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Abstract– Swimming microrobots are miniature machines which can be designed and fabricated 
using microelectromechanical systems (MEMS) technology. They can play a key role in many 
biomedical applications, such as controlled drug delivery, microsurgery, and diseases monitoring. 
Many researches have been carried out on micro swimming methodologies. Also, different 
propulsion mechanisms have been introduced for 1-DOF microswimmers. The objective of this 
work is to study a flagellar microswimmer with controlled maneuvers. The propulsion mechanism 
used in our design contains two prokaryotic flagella, rotating into the fluid media, leading to 
microrobot movement. In this study, we have tried to focus on dynamic modeling of the motion 
proposed for the swimming microrobot. Then, an appropriate control law was developed in order 
to control the microrobot maneuvers. The resistive-force theory was used in order to determine the 
hydrodynamic force created by the rotary motion of each flagellum into the fluid media. Feedback 
linearization method was used to control the motion of microrobot for tracking performance. The 
results obtained revealed that microrobot can be controlled in such a way that the desired 
maneuver can be performed by applying the designed controller.           
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1. INTRODUCTION 
 

Swimming microrobot have the potential of being implanted inside human bodies and accomplishing 

many complex tasks, such as controlled drug delivery, monitoring of syndromes, and minimally invasive 

surgery [1, 2]. Such crucial applications reveal the importance of developing a maneuverable 

microswimmer with controlled motions. The substantial contrast between swimming at micro and macro 

scales arises from the hydrodynamics law corresponding regimes of fluid flows. Due to the miniature size 

and low velocity of swimming microrobots, their motion occurs in very low Reynolds number (Re≪1) 

fluid flow. In this case, the viscous forces may have dominant effects and therefore, the inertial forces can 

be ignored. 

The most important part of the swimming microrobots is their propulsion mechanism. Three 

biological propulsion mechanisms are introduced to be used in swimming microrobots, inspired by 

swimming microorganisms in nature. These methodologies are prokaryotic flagellar motion, eukaryotic 

flagellar motion, and ciliary motion [3]. 
There is large amount of research concerning propulsion mechanisms in swimming microrobots. 

Behkam and Sitti developed two methodologies for swimming in very low Re fluid flows based on 
prokaryotic and eukaryotic flagellar motions [4, 5]. Kosa et al. presented a new propulsion mechanism for 
swimming at microscale based on traveling wave in an elastic tail [6]. Li et al. advanced the swimming 
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Where,	߱ and ߠሶ  are the input angular velocity of system and resistive angular velocity constructed by	ܯ௑ 
respectively. Furthermore, there is an additional viscous torque constituted through hydrodynamic reaction 
between the helical flagella and surrounding the fluid flow. The X-component of this torque is obtained by 
Eq. (5) [12]: 

 2 cosSM n d      (5) 

The body of microrobot is considered as a sphere with the radius of a. Two prokaryotic flagella are 
symmetrically located on the diameter of sphere along the Y-direction. Disregarding the inertial terms, the 
governing equations, corresponded to microrobot's motion, would be set up through force and momentum 
equilibrium equations as follows: 
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Where, ܨ௑,௕௢ௗ௬ and ܯ௑,௕௢ௗ௬ characterize the drag force and torque, respectively. Considering Stokes flow, 
the drag force and torque for a sphere with the radius of a  are calculated by: 
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In which   is the angular velocity of microrobot body about Z-axis. Substituting Eqs. (1) and (4) in the 
Eq. (3) and integrating for  0X n  leads to: 
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Moreover, the magnitude of   is determined according to momentum equation about X-axis: 

 1, 2, 2 0X X SM M M     (9) 

Substituting the Eqs. (5), (7) and (8) in the Eqs. (6) and (9), the forward velocity of microswimmer 
and its angular velocity about Z-axis would be obtained as: 
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Parameters 1 5top p  are defined in the terms of geometrical parameters of flagella and hydrodynamic 
properties of fluid media, in the set of relations in Eq. (11). 
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