐1.34 ‐2.52 0.29 0.86 0.96 ‐2.37 1.16 ‐0.02 ‐0.94 ‐1.66 ‐1.84 2.36 ‐0.51 ‐0.72 2.76

1.34 ‐1.41 1.47 1.51 ‐0.15 1.05 0.42 0.46 ‐0.44 ‐1.11 ‐1.65 ‐0.40 ‐1.93 ‐2.05 ‐1.42 ‐2.05 ‐0.76 ‐1.24 0.87 2.47

‐1.20 ‐1.81 ‐0.62 ‐1.37 ‐1.59 ‐1.86 ‐0.06 ‐1.10 ‐1.53 2.39 ‐1.98 ‐1.40 ‐1.32 ‐2.19 0.89 1.15 0.82 0.95 ‐2.03 ‐1.25

‐1.79 2.00 0.69 0.95 2.16 ‐1.23 2.14 0.71 1.13 ‐0.85 ‐0.42 ‐1.01 ‐1.74 ‐1.59 0.86 0.59 1.95 ‐0.43 1.79 2.12

‐1.72 ‐0.98 2.02 0.81 ‐0.80 0.79 1.48 1.89 ‐1.57 ‐1.31 0.46 ‐2.28 0.69 ‐1.10 ‐0.11 1.82 1.68 1.52 0.91 ‐2.24

‐1.99 ‐1.32 ‐0.64 0.60 ‐1.28 ‐0.24 0.36 2.27 ‐0.20 1.02 1.52 3.06 2.29 1.52 0.88 ‐1.62 0.03 1.56 1.18 0.26

1.54 ‐0.84 ‐0.38 ‐1.90 ‐2.26 0.93 ‐1.50 ‐2.17 ‐1.06 0.65 0.27 0.60 ‐0.96 2.11 ‐1.56 2.42 0.86 0.50 1.80 1.66

‐0.45 ‐0.25 ‐0.38 0.34 ‐1.31 0.87 ‐2.82 ‐1.06 ‐0.30 1.18 ‐1.96 0.19 1.39 2.26 2.12 1.80 2.42 ‐1.92 ‐0.75 ‐0.26

‐2.39 0.69 1.78 ‐1.06 ‐2.37 1.38 ‐1.94 ‐0.72 ‐2.01 ‐0.75 1.13 ‐0.53 ‐0.55 ‐0.17 ‐0.22 0.57 ‐0.26 2.42 0.61 2.48

2.03 ‐2.29 1.45 ‐1.94 0.01 1.41 1.64 0.68 ‐0.63 ‐0.93 ‐1.75 ‐1.81 0.06 ‐1.50 0.90 ‐0.27 ‐2.21 ‐1.18 0.46 2.14

0.55 1.57 ‐1.81 ‐1.49 0.98 ‐1.20 1.56 0.04 ‐1.38 ‐2.32 ‐1.25 1.00 2.41 1.34 ‐2.14 ‐1.09 1.28 1.92 0.08 ‐0.24

0.89 0.35 ‐1.62 1.71 0.79 0.48 0.96 1.58 ‐2.60 0.68 ‐1.81 2.71 1.45 1.37 1.45 1.28 0.67 ‐1.57 ‐1.11 ‐1.72

3rd Layer Weights Matrix, size: 1×20 

‐0.5 ‐0.31 ‐0.41 0.052 1.541 1.045 ‐0.2 ‐0.48 0.227 0.308 0.825 0.912 0.571 ‐0.77 0.305 ‐1.01 ‐0.93 0.586 ‐1.3 ‐0.75

Transpose of Input Layer biases Matrix, size: 1×20 

5.65 ‐4.11 3.23 3.30 ‐2.67 1.90 2.46 ‐1.98 0.10 ‐0.37 ‐0.38 ‐0.08 0.69 ‐2.26 ‐1.50 ‐2.19 ‐3.59 ‐4.19 ‐4.16 3.78

Transpose of 2nd Layer biases Matrix, size: 1×20 

9.903 2.758 0.565 2.79 5.616 ‐0.17 ‐3.79 5.376 5.005 0.993 6.385 ‐4.64 ‐3.56 ‐5.34 3.274 ‐1.13 0.16 4.131 2.088 0.141

3rd Layer bias, size: 1×1 

0.0757 
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Fig. 5. Contours of static temperature from CHT for   

Th=423 K , Tamb=299 K and D=10 mm 
Fig. 6. Contours of static temperature from CHT for 

Th=373 K , Tamb=299 K and D=6 mm 
 

Table 4. R-square and Sum-Square-Error values of temperature for various tests 

  d = 6 mm  d = 7 mm  d = 10 mm
R2  0.999996  0.999999  0.999998 
SSE  7.503×10-4   5.162×10-4  1.196×10-5 

 
4. CONCLUSION 

 
The following conclusions are highlighted from the results: 

 Very good agreement is found between ANN scheme and CHT simulation 
 ANN method can easily be used to determine new results for temperature prediction in drilling 

process with considerably less computational cost and time. 
 Back-propagation algorithm with Levenberg-Marquardt learning rule is the best choice for 

training this type of ANNs because of the accurate and faster training procedure.  
 Replacement of the identity matrix with the diagonal of the Hessian in Levenberg-Marquardt 

update equation has great advantages in convergency and computation time. 
  

NOMENCLATURE 
 

d target (desired value) of network w  weights and biases 

e Error Greek letters 

o output of network μ Learning Parameter 

I Identity Matrix Superscript 

J Jacobian Matrix T Transpose 

H Hessian Matrix  
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