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Abstract– Isogeometric analysis is a recently developed numerical technique that uses NURBS 
basis functions instead of Lagrange polynomial basis functions used in standard finite element 
method. This allows the analysis to be done with the exact CAD geometry that it is based on. 
However, the non interpolatory property of NURBS basis functions makes the essential boundary 
condition imposition to be no longer applicable, directly on the control values. Therefore, a 
technique such as penalty method or fitting of the boundary data onto the span of the basis 
functions is needed. Such techniques usually lead to additional computational complexity or cost. 
In the present paper, a simple pointwise approach is proposed to accurately impose essential 
boundary conditions in the isogeometric analysis. The method is based on the collocation of 
boundary conditions in distinct points on the boundary using NURBS basis functions. Some 
numerical examples in heat conduction and linear elasticity are used to evaluate applicability and 
accuracy of the proposed method. It is shown, through demonstrative numerical examples, that the 
present method can improve the accuracy of the isogeometric analysis.           
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1. INTRODUCTION 
 

Today, many problems in the vast fields of science and engineering are routinely solved using the finite 

element (FE) method. To perform an analysis using this method, it is necessary to generate a mesh 

describing the geometry of the problem to be analyzed. To do this, a computer aided design (CAD) system 

is commonly employed to extract geometric data which is used in the mesh generation process. Each of 

these disciplines has evolved independently and recent research efforts have been directed to unify these 

two areas. Isogeometric analysis (IA), proposed by Hughes and his colleagues, is a new numerical 

simulation approach that combines the FE method and CAD technology into a unified framework. The FE 

meshes are replaced by parametric surfaces or volumes and the isoparametric concept is employed with 

the variational formulation. Some notable advantages are [1]: the exact and unified geometric 

representation, easy constructed high order continuous element and a superior accuracy compared with 

classic FE method. Due to its advantages, the IA rapidly widened its applications in many fields such as 

structural vibrations [2], fluid structure interactions [3], sensitivity analyses [4], turbulent flow simulations 

[5], shell analyses [6] and many others. 

Unfortunately, the NURBS basis functions, as with many meshless methods, are not interpolatory at 

control points and the essential boundary conditions cannot be directly applied onto the control values [7]. 
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Some efforts have been made so far to overcome this difficulty. A weak method of enforcement has been 

presented by Bazilevs & Hughes for the fluid mechanics problems [8, 9]. This approach requires 

additional terms in the weak form of the boundary value problem and may not provide sufficient accuracy 

in many problems. Least square is another technique for the enforcement of boundary conditions [1, 10, 

11]. This method requires the solution of a potentially large set of matrix equations along the boundary, 

leading to additional computational costs. Penalty function method, a simple and well-known approach for 

imposition of boundary conditions, is also used in the IA [12]. The accuracy of this method depends on the 

penalty coefficient which must be determined by trial and error. The Nitsche method, first proposed in the 

70s, is an attractive method which has been successfully used in meshless methods. The approach has also 

been applied on the IA [13]. The other method which is proposed to overcome this situation is based on a 

transformation method to modify the basis functions of the IA in order to impose boundary conditions 

[14].  

The contribution of the current work is to introduce a simple pointwise approach for the imposition of 

essential boundary conditions in the IA. In this method, the exact value of the boundary condition is 

collocated on the distinct boundary points and the resulting equations are inserted into the system of 

equations. To evaluate the applicability of the proposed method, two model equations, heat conduction 

and linear elasticity, over 2D domains are selected and some numerical examples are solved for different 

grid sizes. The results are then compared with exact or finite element solutions and the convergence and 

accuracy of the proposed method are examined. It is observed that the present method can improve the 

accuracy of the IA. 

 
2. MODEL BOUNDARY VALUE PROBLEMS 

 
Our main goal in the current work is to develop a simple method for imposition of essential boundary 

conditions in the NURBS based IA. Therefore, without loss of generality, two model boundary value 

problems are considered to evaluate the proposed method. The first model problem is heat equation and 

the second one is elastostatic problem which are defined on two dimensional domain Ω with boundary ߲Ω. 

The heat equation and its boundary conditions are as follows: 

ݑଶ  ܵ ൌ 0																	in							Ω

൜ݑ ⋅  ൌ ே߁					on																				̅ݐ

ݑ ൌ ா߁					on																												തݑ
                                              (1) 

where scalar ݑ is the field variable, ܵ is the source function, ߁ே and ߁ா  denote the natural and essential 

boundaries, respectively.  is the unit outward normal vector to the boundary. ̅ݐ and ݑത are prescribed flux 

and field variable on the boundary, respectively. 

The governing equation and boundary conditions of the second model problem, linear elastostatic, are 

as follows: 

સ ⋅ ࣌  ࢈ ൌ 0												in								Ω

൜࣌ ൌ ே߁					on																							࢚̅

࢛ ൌ ா߁					on																									ഥ࢛
                                              (2) 

where ࢛ is displacement vector, ࣌ is stress tensor, ࢈ is body force vector, ߁ே and ߁ா  denote the natural 

and essential boundaries, respectively.  is unit outward normal vector to the boundary. ࢚̅ and ࢛ഥ are 

prescribed traction and displacements on the boundary, respectively. A schematic representation of 

problem domain and its boundaries, for both model equations, is shown in Fig. 1. 
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ఎࣄ ൌ ሾߟଵ, ,ଶߟ … ,  ାାଵሿ்                                                            (9)ߟ

with ݉ being the number of basis functions that comprise the B-spline in ߟ direction. Similar to the curve 
representation of Eq. (7), a two dimensional surface ࡿ can be formulated as: 

ࡿ ൌ ∑ ∑ ܴ
ሺࣈሻࡼ


ୀଵ


ୀଵ                                                        (10) 

where, ࡼ refers to the coordinate of the control points in the physical space. In other words, the Eq. (10) 
represents a mapping that maps any point from the parametric domain ሺߦ, ,ݔሻ to the physical domain ሺߟ  .ሻݕ
 

4. ISOGEOMETRIC ANALYSIS 
 
In Eq. (10) the NURBS basis functions are used for representation of a bivariate function. This notion can 
then be extended to the geometry representation of the problem domain and also the field variable 
approximation. In other words, in the NURBS based IA, field variable vector ࢛ and also the domain 
geometry are represented similarly to the isoparametric finite element method as follows: 

࢛ ≃ ࢛ ൌ ∑ ܴሺࣈሻ࢛
ே
ୀଵ ൌ  (11)                                                 ࢁ்ࡾ

࢞ ൌ ∑ ܴሺࣈሻࡼ
ே
ୀଵ ൌ  (12)                                                       ࡼ்ࡾ

where, ܰܲܥ represents the total number of control points as well as the total number of basis functions. 
For convenience, the control points are re-numbered with a unified subscript “A” based on the subscripts 
{a, b} in Eq. (8) and the superscripts of basis function are ignored. Based on this, ܴሺࣈሻ is the NURBS 
basis function as defined in Eq. (8). ࢛ and ࡼ are the control variable and the position vector of the 
control point ܣ, respectively. In a similar manner, ࢁ and ࡼ are the global control variable vector and the 
global position vector, respectively. ࡾ also is a matrix of basis functions. In other words, Eq. (12) maps 
any point ࣈ from the parametric space to a point ࢞ in the physical space.  

By converting the model differential equations and natural boundary conditions given in Eq. (1) or in 
Eq. (2) to the integral weak form, then introducing the field variable approximation given in Eq. (11) and 
using the Galerkin method, the discrete form of the model equations can be obtained as follows [16]. 

ࢁࡷ ൌ  (13)                                                                       ࡸ

where ࡷ is the coefficient matrix (stiffness matrix), ࢁ is the vector of unknown control values and ࡸ is the 
loading vector due to source function and natural boundary conditions. For the first model problem, the 
heat equation, coefficient matrix ࡷ and load vector ࡸ can be obtained as follows [16]. 

ሺࡷሻ ൌ  ቀడோಲ
డ௫

డோಳ
డ௫


డோಲ
డ௬

డோ್
డ௬
ቁ ݀Ωஐ 		,				ሺࡸሻ ൌ  ܴܵ݀Ωஐ   ܴ݀̅ݐΓಿ                 (14) 

In a concise form, ࡷ and ࡸ can be obtained for the second model problem, elastostatic equation, as follows 
[16]. 

ࡷ ൌ  ሺࡾሻ்ࡰሺࡾሻ݀Ωஐ ࡸ				,		 ൌ  Ωஐ݀࢈்ࡾ   Γಿ்࢚݀̅ࡾ                             (15) 

where  is the strain differential operator and ࡰ is the elasticity matrix which are explained in detail in 
[16]. 

The elements in NURBS based IA are defined by the knot spans. Therefore, the domain integrals in 
Eqs. (14) and (15) can be evaluated using the traditional Gauss quadrature integration formula over these 
elements. 

Similar to the majority meshfree methods, the NURBS basis functions don’t generally fulfill the 
Kronecker delta property. The non-interpolatory property of the basis functions makes the control points 
not located within the physical domain. The most immediate result of the non-interpolatory property of 
NURBS basis functions is that it is not trivial to impose essential boundary into the control points. 
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Table 3. Error norms for example 3 
 

NCP h e (Direct) e (Present) e (FEM) 

Grid 1 9 2.50E-01 9.24E-04 2.51E-04 2.34E-03 

Grid 2 16 1.25E-01 4.94E-05 1.97E-05 8.40E-05 

Grid 3 25 6.25E-02 9.90E-07 3.94E-07 2.49E-06 
 

 
Fig. 12. Error norm of example 3, for different discretization levels obtained using direct method, 

 proposed method and finite element 
 
Example 4: Elastostatic of a thick walled cylinder 

In the last example a thick walled cylinder with internal pressure is considered. Upon the symmetry of the 

problem only a quarter of the problem domain is considered and proper boundary conditions are applied 

on the cutting planes. A schematic diagram of the problem and boundary conditions is presented in Fig. 

13. The problem has an analytical solution in the polar coordinates. The displacement and stress 

components in the Cartesian coordinates can be written as [17] 
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sin	ሺ2ߠሻ

                                             (25) 

where, ݎ and ߠ are measured in the polar coordinates. The material properties are ܧ ൌ  and ܽܲܩ	200

ߥ ൌ 0.26. The cylinder diameters are ܽ ൌ 1	݉ and bൌ 2	݉. The problem is solved with 3 control net 

resolution. The relative error norms in displacement obtained using different method is presented in Table 

4 and shown in Fig. 14. The results show the proposed method is in good agreement with analytic solution 

and it is observed that the present method provides better results compared to the direct method. 
 

‐7

‐6

‐5

‐4

‐3

‐2

‐1.3 ‐1.2 ‐1.1 ‐1 ‐0.9 ‐0.8 ‐0.7 ‐0.6 ‐0.5

Lo
g 1

0
(e
)

Log10(h)

Direct

Present

FEM



IJST, Transac

178

 

 

 

 
Because of 
essential bo
method for 
functions ar
equations a
proposed m
for differen
observed th
imposition o
can be effec
potential pro

ctions of Mech

Fig. 14. E

Grid 1 

Grid 2 

Grid 3 

the non-inter
oundary cond
r imposition 
re used to de
are then inse

method, we co
nt levels of d
hat the error
of boundary 
ctively used 
oblems. 

Lo
g 1

0(
e)

anical Enginee

Fig. 13. Thick

Error norm of
direct 

NCP 

16 

25 

36 

rpolatory pro
ditions in the

of essential
erive a colloc
erted into th
onsidered tw
iscretization 

r level of th
conditions o
in the impo

‐4.5

‐4

‐3.5

‐3

‐2.5

‐2

‐1.5

‐1

‐1 ‐0.9

Y. 

ering, Volume 3

k walled cylin

f example 4, fo
method, propo

Table 4. Err

h 

5.00E-01 

2.50E-01 

1.25E-01 

7. CO

operty of the
e IA. In the p
l boundary c
cation equati
he global sy
wo model bou

and also use
e proposed 

on the contro
sition of esse

9 ‐0.8 ‐

Direct

Present

FEM

Bazargan Lari
 

38, Number M

nder under inte

for different di
osed method a

ror norms for e
 

e (Direct)

1.02E-02

2.31E-03

3.15E-04

ONCLUSIO

e NURBS ba
present work
conditions in
ion for each 
ystem of equ
undary value
ed the ܮଶ err
method was

ol points. The
ential bound

‐0.7 ‐0.6

Log10(h)

i 

M1+                     

 
ernal pressure

iscretization le
and finite elem

example 4 

) e (Pres

2 2.51E

3 8.19E

4 1.34E

ON 

sis functions
k, we have pr
n the IA. In
distinct poin
uations. To 
e problems a
ror norm in o
s significantl
erefore, it is b
dary conditio

‐0.5 ‐0.4

                        

, example 4 

evels obtained
ment 

sent) e (F

E-03 3.16

E-04 3.26

E-04 5.32

s, it is a chall
roposed a sim
n this metho
nt on the esse
evaluate the

and solved fo
order to qual
ly less than 
believed that

ons in the iso

‐0.3 ‐0.

                        

 
d using  

FEM) 

6E-02 

6E-03 

2E-04 

lenging task 
mple point c
od, the NUR
ential bound
e performan
our numeric 

alify the resu
the direct m

t the propose
ogeometric a

.2

  May 2014 

to impose 
ollocation 

RBS basis 
dary; these 
nce of the 

examples 
lts. It was 

method of 
ed method 
analysis of 



A pointwise approach enforcement of essential… 
 

May 2014                                                                      IJST, Transactions of Mechanical Engineering, Volume 38, Number M1+   

179

Acknowledgement- The results presented in this paper are from a research project supported by the 
Islamic Azad University, Shiraz Branch, Shiraz, Iran. Partial support of the first author by the Islamic 
Azad University, Shiraz Branch is also appreciated.  
 

REFERENCES 
 
1. Hughes, T. J. R., Cottrell, J. A. & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, 

exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 

4135-4195. 

2. Cottrell, J. A., Reali, A., Bazilevs, Y. & Hughes, T. J. R. (2006). Isogeometric analysis of structural vibrations. 

Computer Methods in Applied Mechanics and Engineering, Vol. 195, pp. 5257-5296. 

3. Bazilevs, Y., Calo, V. M., Hughes, T. J. R. & Zhang, Y. (2008). Isogeometric fluid-structure interaction: theory, 

algorithms and computations. Computational Mechanics, Vol. 43, pp. 3-37. 

4. Ha, S. H. & Cho, S. (2010). Numerical method for shape optimization using T-spline based isogeometric 

method. Structural and Multidisciplinary Optimization, Vol. 42, No. 3, pp. 417-428. 

5. Bazilevs, Y., Michler, C., Calo, V. M. & Hughes, T. J. R. (2010). Isogeometric variational multi scale modeling 

of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Computer 

Methods in Applied Mechanics and Engineering, Vol. 199, pp. 780-790. 

6. Benson, D. J., Bazilevs, Y., Hsu, M. C. & Hughes, T. J. R. (2010). Isogeometric shell analysis: the Reissner-

Mindlin shell. Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 276-289. 

7. Embar, A., Dolbow, J. & Harari, I. (2010). Imposing Dirichlet boundary conditions with Nitsche's method and 

spline-based finite elements. International Journal for Numerical Methods in Engineering, Vol. 83, pp. 877-898. 

8. Bazilevs, Y. & Hughes, T. J. R. (2007). Weak imposition of Dirichlet boundary conditions in fluid mechanics. 

Computers & Fluids, Vol. 36, pp. 12-26. 

9. Bazilevs, Y., Michler, C., Calo, V. M. & Hughes, T. J. R. (2007). Weak Dirichlet boundary conditions for wall-

bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering, Vol. 196, pp. 4853-4862. 

10. Hinton, E. & Campbell, J. S. (1974). Local and global smoothing of discontinuous finite element functions using 

a least squares method. International Journal for Numerical Methods in Engineering, Vol. 8, pp. 461-480. 

11. Mitchell, T. J., Govindjee, S. & Taylor, R. L. (2011). A method for enforcement of dirichlet boundary conditions 

in isogeometric analysis. in Mueller-Hoeppe, D., Loehnert, S., Reese, S., Recent developments and innovative 

applications in computational mechanics, Springer-Verlag, Berlin. 

12. Chen, T., Mo, R. & Wan, N. (2011). NURBS based isogeometric finite element method for analysis of two-

dimensional piezoelectric device. Procedia Engineering, Vol. 15, pp. 3562-3566. 

13. Chen, T., Mo, R. & Gong, Z. (2012). Imposing essential boundary conditions in isogeometric analysis with 

Nitsche’s method. Applied Mechanics and Materials, Vols. 121-126, pp. 2779-2783. 

14. Wang, D. & Xuan, J. (2010). An improved NURBS-based isogeometric analysis with enhanced treatment of 

essential boundary conditions. Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 2425-

2436. 

15. Piegl, L. & Tiller, W. (1997). The NURBS Book: Monographs in visual communication. Second Edition, 

Springer-Verlag, New York, 1997. 

16. Reddy, J. N. (1993). An introduction to the finite element method. 2nd edition, McGraw-Hill. 

17. Timoshinko, S. P. & Goodier, J. N. (1970). Theory of elasticity. Third edition, McGraw-Hill, New York. 

 
  


