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Abstract– An attempt has been made to discuss the behaviour of a magnetic fluid based squeeze 
film between rough porous truncated conical plates by taking into consideration the effects of 
bearing deformation and slip velocity. Taking recourse to a different type of probability density 
function, the model of Christensen and Tonder has been adopted to evaluate the effect of 
transverse surface roughness and the concern stochastically averaged Reynolds’ type equation has 
been solved to derive the expression for pressure distribution. This results in the calculation of 
load carrying capacity. The graphical representations make it clear that although the combined 
effect of bearing deformation and slip velocity is relatively adverse the magnetic fluid lubricant 
saves the situation to a limited extent, at least in the case of the negatively skewed roughness. For 
an overall improvement of performance of bearing system, the slip parameter should be 
minimized. A suitable combination of aspect ratio and semi vertical angle may lead to some 
compensation for negative effect of deformation, especially when variance (negative) is involved.           
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1. INTRODUCTION 
 

Prakash and Vij [1] analyzed the squeeze films between porous plates of various shapes such as circular, 
annular, elliptic, rectangular and conical. In this investigation a comparison was made between the 
squeeze film performances of various geometries of equivalent surface area with other parameters 
remaining the same and it was concluded that the circular plates had the highest transient load carrying 
capacity. 

The use of magnetic fluid as a lubricant modifying the performance of a bearing system has been 
explored and employed in a number of investigations [Verma [2]; Bhat and Deheri [3-4]]. This 
investigation established that the load carrying capacity increased with increasing magnetization. The 
squeeze film performance in circular disks had significantly improved as compared to that of the annular 
plates. 

Hsiu at el [5] studied the combined effect of couple stresses and roughness. The transverse roughness 
caused the reduction in the attitude angle and friction parameters while the effect of longitudinal 
roughness remained almost opposite to that of transverse roughness. 

Deheri et al [6] extended the analysis of Bhat and Deheri [4] to study the effect of surface roughness 
on the performance of a magnetic fluid based squeeze film between rough porous truncated conical plates. 
In this investigation Christensen and Tonder [7-9] stochastic model was adopted to evaluate the effect of 
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transverse surface roughness. This investigation of Deheri et al [6] suggested that there was some scope 
for minimizing the adverse effect of roughness by the magnetization at least in the case of negative 
skewed roughness. 

Gupta and Deheri [10] analyzed the effect of transverse surface roughness on the performance of a 
squeeze film in spherical bearing. It was found that among the three roughness parameters the skewness 
affected the system most and positively skewed roughness caused savoir load reduction. 

Andharia et al [11] discussed the effect of transverse surface roughness on the performance of a 
hydrodynamic slider bearing adopting the stochastic model and found that a transverse roughness resulted 
in an adverse effect in general. However, the situation remained comparatively better when variance 
(negative) was involved and this positive effect was aided by the negative skewed roughness.  

Hsu at el [12] investigated the combined effect of surface roughness and rotating inertia on the 
squeeze film performance characteristics of parallel circular disks. It was shown that the surface roughness 
turned in an adverse effect in general. The rotating inertia further aggravated the situation when relatively 
higher values of standard deviation were involved. 

Schwarz [13] presented a new method to calculate the elastic deformation of a sphere on a flat 
surface considering the influence of short range and long range attraction forces inside and outside the 
actual contact area. 

Shimpi and Deheri [14-15] extended and developed the analysis of Bhat and Deheri [3-4] 
respectively by considering the effect of surface roughness and deformation on the behaviour of a 
magnetic fluid based squeeze film in rotating curved porous circular plates. Here it was established that 
the deformation effect needed to be minimized to compensate the adverse effect of the porosity and 
standard deviation by the positive effect of magnetization. The negatively skewed roughness registered 
relatively more compensation.  

Shimpi and Deheri [16] made an effort to study the surface roughness effect on the squeeze film 
performance between a fluid circular plate under the presence of magnetic fluid. It was noticed that the 
positive effect of magnetization got a further boost in the presence of negatively skewed roughness. 

Shah and Patel [17] discussed the slider bearing of various geometrical shapes incorporating the 
effects of anisotropic permeability and slip velocity. Mirea and Voicu [18] studied the load bearing 
capacity of the truncated cone and hemispherical foundations realized in punched holes by resorting to 
Finite Element Method. The results emphasized a better behaviour for the hemispherical element as 
compared to the truncated conical element.  

Ahmed and Mahdy [19] embarked on a non-similarity analysis for investigating the laminar free 
convection boundary layer flow over a permeable isothermal truncated cone in the presence of a 
transverse magnetic field effect. Further, various models of nano-fluid based on different formulae for 
thermal conductivity and dynamic viscosity on the flow and heat transfer characteristic were discussed. 

 Nassab et al [20] numerically analyzed lubricant compressibility effect on hydrodynamic 
characteristics of heavily loaded journal bearings. The result showed that the compressibility effect caused 
an increase in the generated hydrodynamic pressure. 

 Rahmatabadi and Rashidi [21] presented the study of the effect of the mount angle on the theoretical 
static and dynamic characteristics of three types of gas lubricated non circular journal bearings. It was 
found that the effect of mount angle was more significant at low compressibility number. Nassab and 
Moayeri [22] dealt with the two dimensional thermo-hydrodynamic analysis of journal bearing 
characteristics. Numerical solution of full Navier -Stokes equations coupled with energy equation in the 
lubricant field and heat conduction equation in the bearing were obtained for an infinitely long bearing. 
Here, we have tried to analyze the effect of bearing deformation, surface roughness and slip velocity on 
the performance of a magnetic fluid based squeeze film in truncated conical plates taking a different type 
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where   is the viscosity, 0  is the permeability of free space and   is the magnetic susceptibility and  
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where,

 

'p  is the reference pressure as in Prajapati [24]. The associated boundary conditions are  

   cos 0 and cos 0p a ec p b ec  
                                          (6) 

Solving the above Eq. (4) under the boundary conditions (6), one can have, 
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One obtains the expressions for non-dimensional pressure distribution and load carrying capacity as 
follows: 
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3. RESULTS AND DISCUSSION 
 
It is clearly seen that the load distribution in the bearing is determined from the Eq. (12). It is revealed that 
the load carrying capacity increases by  

*
21
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12 1

ec
  
 

 
  

 

as compared to that of a system dealing with the conventional lubricants. It is easy to see that the 
expression found in Eq. (12) is linear with respect to the magnetization parameter * and hence, 
increasing values of * would result in increased load carrying capacity. The load carrying capacity 
registers a sharp rise. However, the effect of the porosity on the distribution of load carrying capacity with 
respect to * is nominal as can be seen from Fig. 2.  
 

 
Fig. 2. Variation of Load carrying capacity with respect to * and   

 
The effect of standard deviation on the variation of load carrying capacity is presented in Figs. 3-9. As it is 

seen, the effect of   is quite adverse as it decreases the load carrying capacity. Fig 5 makes it clear that 

the effect of the porosity on the variation of load carrying capacity with respect to the standard deviation is 

almost negligible. Further, the effect of bearing deformation on the distribution of load carrying capacity 

with respect to   is, moreover, less negligible which is indicated by Fig. 9.  

           
Fig. 3. Variation of Load carrying capacity  

with respect to   and   

Fig. 4. Variation of Load carrying capacity  

with respect to   and   

      
Fig. 5. Variation of Load carrying capacity  

with respect to  and   

Fig. 6. Variation of Load carrying capacity  

with respect to  and   
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Fig. 7. Variation of Load carrying capacity  

with respect to  and   

Fig. 8. Variation of Load carrying capacity  

with respect to   and s  

 
Fig. 9. Variation of Load carrying capacity with respect to  and   

 
The fact that positive   decreases the load carrying capacity while the load carrying capacity 

increases due to negative   can be noticed from Figs. 10-15. Interestingly, it is found that the effect of the 
bearing deformation on the distribution of load carrying capacity with respect to   is not that significant. 
Further, the effect of slip velocity on the distribution of load carrying capacity decreases for higher values 
of the slip parameter, this can be seen from Fig. 14. 

 

           
Fig. 10. Variation of Load carrying capacity  

with respect to  and   

Fig. 11. Variation of Load carrying capacity  

with respect to  and   

Fig. 12. Variation of Load carrying capacity  

with respect to  and   

Fig. 13. Variation of Load carrying capacity  

with respect to  and   
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Fig. 14. Variation of Load carrying capacity  

with respect to  and s  

Fig. 15. Variation of Load carrying capacity  

with respect to  and   
 

One can easily observe that the effect of the skewness is almost identical to the trends of   so far as 
load distribution is concerned (Figs. 16-20). However, here the effect of the deformation   is quite 
significant unlike in the case of  . 

                      
Fig. 16. Variation of Load carrying capacity  

with respect to  and   

Fig. 17. Variation of Load carrying capacity  

with respect to  and   

                        
Fig. 18. Variation of Load carrying capacity  

with respect to  and   

Fig. 19. Variation of Load carrying capacity  

with respect to  and s  

 
Fig. 20. Variation of Load carrying capacity with respect to  and   
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deformation is significant. The effect of aspect ratio presented in Figs. 25-26 makes it clear that the load 
carry capacity decreases significantly with the increase in aspect ratio. Further, the effect of slip velocity 
on the distribution of load carrying capacity with respect to aspect ratio is not that significant for relatively 
higher values of slip parameter which in fact, is a good sign to be noticed. Identically, the effect of slip 
velocity on the variation of load carrying capacity with respect to the semi-vertical angle is also not that 
significant for higher values of slip parameter, which is suggested from Fig. 27. Lastly, Fig. 28 bears the 
stamp of the significantly adverse effect of the combination of slip and deformation. 

                   
Fig. 21. Variation of Load carrying capacity  

with respect to  and   
Fig. 22. Variation of Load carrying capacity  

with respect to  and   

                         
Fig. 23. Variation of Load carrying capacity  

with respect to  and s  
Fig. 24. Variation of Load carrying capacity  

with respect to  and   

                        
Fig. 25. Variation of Load carrying capacity  

with respect to  and   
Fig. 26. Variation of Load carrying capacity  

with respect to  and s   
 

 
Fig. 27. Variation of Load carrying capacity  

with respect to   and s  
Fig. 28. Variation of Load carrying capacity 

 with respect to s  and   
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Some of the Figures reveal that the negative effect induced by porosity and deformation can be 
neutralized by the positive effect of magnetization, at least in the case of negatively skewed roughness for 
relatively higher values of semi-vertical angle. In the present investigation, it is quite clear that the 
magnetization has a very limited scope of compensating the entire adverse effect of transverse surface 
roughness. However, it can go a long way in minimizing this adverse effect for a large range of 
deformation when relatively higher values of slip parameter are involved.  

 
4. VALIDATION 

 
 Load carrying capacity in this manuscript Deheri et al [6] 

Quantity With consideration Without consideration Without consideration 
̅ߝ 	ൌ െ0.05 5.94248 0.042144 0.042157 ∗ߤ 

 ത 0.033284 0.032777 4.61504ߙ 
 ത 0.057765 0.056258 5.949326ߪ 
 ----- 0.033893 0.0344 ̅ߜ 

 ߰ 0.034085 0.032578 4.992667 
  ----- 15.26915 ߣ 
 ߱ 0.088923 ----- 19.65482 

 
 Load carrying capacity in this manuscript Deheri et al [6] 

Quantity With  consideration Without consideration Without consideration 
 4.61382 0.046813 0.046815 ∗ߤ = -0.05		തߙ

 ---- 0.032893 0.0344 ̅ߜ 

 ത 0.042484 0.042371 4.75558ߪ 
̅ ߝ  0.033284 0.031777 4.615104 
 ߰ 0.034085 0.032578 4.919065 
 4.893012 0.473204 0.473507 ߣ 
 ߱ 0.055663 0.048728 5.842398 

 
 Load carrying capacity in this manuscript Deheri et al [6] 

Quantity With consideration Without consideration Without consideration 
 4.919078 0.046813 0.046815 ∗ߤ 0.001 =		߰

 ത 0.033064 0.033057 4.919034ߙ 
̅ ߝ  0.034181 0.032456 4.834085 
 --- 0.034493 0.0344 ̅ߜ 

 ത 0.049473 0.049744 5.063544ߪ 
 3.02872 --- 0.034085 ߣ 
 ߱ 0.088923 --- 9.433781 

 
 Load carrying capacity in this manuscript Deheri et al [6] 

Quantity With consideration Without consideration Without consideration 
 4.919078 0.046813 0.046815 ∗ߤ 0.6 =		ߣ

 ത 0.033064 0.033057 4.919034ߙ 
̅ ߝ  0.034181 0.032456 4.834085 
 --- 0.034493 0.0344 ̅ߜ 

 ത 0.049473 0.049744 5.063544ߪ 
 ߱ 0.041606 --- 5.753809 

 
 Load carrying capacity in this manuscript Deheri et al [6] 

Quantity With consideration Without  consideration Without consideration 
߱ ൌ  4.919078 0.046813 0.046815 ∗ߤ 50

 ത 0.033064 0.033057 4.919034ߙ 
̅ ߝ  0.034181 0.032456 4.834085 
 --- 0.034493 0.0344 ̅ߜ 

 ത 0.049473 0.049744 5.063544ߪ 
 3.028725 --- 0.038977 ߣ 
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A close scrutiny of the results presented here in comparison with the above investigation suggest that 

deformation induced adverse effect is not that sharp. 

The roughness and deformation obstruct the fluid flow, as a result less pressure is generated but at the 

same time the magnetization increases the effective viscosity of the lubricant. This effect is further 

enhanced by the negatively skewed roughness. Consequently, in this situation the combined positive effect 

of magnetization and negatively skewed roughness does not allow the pressure to fall rapidly.  
 

5. CONCLUSION 
 

This investigation strongly suggests that the roughness aspects must be accorded priority while designing 

the bearing system. For an overall effective performance of the bearing, the slip parameter is required to 

be minimized. Further, the values of the slip must be minimized for at least higher values of the 

deformation. Probably, the enhanced viscosity due to magnetization prevents the load carrying capacity to 

decrease even if higher value of slip parameter is involved. Of course, in these types of systems there is a 

limited effect of magnetization in the case of negatively skewed roughness even when negative variance is 

involved as load carrying capacity reduces greatly owing to the adverse effect of standard deviation, 

porosity, deformation and slip velocity. 
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NOMENCLATURE 

 
h  fluid film thickness at any point  h  the mean film thickness 

Sh  deviation from the mean film 
thickness 

  porosity in non-dimensional form 

p  lubricant pressure  P dimensionless pressure 
w  load carrying capacity  W  dimensionless load carrying capacity 
  variance    variance in non-dimensional form 

  standard deviation    dimensionless standard deviation 

  Skewness    non-dimensional skewness 

  viscosity of lubricant  *  dimensionless magnetization parameter 

  deformation    dimensionless deformation 

ap  the reference ambient pressure  s slip velocity parameter 

,a b  radius of the lower and upper 
plates 

  the inclination angle of magnetic field with the 
lower plate 
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